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Abstract

Motivation: Protein solubility is an important property in industrial and therapeutic applications.

Prediction is a challenge, despite a growing understanding of the relevant physicochemical properties.

Results: Protein–Sol is a web server for predicting protein solubility. Using available data for

Escherichia coli protein solubility in a cell-free expression system, 35 sequence-based properties

are calculated. Feature weights are determined from separation of low and high solubility subsets.

The model returns a predicted solubility and an indication of the features which deviate most from

average values. Two other properties are profiled in windowed calculation along the sequence:

fold propensity, and net segment charge. The utility of these additional features is demonstrated

with the example of thioredoxin.

Availability and implementation: The Protein–Sol webserver is available at http://protein-sol.man

chester.ac.uk.

Contact: jim.warwicker@manchester.ac.uk

1 Introduction

Protein solubility is an important property, from recombinant pro-

tein production to the development of biotherapeutics. A number of

methods have been used to predict aggregation (Agrawal et al.,

2011) and solubility, based on factors such as propensity to form in-

clusion bodies (Wilkinson and Harrison, 1991) and b-strands

(Tartaglia and Vendruscolo, 2008), structural genomics studies

(Magnan et al., 2009), and physicochemical properties (Agostini

et al., 2014). A web server is presented, Protein–Sol, for predicting

protein solubility, based on the observation of a bimodal distribu-

tion of protein solubilities for E.coli proteins in cell-free expression

(Niwa et al., 2009). These measurements report the amount of a

protein that is soluble (in the supernatant subsequent to centrifuga-

tion) compared with the total amount of that protein, rather than a

thermodynamic property. A wider significance is apparent from two

factors. First, that proteins tend to evolve to a point at which their

solubility matches that required for their natural abundance

(Tartaglia et al., 2007). Second, the properties seen in the current

work that associate with more soluble proteins are those seen previ-

ously, such as fewer amino acids with aromatic sidechains, favour-

ing negative charge, and a preference for lysine over arginine

(Warwicker et al., 2014).

2 The Protein–Sol server

Protein–Sol is available at http://protein-sol.manchester.ac.uk without

account registration or licence. It processes amino acid sequence and

calculates predicted solubility and other properties, which returned in

a graphical format and as a text file. Thirty-five features are con-

sidered in the algorithm, 20 amino acid compositions; 7 composites:

K-R, D-E, KþR, DþE, KþR-D-E, KþRþDþE, FþWþY; and 8 fur-

ther predicted features: length, pI, hydropathy (Kyte and Doolittle,

1982), absolute charge at pH 7, fold propensity (Uversky et al.,

2000), disorder (Linding et al., 2003), sequence entropy, and b-strand
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propensity (Costantini et al., 2006). A linear model combining the 35

features gave an initial fit to the solubility data (Niwa et al., 2009).

Weights were then derived from differences between the lower and

higher 5% tails of the solubility distribution, recorded as z-scores.

Proteins predicted to have a transmembrane (TM) segment (hydrop-

athy>1.6 in any 21 amino acid segment), were excluded.

For a query sequence, the contribution of each feature to predicted

solubility is a linear scaling between its corresponding values averaged

within each of the lower and higher subsets, multiplied by feature

weight, with feature weights normalized to sum to 1. As there are

many correlations between features, and because some features do not

contribute to the prediction, overall correlation of prediction to the

population of experimental solubilities for 2395 proteins, (without pre-

dicted TM regions), was used to assess combinations of features, elimi-

nating first those with least weighting, continuing elimination until the

model performance falls. The final prediction scheme consists of 10

features (H, L, V, K-R, DþE, FþWþY, length, absolute charge, fold

propensity, sequence entropy), with a correlation coefficient of 0.621

between calculated and experimental values, and 58% predicted solu-

bility giving the best separation threshold of lowest and highest 5%

subsets in a receiver operating characteristic (ROC) analysis. In add-

ition to charge-based features, non-polar features are also present in

the model. For example, aromatic (FþWþY) composition weights pre-

dicted solubility down, whilst valine weights solubility up. In addition,

predicted fold propensity and sequence entropy have a negative influ-

ence on predicted solubility. Our interpretation is that, in addition to a

charged protein surface being favourable for solubility, there may also

be a subset of more soluble proteins that have reduced sequence com-

plexity, perhaps similar to intrinsically disordered proteins. Display of

the extent to which each feature deviates from population average

allows the user to select features that could be targeted to improve solu-

bility. Net charge and fold propensity over a sliding window are dis-

played as profiles, providing additional information with which to

interpret protein behaviour.

Prediction of solubility from sequence is a single step process for

the user. Each sequence for calculation is assigned a unique id num-

ber, formatted, and stored temporarily on the server. No calculation

occurs if the input is invalid and the user is informed of the mis-

match. The algorithm generates a text file that is processed using

shell scripts and R to produce a graphical interpretation of the re-

sults. The predicted protein solubility is not valid for membrane pro-

teins, but the results will be presented, with a warning, if a predicted

transmembrane region is identified.

Several tests have been made of the server. Protein expression data

from structural genomics projects is often aggregated and heteroge-

neous. The first test set consists of 679 strongly expressed and

well-behaved proteins from a single pipeline, which were used to de-

rive a model for crystallization propensity (Price et al., 2009).

We predict an average solubility of 70.6% for these 679 proteins,

with 70.3% of the set above the 58% threshold. A further set of 200

proteins used to test the crystallization model (Price et al., 2009) gives

an average of 76.1% predicted solubility with 82.5% of the set above

the 58% threshold. Thermophile proteins have evolved to counter

particularly stringent tests on solubility (Greaves and Warwicker,

2007). Methanopyrus kandleri is a sequenced archaeon with one of

the highest known growth temperatures (80� 110�C, Slesarev et al.

2002). Excluding those containing a predicted TM segment, solubility

predictions for 1294 proteins from UniProt (UniProt Consortium,

2017) averaged 78.6%, with 93.6% of these above 58%.

A link between protein aggregation rates and gene expression

levels (Tartaglia et al., 2007) has been reinforced with comparison

of the abundant proteins serum albumin and myoglobin with their

less abundant paralogues (Warwicker et al., 2014). Quantitative

proteomics allows comparison of (log scale) protein abundance and

predicted protein solubility, with ROC plot analysis using low and

high abundance subsets from the 5% tails. Calculations have been

made with whole proteome integrated sets for Escherichia coli,

Saccharomyces cerevisiae and Homo sapiens retrieved from PaxDb

(Wang et al., 2015). Results are reported in Table 1 (excluding pro-

teins containing predicted TM segments), with the original develop-

ment set of E.coli protein solubility added for reference. With

membrane proteins included (not shown), the measures of agree-

ment increase, an outcome of the importance of charge for protein

solubility. Accuracy for the ROC analysis is listed at 58% solubility

prediction, since this gives the highest accuracy for the development

set. ROC plots are shown in Figure 1.

Through these varied tests, a structural genomics pipeline, the

proteome of a hyperthermophile, and protein abundance in organisms

across the tree of life, the model consistently demonstrates correlations.

3 Discussion

Protein–Sol is demonstrated with E.coli thioredoxin, known to en-

hance solubility of co-produced proteins in E.coli (Yasukawa et al.,

Fig. 1. Performance of the predictions across bacterial and eukaryotic proteomes. ROC plots are shown for prediction performance in the training set of measured

solubilities, and 3 test sets of protein abundance

Table 1. ROC plot and correlation analysis of predictions versus

protein solubility or abundance

Set Proteins 5% Tails AUC Acc at 58% Corr

E.coli solubility Train 2395 120 0.974 0.900 0.621

E.coli abundance Test 2364 119 0.922 0.828 0.382

Yeast abundance Test 4275 214 0.707 0.626 0.188

Human abundance Test 10662 534 0.708 0.659 0.190

Note: AUC is area under the curve, Acc is accuracy at 58% solubility pre-

diction threshold.
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1995). Predicted solubility (scaled from 0 to 1) is plotted (Fig. 2A)

alongside the population average for the experimental dataset

(Niwa et al., 2009). Thioredoxin at 0.76 is well above the average

of 0.45, consistent with its wider use in co-expression or as a fusion

partner. Solubility prediction on the server is given in the 0–1 range

for ease of user interpretation. Percentage values, which were used

in training and testing, can exceed 100% in the experimental data-

set. For reference, thioredoxin predicts at 88% against a population

average of 53%. The predicted pI is also displayed. Next, a plot

shows deviations from population averages for the 35 features.

Although only 10 of these contribute to the prediction, the signed

deviations show the characteristics of the input sequence. For ex-

ample KmR, meaning K-R, is prominent for thioredoxin and con-

tributes to a prediction of highly soluble. To improve solubility, K-R

is perhaps more useful than the other 9 features in the final model,

since lysine and arginine can generally be swapped with little

consequence for protein function or fold. The plot of windowed fold

propensity (Fig. 2A) shows two subdomains, consistent with experi-

mental characterization of thioredoxin folding (Katti et al., 1990).

The subdomain structure is also apparent in a novel representation

of windowed net charge with negatively charged N-terminal and

positively charged C-terminal subdomains (Fig. 2B). Whilst the win-

dowed net charge does not indicate a complete separation of charge

between subdomains, it shows the possibility for interactions de-

pendent on the opposite sign of net charges, exemplified by the two

salt-bridges shown in Figure 2B.

Protein–Sol provides a fast sequence-based method for predicting

protein solubility and lysine and arginine content are highlighted in

regard to modifying protein solubility, as K/R swaps are likely to be

structurally and functionally neutral. A case study with thioredoxin

shows that additional features of the server can be used to interpret

subdomain structures and introduces the novel feature of windowed

net charge, which may inform on charge-charge interactions be-

tween subdomains.
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