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Pleiotropic mechanisms of virus survival and persistence

Craig S. Miller, DMD, MS,* Lexington, Ky
UNIVERSITY OF KENTUCKY

Viruses are enormously efficient infectious agents that have been implicated in causing human disease for centuries.
Transmission of these pathogens continues to be from one life form to another in the form of isolated cases, epidemics, and
pandemics. Each infection requires entry into a susceptible host, replication, and evasion of the immune system. Viruses are
successful pathogens because they target specific cells for their attack, exploit the cellular machinery, and are efficient in
circumventing and/or inhibiting key cellular events required of survival. This article reviews some of the advances that have
taken place in human virology in the past 50 years, emphasizing mechanisms that contribute to, and are involved with, virus
survival and persistence. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:527-36)

HISTORY AND PROGRESS

The field of virology was barely half a century old
in 1948 when Dr Thomas Francis wrote 2 articles,
“Viruses as Agents of Disease” and “The Prevention of
Virus Disease,” that were published in this journal.
Early leadership by Mayer, Ivanovsky, Loeffler, Frosch,
Walter Reed and others, allowed progress from “con-
tagium vivum fluidum”' and a simple understanding of
the existence and predatory nature of viruses to the
characterization of viruses with regard to size, resis-
tance to chemical and physical agents, host and tissue
selectivity, and pathogenic and immunologic effects.
These investigations made it clear that viruses were a
very diverse group of pathogens. However, our knowl-
edge of viral-cell interactions and the effect of viruses
on the immune system was rudimentary. We held the
understanding that a recovered individual is not sus-
ceptible to reinfection with the same virus, and that
serum contained components that when mixed with
virus and injected into a susceptible animal that animal
was protected. These basic concepts served as the basis
for classic studies of active and passive immunization.
But several important advances that occurred between
1948 and 1957 jump-started the field of modern
virology. These included the development of cultures
of single animal cells,>* Watson and Crick’s identifica-
tion of DNA and the genetic code,4 the development of
optimal medium for growing cells, and the development

This work was supported in part by NIH grant DE14142.
“Professor, Section of Oral Medicine, Center for Oral Health
Research, College of Dentistry, and Department of Microbiology,
Immunology & Molecular Genetics, College of Medicine, University
of Kentucky, Lexington, Ky.

Received for publication Mar 22, 2005; returned for revision Mar 22,
2005; accepted for publication Mar 22, 2005.

1079-2104/$ - see front matter

© 2005 Mosby, Inc. All rights reserved.
doi:10.1016/j.tripleo.2005.03.017

of the viral plaque assay.’ By the early 1950s, Max
Theiler and Jonas Salk (killed virus) had developed
vaccines for yellow fever and polio, respectively, and
through the benefits of growing the viruses in cell
culture, shortly thereafter Sabin developed the oral (live
attenuated virus) vaccine. Introduction of these vaccines
into the human masses remains to this day one of the
greatest accomplishments of preventive medicine.

In the 1960s, the transition from basic virology to
molecular biology began. Viruses and components of
viral infections were analyzed using gel electrophoresis,
protein-antibody interactions, and biochemical assays
to answer basic biologic questions. As a result, greater
knowledge of virus replication, viral and cellular
receptors, and immunologic interactions was achieved.
Specifically, research during this time led to an under-
standing of the regulation of gene expression including
transcription factors, enhancer elements, promoters,
aspects of RNA polymerase, and reverse transcriptase,
as well as the discovery of proto-oncogenes and tumor
suppressor proteins. Scientists tagged viruses to identify
intracellular locations of viral proteins, understand
nuclear and cytoplasmic shuttling, and map neural
circuitry. Complete genomic sequences of viruses have
been recorded and entered into public databases. The
benefits of databases such as FASTA and BLAST have
led to searches in homology between motifs character-
istic for specific gene products and the identification of
novel viral genes and their functions.

Our knowledge also has advanced from the use of
positive and negative selection procedures. Positive
selection being the method whereby genomic fragments
or single candidate genes are expressed in a suitable
cell system and tested for functionality (ie, infection
phenotype). In contrast, negative selection is based on
the construction of viral mutants that lack specific genes
and the implementation of studies that identify a change
in phenotype when the viral mutant infects a particular
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cell or animal. Use of these techniques has led to the
identification of virulence factors, novel mechanisms of
regulation of cell surface receptors, and signal trans-
duction pathways. Within the last decade, the emerging
fields of genomics and proteomics have allowed for the
functional analysis of a large number of transcripts and
protein sequences that are expressed during viral
infection that provide new clues as to the regulation of
acute, chronic, and persistent viral infections, as well as
reactivation and malignant transformation. Excitingly,
the last decade has demonstrated that scientists have
the knowledge and skill to harness unique features of
viruses (eg, adenoviruses, retroviruses, herpesviruses)
in implementing gene therapy and targeting processes
important in chronic disease and cancer. However,
mastery of this field remains to be seen.

Despite the exponential growth in virology during the
last 30 years, mankind still suffers from transmission
and disease when humans serve as hosts to viruses.
Moreover, the outcomes are often severe when humans
serve as novel hosts to emerging virus infection (eg,
avian flu virus, Ebola virus, equine hemorrhagic fever
viruses, Hanta virus, human immunodeficiency virus
(HIV), Hendra virus, Nipah virus, sudden acute respi-
ratory syndrome (SARS) coronavirus, and West Nile
virus).® Of great importance is the fact that the oral
cavity continues to be the source of transmission of
many viruses, the site of replication and asymptomatic
shedding of viruses, and a site where persistent viral
infections exist, the latter being a prerequisite for virally
induced malignant transformation. Clearly, the field of
virology has grown to the extent that a “state-of-the-art”
paper would be exhaustive in length. Accordingly, this
review focuses on specific viral cell interactions that
allow the virus to survive the cellular attack and evade
the immune system, establish persistent infections, and
cause chronic disease. Additional topics will be covered
in future reviews.

VIRAL COUNTER DEFENSES

Viruses have developed numerous strategies for
subverting the host defenses that are launched during
infection. The first innate defense encountered is
cellular selectivity during the entry process. Viral
attachment proteins bind to specific cell receptors
(proteins, carbohydrates, or glycolipids) and corecep-
tors. The absence of a specific receptor shields the cell
from attack. If this level of defense is foiled, upon
binding receptors can sense microbial infection and
trigger a multitude of antimicrobial and inflammatory
responses. The toll-like receptor (TLR) family which
consists of 10 to 15 members are well characterized in
their ability to detect bacterial components (ie, lip-
oproteins and lipoteichoic acids, flagellin) as well as
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unmethylated CpG motif DNA of bacteria and viruses
(detected by TLRY), double-stranded RNA (detected by
TLR3) and single-stranded viral RNA (detected by
TLR7).7 In particular, TLRs 3, 7, 8, and 9 specialize in
viral detection and recognition of nucleic acids within
the intracellular compartments which results in defen-
sive signaling.

After receptor binding, entry is modulated by either
direct fusion with the plasma membrane or clathrin- or
nonclathrin-mediated endocytosis.® Viruses that gain
entry uncoat and deliver their genetic material and
undergo a permissive or nonpermissive infection. A
permissive cell permits virus replication and ultimate
lysis of the host cell. In contrast, a nonpermissive cell
downregulates virus replication and lytic gene expres-
sion resulting in little to no viral progeny. Nonpermissive
infections can be abortive or persistent, and persistent
infections can be active or latent. Latent infections are
characterized by silencing of gene transcription, inter-
mittent reactivation, or rarely oncogenic transformation.

At the onset of infection, for a virus to survive within a
cell, the virus must balance its own growth with death of
the host and circumvention of the immune response.
Strategies for survival involve regulating apoptosis,
inhibiting interferon production, modulating the major
histocompatibility complex (MHC) class I function that
ultimately affects the cytotoxic lymphocyte (CTL) and
natural killer (NK) response, and limiting cytokine and
chemokine production/function. Long-term survival
(ie, latency) requires downregulation of lytic gene ex-
pression, inhibition of apoptosis, and minimizing the
inflammatory response.

APOPTOSIS

Apoptosis, or programmed cell death, is a highly
regulated and conserved series of sequential cellular
events that results from receptor- or mitochondrial-
mediated pathways in response to a variety of stimuli,
including viral infection and the appearance of double-
stranded RNA. The process is regulated (Fig 1) by a
family of aspartate-specific cysteinyl proteases, or
caspases, that converge at a number of downstream
points resulting in proteolytic cleavage and enzyme
activation.” Caspases are segregated into 2 distinct
subfamilies. The “apoptotic” caspases (2, 3, 6, 7, 8, 9,
and 10) are involved in the cascade that results in
protease production, chromatin condensation, and cel-
lular degradation. The “inflammatory” caspases (1, 4,
and 5) provide a second round of defense against viral
infection.'® The inflammatory caspases are involved in
the proteolytic maturation of key cytokines (ie,
interleukin (IL)-1B and IL-18). Cytokine IL-18, also
known as interferon (IFN)-inducing factor, directs
the production of IFN-y.'' In turn, IFN-y induces
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Fig 1. Viral mechanisms involved in subverting the apoptotic pathway. PARP, Poly (ADP-ribose) polymerase.

expression of proteolytic active subunits that lead to
proteolysis and antigenic processing by TAP proteins.
TAP proteins are critical for displaying viral antigens on
the cell surface (see Cellular Immunity, below).'?

Clearly, apoptosis is an important target of virus
defense, because early destruction of an infected cell
could greatly reduce replication and the number of viral
progeny produced. Interestingly, viruses have evolved
several methods for suppressing or delaying apoptosis
as well as encoding proteins that function as inducers of
apoptosis. This apparent yin-yang relationship with
apoptosis is important to prolong the life of the cell yet
facilitate the release and spread of viral progeny at the
appropriate time.'>'*

Viruses regulate apoptosis by several mechanisms
including the targeting of the tumor suppressor gene
product p53, the Fas death receptor, and by producing
caspase inhibitors and viral Bcl-2 homologs.'> Adeno-
virus, for example, encodes several gene products that
influence apoptosis. The E1A gene product stabilizes
p53 and induces p53-dependent apoptosis.'*'® In con-
trast, the adenovirus E3 gene product promotes degrada-
tion of Fas, and the adenovirus E1B proteins antagonize
p53 function. Viral homologs of Bcl-2, an apoptosis
suppressor that binds with Bax, are produced by adeno-
virus, Epstein-barr virus (EBV, BHRF1 protein), and
other viruses.'”"'®

There are several classes of caspase inhibitors
encoded by viruses. These include the serine proteinase
inhibitors (serpins: CrmA/SPI-2), viral inhibitors of
apoptosis (VIAPs), p35, and inhibitors of procaspase 8
protease (also known as FLICE).19 CrmA and p35 block
caspase 1, previously termed IL-13—converting enzyme
(ICE).?° Caspase 1 functions primarily as an activator of
proinflammatory cytokines, but also has apoptosis-

inducing ability in select mammalian cells, such as
neurons. The vIAPs appear to inhibit Bax-mediated
apoptosis in human cells rather than directly inhibiting
caspases.”’

Several human herpesviruses encode FLICE-
inhibitory proteins (FLIPs) that block TRAIL-mediated
cell death by interfering with procaspase 8 protease
(FLICE) activation.

For example, the B-herpesviruses (cytomegalovirus
(CMV)) encode a viral inhibitor of caspase activation
(vICA) which inhibits caspase 8 (FLICE) activation,?
and y-herpesviruses encode VFLIPs (eg, K13) which
inhibit activation of caspases by molecular mimicry.*
CMV also encodes a viral mitochondrial inhibitor of
apoptosis (VMIA) (encoded by the Uy 37 gene) which
inhibits activation of mitochondrial pores in a manner
similar to members of the antiapoptotic Bcl family.>*>
The alpha herpesvirus HSV-1 encodes several anti-
apoptotic gene products (ie, ICP4, ICP27, y34.5, U3,
gN?®3% that modulate apoptosis at several levels,
including antagonism of double-stranded RNA-acti-
vated protein kinase (PKR), a downstream induction
molecule of the interferon signaling pathway’'~? Of
note, all y-herpesviruses express viral homologues of
cellular antiapoptotic genes, including 1 or 2 Bcl-2
homologues.**

INTERFERON

Interferon, discovered in the late 1950s when
scientists observed that virus-infected cells secrete a
factor that mediates the transfer of a viral-resistant
state,>* is a family of regulatory glycoprotein cytokines
that modulate both innate and adaptive antimicrobial
immunity. They are products of an infected cell genome
and one of the key factors in the host response against
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Fig 2. Viral mechanisms involved in subverting the interferon response. IFN, Interferon; IFNR, IFN receptor; IRF, INF regulatory
factor; ISRE, IFN stimulable response element; HAT, histone acetyl transferase.

viral infection. IFNs serve as an early defense system
that precedes the onset of the immune response and are
triggered by envelope glycoproteins, CpG DNA, or
double-stranded RNA. In recombinant formulations,
they have been used in medicine and dentistry to combat
various viral infections.*>-¢

Human IFNs are classified based on the sequence of
amino acids into 3 main groups — o, B, and v —and 3 that
are less extensively studied (o, k, and t, not discussed
further in this review). IFN-o and - are produced
rapidly when viral factors interact with cellular pattern-
recognition receptors such as TLRs and cytosolic
receptors. Historically, synthesis of IFN-o has been
attributed to macrophages and B cells, and IFN-f has
been considered to be produced by fibroblasts. More
recently, plasmacytoid dendritic cells have been shown
to produce IFN-a preferentially to IFN-f. Both IFN-a
and -f prevent the replication of viruses by inducing
formation of secondary messengers which include IFN
regulatory factor (IRF) 3, IRF-5, IRF-7, c-Jun/ATF-2,
and NF-xB.>” IFN-vy is synthesized by activated T
lymphocytes and natural killer (NK) cells following
receptor-mediated stimulation or in response to cyto-
kines produced by macrophages or antigen-presenting
cells (ie, primarily IL-12, IL-18, and IFN-0/f) or by
stimulation through T cell receptors (TCRs) or NK cell
receptors. It is a powerful activator of mononuclear
phagocytes, thus enhancing their ability to destroy
intracellular microorganisms and tumor cells. IFNs
mediate their antiviral action through IFN-stimulated
genes (ISG), which number in hundreds. IFNs also
regulate the cell cycle and have antiproliferative effects.

Viral evasion of IFN occurs by several strategies. In
the majority of infections, viruses encode products that
antagonize either the IFN signal transduction pathway
or cellular proteins induced by IFN that are responsible
for inhibiting virus replication (Fig 2).*® Adenovirus,
EBY, papillomavirus, and members of the Paramyxo-
virinae subfamily encode proteins that inhibit the
JAK-STAT (Janus kinase—signal transducer and activa-
tor of transcription) signaling pathways that are required
for IFN production. Specifically, adenovirus encodes the
oncoprotein E1A which inhibits the activation of ISG
factor 3 (ISGF3).39’40 Paramyxovirinae reduce the ef-
fectiveness of the IFN response by targeting STAT1 for
degradation or by interference with STAT phosphoryla-
tion or stability.*"** Kaposi’s sarcoma—associated
herpesvirus (KSHV) encodes the pleiotropic gene pro-
duct latency-associated nuclear antigen (LANA) that
acts downstream of ISGF3 and inhibits p53.**** In an
alternate approach, HPV encodes 2 proteins, E6 and E7,
that bind to IRF-3 and IRF-1, respectively, both of which
inhibit the transactivation functions of the bound
[RE 43:46

Viruses also encode proteins that mimic cellular
components of the IFN signal transduction pathway,
including homologs of the IFN receptors, a viral ISRE-
like promoter element, and viral homolog of IRF
(VIRF). For example, Poxviruses antagonize IFN signals
by encoding soluble IFN receptor homologs.*”*® EBV
encodes a viral ISRE and HHVS8 encodes VIRF from the
K9 OREF that functions as a repressor of transcriptional
activation induced by IFN-a, -B3, and —y.49 In addition,
several viruses have developed strategies to inhibit
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IFN-inducible, RNA-dependent protein kinase (PKR).
PKR, when antagonized, leads to phosphorylation of
elF-2a which results in inhibition of the IFN-induced
antiviral response of the host.”® Adenovirus, herpesvi-
ruses, influenza, and SV40 antagonize PKR by different
mechanisms involving degradation of PKR, prevention
of PKR activation, and resistance to downstream kinase
activation.’' >

CELLULAR IMMUNITY

The MHC class I—restricted T cell response can
result in a lethal hit before virus replication. Thus, many
viruses have developed strategies for interfering with
antigen presentation to MHC class I molecules and
intracellular trafficking of MHC molecules. Viruses
target the MHC-I at almost all steps of its trafficking: in
the endoplasmic reticulum (ER), in the cytoplasm on its
way to the surface, and after the MHC reaches the cell
surface (Fig 3).

One key target in the viral defense against the cellular
arm of the immune system is attack of the transporter
protein associated with antigen processing (TAP). TAP
loads short antigenic peptides to the MHC which
stabilize the class I complexes and allows their migra-
tion to the cell surface. Without the peptide cargo, MHC
class I molecules are unstable and dissociate. HSV-1 and
HSV-2 encode infected cell polypeptide (ICP)-47, an
immediate early gene product, that interacts with the
TAP protein in the cytosol to prevent peptide binding to
TAP.>* Human cytomegalovirus (HCMV) encodes Ugb,
a 183—amino acid glycoprotein, that blocks peptide

transport by binding to TAP in the endoplasmic
reticulum.”  Although efficient at both retaining
MHC-I molecules and preventing CTL recognition,
HCMV also uses additional viral proteins (Ug2, Ug3,
Ug6, and Ugll) to evade the immune system.56 A
different approach is taken by EBV. This human
v-herpesvirus encodes a glycine-alanine repeat (GAr)
domain on EBV-encoded nuclear antigen (EBNA) 1 that
inhibits ubiquitin/proteasome-dependent proteolysis of
EBYV antigens.”” Thus, processing (ie, degradation) of
viral proteins into antigenic peptides is restricted.>®
KSHY, a lymphotropic y-herpesvirus, interferes with
MHC-I antigen presentation by ubiquitinating the
cytosolic domain of the MHC-L.>® Herpesviruses also
produce proteins that target MHC class I molecules for
degradation in lysosomal compartments® and down-
regulate expression of major histocompatibility com-
plex molecules by shutting off host cell protein synthesis
by the gene known as virion host shutoff (VHS, UL41).61

In contrast, HIV with its simple genome encodes
fewer proteins but accomplishes similar immune eva-
sion by pluripotent accessory proteins. For example,
Nef, 1 of the 6 regulatory proteins encoded by HIV, has
multiple functions. In addition to enhancing virion
infectivity, Nef binds to and inhibits the surface expres-
sion of the major MHC-I** downregulates the cell
surface expression of CD4 (the main HIV receptor),®’
and facilitates CD4 receptor endocytosis.®* Through the
function of Nef in redirecting the trafficking of immune
receptors, infected T lymphocytes are able to hide from
the immune system allowing for viral spread.
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HPV utilizes 2 early proteins (ES and E7) to persist
undetected within epithelial cells. The early gene
product E7 of the oncogenic strains HPV-16 and -18
downregulates MHC-I expression at the transcriptional
level by inhibiting the promoters of the MHC-I heavy
chain, TAP-1, and LMP-2.%° E5 decreases MHC-I
expression at the transcriptional level and causes
retention of MHC-I in the Golgi apparatus. Within the
Golgi, HPV ES inactivates the ATPase proton pump
system. As a result, acidification is blocked, local pH
rises, and MHC-I trafficking is perturbed.66 Thus, it is
clear that viruses have achieved ingenious methods for
interference with MHC-I antigen presentation and
inhibition of the cellular immune response.

VIRAL PERSISTENCE

Viruses persist in cells because they are able to
downregulate key processes that if left unattended
would result in cell death. Originally attributed in part to
the immune response, increasing evidence suggests
regulation of key genes plays an important role in the
process. Specifically, regulation of viral transcription
and genomic replication allows for long-term viral
stability and survival.

Many viruses, including those that cause persistent
infections and chronic disease (ie, hepatitis C virus,
hepatitis B virus, HI'V, human herpesviruses, HPV, and
JC virus), are successful because of their cell tropism
and ability to autoregulate their replication efficiently
within specific cells. Common features of autoregula-
tion include sensors to the external environment,
negative feedback loops, transcriptional enhancers
specific for cells that host the persistent infection, and
transcriptional silencers. In some cases autoregulation
results in steady-state levels of virus replication; in other

infections, the virus enters latency only to reactivate
intermittently.

The importance of autoregulation is apparent from
both in vivo and in vitro studies.®” For example, during
lentivirus (HIV, simian immunodeficiency virus, and
feline immunodeficiency virus) infection, viremia peaks
early after infection then declines to a steady-state level.
The effect is not altered by the presence of steroid-
induced immunosuppression, and clearance of infected
white blood cells is not associated with an earlier
presence of antibody, cytokine response, or cytotoxic
lymphocyte activity.®® In another common clinical
example, successful antiviral therapy results in dra-
matic drops in viremia, often to undetectable levels.®
However, replication of virus often rebounds rapidly to
pretreatment levels upon drug withdrawal, and in vitro
studies indicate that cellular and immune functions are
not contributory to the observed outcome. Even when
antiviral therapy achieves a sustained virologic response
(ie, absence of viremia 6 months after the end of
treatment), highly sensitive assays (ie, polymerase chain
reaction) detect residual viral genomes in most patients,
indicating the ability of viruses to persist and auto-
regulate based on their environment.”®”!

Herpesviruses are well known to establish latency in a
variety of cell types, and this family of viruses has the
ability to autoregulate. This is illustrated by HSV-1 and
HSV-2, which can undergo dichotomous life cycles: a
lytic infection in epithelium and a latent infection in
neurons. In fact, when neuronal cells are infected with
HSV-1 or HSV-2 at low multiplicity of infection in vitro,
the majority of cells can survive for many days even in
the absence of immune cells and without the addition of
antiviral drugs to the culture medium.’? Similarly, if the
rare neuronal cells supporting replication are eliminated
using acycloguanosine in the above mentioned system,
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over 95% of the remaining population harbors a
quiescent infection for weeks after the antiviral drug is
removed, again in the absence of immune cells.”>7#

Viruses regulate replication of their genome in a
complex manner, but achieve the outcome through use
of viral sensors, repressors, and effectors. Viral sensors
“sense” perturbations in the viral equilibrium within the
cell and signal change at the appropriate time. With
many viruses (ie, HIV, hepatitis C virus, hepatitis B
virus), envelope proteins play the role of sensors,
because envelope proteins can influence virus replication
in both a positive and a negative manner.”>’® For HPV,
regulation is through cellular factors that bind to the
promoters of E1 and E2.” For HSV-1, transcription of
the immediate-early (IE) genes during the lytic infection
is regulated by the binding of a tegument protein (VP16)
with the cellular protein host cell factor (HCF) and
Oct-1.%° Thus, VP16 would seem to be a logical choice
for a sensor. However, latency can be established in the
presence of VP16®' and reactivation occurs without the
transactivating domain of VP16.%* Thus, downstream
factors of VP16 (eg, ICPO, ICP4, or other unknown
factors) serve as sensors of the environment and regulate
the balance between latency and reactivation.

The “effectors” (transactivators and replicative
enzymes such as RNA polymerase) modulate virus
replication and are the targets of the sensors. Effectors
are tightly regulated (ie, repressed at certain times) but
dynamically modifiable, typically by proteins bound to
critical regions of the genome. These proteins afford
protection by limiting changes in conformation of, or
enzymatic action on, the restricted gene. Histones are
the most notable guardians of the effectors. Histones
permit access of DNA to specific activators or repres-
sors, general transcription factors, and RNA polymerase
by posttranslational modification (acetylation, methyl-
ation and phosphorylation) of their amino terminal
tails.®*** For example, hyperacetylation of histones is
associated with an “open chromatin” conformation and
transcriptional activation, whereas hypoacetylation of
the histone complex is associated with condensed
(hetero-) chromatin and gene silencing. Several human
herpesviruses®>®” utilize these mechanisms for regu-
lating latency and reactivation. In addition, the active
regions of the latent a-herpesvirus genome appear to be
segregated from the repressed gene regions by boundary
or insulator elements, similar to that found on cellular
chromosomes®® (D Bloom, personal communication).
These chromatin insulators appear to be able to protect
genes in one region from the regulatory influence of
adjacent regions through conserved CTCF motifs.*
Herpesviruses also encode proteins such as LANA and
latency-associated transcripts (LAT) that appear to
regulate viral transcription during latency.***°
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Integration, and the site of integration, into the host
chromatin is another mechanism that can regulate viral
gene transcription. For example, viruses that integrate
(ie, HIV) preferentially select chromosomal sites where
high-level transcription of key transactivators is main-
tained.”’ This is accomplished by viruses preferentially
integrating in chromatin regions characterized by an
open structure (a hallmark of actively transcribed
genes). The process by which this is regulated is not
completely clear, but it has been suggested that cellular
proteins may interact with integrase, the viral protein
that catalyzes the integration reaction, in a manner that
is site specific.

Viral persistence increases the likelihood of chronic
infection and replication, but under certain circum-
stances also contributes to increased risk of oncogenic
transformation. This can occur through chromosomal
instability and virus integration,”” and the ability of
several specific viral proteins to bind and inactivate p53
or less frequently pRb (Fig 4).”® p53 is a checkpoint
protein that interacts with CDK/cyclin inhibitors and
pl6, p27, and p21 to arrest the cell cycle in the G1 phase
and can send signals for apoptosis through the regula-
tory proteins Bax, Bcl-2, and c-myc.”* The clinical
importance of p53 inactivation is exemplified in that
persistent HPV infection is associated with an increased
risk of developing cervical cancer in young women, and
recent findings suggest that the persistence of HPV
DNA in treated tissue after cancer therapy is highly
predictive of local recurrence.”

CONCLUSION

In this brief review, examples of mechanisms that
contribute to survival and persistence of viruses within
their host were presented. Emphasis was placed on
mechanisms that permit survival of host defenses,
evasion of the immune system, and establishment of
chronic infections. Detailed knowledge of these pro-
cesses has led to many therapeutic successes. However,
additional knowledge is required for us to make strides
in eliminating human suffering caused by these intra-
cellular pathogens. It is hoped that 50 years from now
when another review may appear in this journal on this
topic, we will have a better understanding of how to
eliminate persistent viral infections and identify patients
at risk for virally induced complications of acute and
chronic infections and will have harnessed the power of
viruses to undergo selective lytic replication in tumor
cells and modulate chronic disease.
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