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Abstract
Myocardial infarction and subsequent heart failure is a major health burden associated with significant mortality and morbid-
ity in western societies. The ability of cardiac tissue to recover after myocardial infarction is affected by numerous complex 
cellular and molecular pathways. Unbalance or failure of these pathways can lead to adverse remodelling of the heart and poor 
prognosis. Current clinical cardiac imaging modalities assess anatomy, perfusion, function, and viability of the myocardium, 
yet do not offer any insight into the specific molecular pathways involved in the repair process. Novel imaging techniques 
allow visualisation of these molecular processes and may have significant diagnostic and prognostic values, which could aid 
clinical management. Single photon-emission tomography, positron-emission tomography, and magnetic resonance imag-
ing are used to visualise various aspects of these molecular processes. Imaging probes are usually attached to radioisotopes 
or paramagnetic nanoparticles to specifically target biological processes such as: apoptosis, necrosis, inflammation, angio-
genesis, and scar formation. Although the results from preclinical studies are promising, translating this work to a clinical 
environment in a valuable and cost-effective way is extremely challenging. Extensive evaluation evidence of diagnostic and 
prognostic values in multi-centre clinical trials is still required.
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Introduction

Cardiovascular disease (CVD) is the most common cause of 
death worldwide with the 2013 Global Burden of Disease 
Study estimating that almost a third of all deaths globally are 
attributable to CVD [1]. CVD remains a large health burden 
reflected in its position at the forefront of clinical research.

Coronary heart disease carries significant morbidity and 
is the leading cause of death across all diseases of the circu-
latory system. Myocardial infarction (MI) is mainly caused 
by the rupture of an atherosclerotic plaque leading to a 
thrombus forming within the lumen of a coronary vessel, 
which in turn blocks the blood flow to distal myocardium 
[61]. Infarction leads to cardiac myocyte death and subse-
quent necrosis of the tissue in the infarcted area, attracting 
inflammatory cells that phagocytose dead cells and debris 
within the infarcted area [134]. Inflammation plays a crucial 
role in cardiac healing post-MI contributing to the initial 
repair of the infarct, with replacement of dead myocytes by 
scar tissue. However, in the longer term, it also contributes to 
changes in ventricular shape and function involving infarct 
expansion, thinning of the myocardium, ventricular dilata-
tion, hypertrophy of the remote uninfarcted myocardium, 
and an overall decline in cardiac function. These changes 
are collectively known as adverse ventricular remodelling 
and are associated with an increased likelihood of heart 
failure and mortality [92, 145]. Therefore, stratification of 
individuals at high risk of adverse ventricular remodelling 
post-MI may be of diagnostic, therapeutic, and prognostic 
benefits [62].
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Current clinical imaging techniques are usually classified 
into anatomical and functional imaging. Plain film X-ray, 
computed tomography (CT), ultrasound, and magnetic 
resonance imaging (MRI) are mainly focused on structural 
changes, whereas nuclear medicine scans such as single 
proton-emission computed tomography (SPECT) and posi-
tron-emission tomography (PET) aim to provide functional 
aspects.

Molecular imaging is a novel technique which aims to 
visualise pathological processes at a molecular and cellular 
levels. Initially, molecular imaging was used for pharma-
ceutical development; however, recent research has focused 
on the use of molecular imaging as a clinical tool to stratify 
those patients at risk of developing disease and to provide 
early diagnosis [103]. This non-invasive, safe, and, there-
fore, attractive alternative to other invasive approaches such 
as tissue biopsy allows visualisation and measurement of 
underlying disease processes. Cardiac molecular imaging 
mainly involves imaging probes which are detectable using 
SPECT/PET and MRI, which are the focus of this review.

Pathophysiology of post‑MI cardiac 
remodelling

During MI, cardiomyocytes die as a result of oxygen depri-
vation due to blockage of a coronary artery which limits the 
blood supply to the cells, resulting in transmural ischaemia 
[18]. Under hypoxic conditions, cardiomyocytes undergo 
anaerobic respiration, destabilization of the cell membrane, 
and finally cell death [6, 73, 151]. Reperfusion after the 
acute event exacerbates existing oedema which gradually 
resolves as the myocardium repairs [158]. The infarct com-
mences in the subendocardial layers in the centre of the area 
at risk, that is, the perfusion region of the coronary artery 
which has been occluded, and evolves towards the subperi-
cardial layers and the boarder of the area at risk in a wave-
front pattern if coronary occlusion persists [43, 109, 110].

Infarct size is a major indicator of post-MI remodelling, 
subsequent heart failure [44], and eventually prognosis [23, 
94, 95]. It is determined by the size of the area at risk, the 
duration of coronary occlusion, and resulting ischaemia and 
the magnitude of collateral blood flow [54]. Temperature 
also impacts on the infarct size in the animal model [82] 
whereas the consensus on the haemodynamic situation, par-
ticularly heart rate [42], and myocardial oxygen demands 
have changed recently and it is now believed that they are 
only of limited importance regarding infarct size [43, 124].

The infarcted myocardium is morphologically character-
ised by myofibrillar contraction bands, swollen and ruptured 
mitochondria, destruction of cardiomyocyte membranes, 
microvascular destruction, haemorrhage, and inflammation 
[54]. These histological features reflect necrosis and become 

more apparent during reperfusion [60, 109, 110]. Necrotic 
cell death has many effects in infarcted myocardium [54], 
and different processes contribute such as excessive myofi-
brillar contractions [73, 104, 105, 136], digestion of the 
cytoskeleton and sarcolemma [56], and increased produc-
tion of reactive oxygen species (ROS) [75, 118].

Contrary to necrosis, more regulated modes of cell death 
such as apoptosis, autophagy and necroptosis also occur in 
myocardial infarction, although their actual contribution to 
the final infarct size is still unclear [13, 54, 55, 64, 66, 72, 
101, 146]. Apoptosis is an energy-dependent form of cell 
death with DNA disintegration and without an associated 
inflammatory response [7, 45, 71, 101, 154]. Autophagy is 
also a regulated mode of cell death characterised by lysoso-
mal protein degradation and protein recycling, particularly 
mitochondrial proteins. Paradoxically, autophagy is consid-
ered to have a protective effect [107], although its role in 
human myocardial ischaemia is less well known [33, 122]. 
Necroptosis, as its name suggests, has similarities to both 
necrosis and apoptosis, but is distinctly regulated by acti-
vation of specific receptor-interacting protein kinases [100, 
161].

After an acute MI, the most effective strategy for reduc-
ing the size of the infarct and improving clinical outcome 
is timely and successful myocardial reperfusion. However, 
the restoration of blood flow to the ischaemic myocardium 
can itself induce injury [8, 44, 124, 159]. In the last 30 years, 
many attempts have been evaluated to reduce the effects of 
reperfusion injury, processes known as pre-conditioning and 
post-conditioning [40, 141]. Whereby the myocardium is 
exposed to brief periods of ischaemia and reperfusion prior 
to (ischaemic pre-conditioning) [97, 124] or following an 
acute thrombotic MI (ischaemic post-conditioning) [124, 
160].

The healing process after MI consists of inflammatory, 
proliferative, and maturation phases. The inflammatory 
phase involves the production of chemokines and cytokines 
which attract leucocytes to the infarcted zone. White blood 
cells such as neutrophils and macrophages phagocyte dead 
cells and extracellular matrix (ECM) debris. Then, during 
the proliferative phase, monocytes/macrophages contribute 
to tissue granulation by releasing cytokines and growth fac-
tors, suppressing inflammatory mediators and promoting 
angiogenesis, fibroblast growth, and production of ECM 
proteins. Finally, during the maturation phase, fibroblasts 
and vascular cells undergo apoptosis and a mature collagen 
scar is formed [15, 29, 145].

A further post-MI consequence is the stimulation of 
the renin–angiotensin–aldosterone system (RAAS), which 
leads to the activation of a family of proteolytic enzymes 
in the heart, named matrix metalloproteinases (MMPs), 
which are responsible for the degradation of extracellular 
proteins within the myocardium [85, 140]. In physiological 
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conditions, MMPs are in the myocardium in an inactivated 
form. However, after MI, a significant decrease of tissue 
inhibitory MMPs (TIMPs) leads to MMPs’ activation [16, 
156]. The main consequences of these cellular mechanisms 
include infarct expansion, left ventricular dilatation, and 
myocardial thinning, all of which contribute to heart failure 
(Fig. 1).

The size of the infarct zone and the level of perfusion, 
among other factors, affect the progression of these events. 
However, there is a direct correlation with early, aggres-
sive immune/inflammatory responses associated with high 
concentrations of leucocytes and adverse remodelling lead-
ing to a poor prognosis [36, 63, 67, 106, 145]. Therefore, 
the ability to measure and visualise cardiac remodelling at 
the cellular and molecular levels may produce useful clini-
cal information to tailor individual management plans for 
patients [62].

Current cardiac imaging techniques

Almost all imaging modalities can be used to assess cardiac 
pathology. Although plain X-ray, CT, and ultrasound are 
currently used in clinical practice for cardiac imaging, these 
modalities are rarely used for molecular imaging. In this 
review, we will focus on SPECT, PET, and MRI, as they are 
the mainstay of molecular cardiac imaging.

Single photon‑emission computed 
tomography

SPECT imaging uses a gamma camera that rotates around 
the patient, sampling the radiation at various points to 
acquire a number of images which can then be recon-
structed to produce a 3D image. Imaging of myocardial 
perfusion using SPECT is known as a rest/stress test. Clin-
ically approved radioactive tracers such as thallium-201 
(201Tl) and technetium-99 m (99mTc) sestamibi or (99mTc) 
tetrofosmin, are intravenously administered to the patient, 
taken up by cardiomyocytes that represent their initial 
distribution and this is seen as a marker for myocardial 
perfusion [142]. Image acquisition is performed while the 
patient is at rest and also while under stress, allowing the 
evaluation of myocardial viability and perfusion. Stress 
conditions can be achieved physically (e.g., exercise) or 
pharmacologically (e.g., adenosine or dobutamine) if the 
patient has poor exercise tolerance. Tomographic slices are 
then processed using iterative reconstruction with, e.g., a 
Weiner smoothing filter [80]. The final images are recon-
structed in the short axis, vertical long axis, and horizontal 
long axis of the heart for both the resting and the stressed 
states and are quantified using a bull’s-eye plot [70].

SPECT is widely available and is clinically recom-
mended for diagnostic and prognostic purposes for patients 

Fig. 1   Schematic showing the 
gross changes in adverse cardiac 
remodelling post-MI (figure 
adapted from [143])
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with suspected intermediate CVD [27]. However, its low 
spatial resolution and the use of ionising radiation repre-
sent a limitation, especially in patients who need repeated 
follow-up imaging.

Positron‑emission tomography

PET imaging differs slightly to SPECT, as the detectors are 
positioned in a stationary ring around the patient and PET 
tracers are biologically active allowing for assessment of, 
e.g., myocardial viability. Naturally occurring biological 
molecules can be radioactively labelled and administered to 
the patient. Clinical cardiac PET tracers include 13N-ammo-
nia, 15O-water, and 82rubidium for myocardial perfusion and 
18F-fluorodeoxyglucose (FDG) for cardiomyocyte metabo-
lism and viability. The radioactive tracer decays, emitting 
a positron which travels in the tissue for a short distance 
before interacting with an electron, causing an annihilation 
event producing two 511 keV photons moving in opposite 
directions. The PET system detects these photons and, there-
fore, the localisation of the annihilation event. Correction for 
attenuation is a standard practice in PET imaging to improve 
accuracy and quantify concentrations of radioactive trac-
ers [34]. A recent meta-analysis showed that sensitivity and 
specificity to detect obstructive CVD-induced ischaemia 
with PET imaging was 84–92%, while 81–85% was achieved 
using SPECT, demonstrating the higher diagnostic value of 
PET [59]. However, perhaps, the most important advantage 
of using PET compared to SPECT is its ability to use 18F-
FDG to measure glucose metabolism within cardiomyocytes 
alongside myocardial perfusion. The combination of an 
18F-FDG-PET metabolic scan together with a PET/SPECT 
perfusion scan enables to distinguish between infarcted and 
viable myocardial tissues [34].

Cardiac magnetic resonance

Cardiac magnetic resonance (CMR) imaging is a non-ion-
ising imaging modality, where patients are placed in a large 
magnetic field. Hydrogen atoms inside the patient align with 
the magnetic field and are perturbed by short radiofrequency 
(RF) pulses to generate an MR signal that can be spatially 
encoded with the help of strong magnetic field gradients. 
The combination of RF pulses and magnetic field gradients 
is known as a pulse sequence. After perturbation (also called 
excitation), the precessing hydrogen atoms emit a signal that 
can be measured with a receiver coil and spatially encoded 
in the presence of magnetic field gradients. Subsequent 
reconstruction of the MR signal which acquired in a 2D 
or 3D space, also referred to k-space, typically by a Fou-
rier transform, reveals spatially resolved information about 

the structure being imaged [86]. CMR is a well-established 
cardiac imaging technique that allows the assessment of the 
anatomy and function of cardiac tissue through visualisation 
of cardiac tissues due to differences in T1 and T2 relaxation 
time and blood flow and by employing cine imaging [91, 
147, 152]. In addition, CMR can identify the area at risk 
after MI due to the oedematous nature of this region, as 
T1-weighted and T2-weighted images are both sensitive to 
water content (long T1 and long T2) [30, 47]. However, the 
use of T2-weighted MRI together with LGE quantification 
to assess oedema has been criticized due to the spatial and 
temporal dynamics of the oedema after reperfusion. In addi-
tion, motion artefacts and/or artificial hyperintensities could 
affect the quantification of oedema [46]. Furthermore, the 
use of contrast agents significantly improves the detection 
and evaluation of injured areas. Gadolinium-based contrast 
agents can be monitored on their first-pass to assess cardiac 
perfusion; areas that are poorly perfused will have reduced 
signal intensity on T1-weighted images as less gadolinium 
will be present in this area [58]. Gadolinium-based contrast 
agents can also be used to determine areas of irreversible 
damage, as it clears from necrotic and fibrotic tissue much 
slower than healthy tissue [14] and thus leads to a late gado-
linium enhancement (LGE) effect.

Molecular imaging techniques in post‑MI 
remodelling

Molecular imaging is a non-invasive imaging technique to 
detect biological processes in vivo. This is achieved with the 
use of tracers that bind to specific biological molecules that 
can be visualised by the imaging system [103].

Methods involved in nuclear molecular imaging to visu-
alise post-MI cardiac remodelling are similar to the standard 
nuclear medicine techniques previously discussed, whereby 
radioactive molecules are taken up by cardiomyocytes to vis-
ualise myocardial perfusion. However, novel techniques now 
use radioactively labelled tracers that target specific mole-
cules involved in the cellular process of cardiac remodelling.

Conversely, CMR has traditionally been used for visu-
alisation of whole organ anatomy, function, perfusion, and 
fibrosis, as described above. However, a recent shift within 
the literature and advancement of nanotechnology and new 
imaging probes has enabled molecular imaging of specific 
targets using MRI. Imaging agents have been developed to 
visualise specific targets involved in the cellular and molecu-
lar pathways during post-MI remodelling. Gadolinium che-
lates have been used as extracellular MRI contrast agents for 
years. More recently, gadolinium chelates have been suc-
cessfully employed for imaging highly abundant targets such 
as albumin, fibrin, collagen, and elastin.
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Extracellular matrix

An interesting target to evaluate post-MI alterations is 
the activation of MMPs, in particular MMP-2 and MMP-
9, as they are involved in ECM degradation and cardiac 
remodelling post-MI [17, 131, 155]. It has been shown that 
radiolabelling molecules that target MMPs allow visuali-
sation of activated MMP post-MI in vivo. Su et al. [132] 
showed in a murine model of MI that radiolabelled MMPs 
can be visualised using SPECT/CT in areas of infarction, 
although there is some signal within non-ischaemic areas 
of the heart, demonstrating the global MMP activation 
and remodelling (Fig. 2). This study, like many others, 
suggests that activation of MMPs occurs mainly in areas 

of infarction and highlights the potential for evaluation of 
ventricular remodelling.

In addition, collagen has been targeted using CMR. 
EP-3533, a gadolinium-based contrast agent, has been stud-
ied in mouse models of MI [11, 41]. This imaging probe is 
of small molecular weight and was developed to visualise 
the collagen within post-MI scar. This differs slightly from 
the standard gadolinium chelates that can visualise the scar 
through gross changes within the cardiac tissue. Hyper-
intensity was seen, 10 min after injection of EP-3533, and 
its washout times were significantly longer than that of Gd-
DTPA in areas of scar and in normal myocardium. There-
fore, EP-3533 is able to image fibrosis in a mouse model of 
post-MI scarring (Fig. 3).

Fig. 2   Thalium-201 perfusion 
imaging, Tc-99m-labelled MMP 
imaging, and fused images 
before (SHAM), 1 week and 
3 week post-MI using SPECT/
CT. Arrows show infarct zone, 
which is poorly perfused, where 
MMPs are detected [132]

Fig. 3   T2-weighted CMR image 
before injection of EP-3533 (a) 
and b an inversion recovery 
CMR image 40 min after the 
injection of EP-3533. The arrow 
highlights the hyper-intense 
region indicating high levels of 
collagen, therefore, scar [11]
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Renin–angiotensin–aldosterone system

In addition to the ECM, the renin–angiotensin–aldosterone 
system (RAAS) has also been proposed as a possible target. 
Various factors may activate the RAAS such as a loss of 
blood volume or a drop in blood pressure (as in haemorrhage 
or dehydration). Local cardiac levels of molecules involved 
in the RAAS are increased in post-MI states, being poten-
tial targets for imaging ventricular remodelling post-MI 
[102]. Owing to the pivotal role that angiotensin-convert-
ing enzyme (ACE) inhibitors play in CVD treatment, ACE 
inhibitor-based tracers are an attractive imaging approach 
to monitor disease progression and therapeutic interven-
tions. Thus, several targeted radioactively labelled phar-
maceuticals have been developed [120]. 18F-captopril [53] 
and 18F-flurobenzoyl-lisinopril [79], two radiolabelled ACE 
inhibitors, have shown increased levels in the infarcted area 
using PET imaging [20]. Lisinopril has also been success-
fully labelled with 99mTc in rats [24, 25] and it is thought 
that it has higher affinity for tissue ACE than captopril, as 
shown in an experimental in vitro study [133]. These tracers 
allow distribution assessment while maintaining the thera-
peutic inhibition of ACE with angiotensin II type-1 receptors 
(AT1R) in vivo [19, 121].

A PET tracer 11C-zofenoprilat (a derivative of the ACE 
inhibitor zofenopril) has also been described and evaluated 
in humans; however, it accumulates mainly in tissues with 
high levels of ACE, such as the liver, lungs, kidneys, and 
gallbladder. Therefore, the use of this tracer in cardiac 
imaging is of little interest [88].

Other authors have described the use of AT1R as imag-
ing targets for heart failure and LV remodelling. Radi-
olabelled tracers include 11C-MK-996, 11C-L-155884, 
SK-1080, and 11C-KR31173 an analogue of SK-1080 [35, 
77, 89, 90, 135]. In addition, uptake of losartan, an angio-
tensin receptor blocker labelled with 99mTc for SPECT 
imaging, has been shown to increase by 2.4-fold in post-
MI mouse models when compared to controls [150].

The PET agent 11C-KR31173 has been effective in a 
rat MI model showing a peak uptake in the infarct zone at 
1–3 week post-surgery. This effect can be blocked entirely 
using the AT1R antagonist valsartan, in comparison with 
the ACE inhibitor enalapril which did not affect AT1R 
density, providing a platform to predict the risk for ven-
tricular remodelling and to monitor the efficacy of anti-
RAAS drug therapy [48]. Furthermore, healthy pig stud-
ies of 11C-KR31173 confirmed myocardial uptake with 
regional homogeneousness and AT1R specificity with 
the use of blocking experiments. This study included the 
first human trial in which there were no adverse effects 
across all subjects (n = 4). The results of the human stud-
ies showed detectable and specific myocardial retention 

of 11C-KR31173, though at a lower level than pigs. Myo-
cardial retention disappeared after blockage with olmesar-
tan, an AT1R antagonist, demonstrating its affinity for the 
AT1R [31]. Inter-species differences have been reported 
within the literature with rats [48] and mice [150] show-
ing strong upregulation of AT1R in infarcted myocardium 
in contrast to pigs, where this is less pronounced [31]. 
Human subjects show significantly lower levels of absolute 
retention of AT1R than pigs. Whether this is due to further 
inter-species differences or the effects of anaesthesia in 
animals has not yet been clarified [31]. The potential for 
imaging the AT1R remains an exciting prospect, especially 
given the recent use of 11C-KR31173 in humans indicating 
the potential safety of the tracer which will require further 
evaluation in clinical trials.

Angiogenesis

One of the most important biological processes during the 
proliferation phase of myocardial healing after ischaemic 
injury is microvascular angiogenesis, which consists of the 
development of new blood vessels from pre-existing vas-
culature [112]. Angiogenesis is stimulated by increased 
levels of vascular endothelial growth factor (VEGF) and 
basic fibroblast growth factor (bFGF), which are released in 
response to the infarction. Imaging targets of angiogenesis 
include αvβ3 integrin [49] and VEGF receptors [115].

αvβ3 integrin is essential for endothelial cell propagation 
and survival. It is generally not expressed on mature ves-
sels in physiological conditions; however, it is expressed on 
endothelial cells during vasculogenesis and angiogenesis as 
a response to angiogenic growth factors [22]. Integrins rec-
ognise proteins and surface molecules through short peptide 
sequences such as Arg–Gly–Asp (RGD) [37]. Several stud-
ies have been done to explore tracers targeting αvβ3 integrin 
in tumour models [49]. However, some studies have been 
focused on the evaluation of radiolabelled tracers targeting 
αvβ3 integrin in cardiac angiogenesis, including 18F-galacto-
RGD and 99mTc-RAFT-RGD [21].

18F-galacto-RGD is a PET tracer that binds αvβ3 inte-
grin developed by Haubner et al. [38, 39]. Higuchi et al. 
[49] demonstrated in rats that 18F-galacto-RGD levels, rise 
3 days, peak around 3 weeks, and return to baseline lev-
els 6 months after MI. Makowski et al. [84] concurred and 
showed that 18F-galacto-RGD levels are raised in patients 
2 weeks after MI. Furthermore, correlation between early 
post-MI uptake of this tracer and the absence of significant 
LV remodelling after 12 weeks follow-up has been demon-
strated by Sherif et al. [119].

However, the production of 18F-galacto-RGD is challeng-
ing due to the multistep synthesis and the need for an on-
site cyclotron. Therefore, alternative RGD tracers have been 
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proposed such as the one-step labelled PET tracer 18F-AlF-
NOTA-PRGD2 [32] which shows a similar pattern of tracer 
uptake in the infarct area and significantly higher tracer lev-
els than those reported using 18F-galacto-RGD [49]. The 
in vivo performance and easy production method of this 
PET tracer may facilitate its future clinical translation. It has 
also been used successfully to visualise angiogenesis after 
VEGF gene therapy and bone-marrow stem-cell therapy in 
rats [10].

A further two gallium-based tracers have been studied, 
again to offer an alternative for the challenges faced by the 
production of 18F-galacto-RGD, as gallium tracers may 
be beneficial to sites which do not have a cyclotron close 
by. Laitenen et al. have shown both 68Ga-NODAGA-RGD 
and 68Ga-TRAP(RGD)3 to be as effective as 18F-galacto-
RGD in a rat model [74]. Although the prime importance 
of these tracers is the imaging quality, these more practical 
aspects of introducing these tracers into clinical practice will 
be a decisive factor into deciding which of these tracers to 
take forward into clinical trials and ultimately translate to 
the bed side.

99mTc-RAFT-RGD is an SPECT tracer that also binds 
αvβ3 integrin and has been validated to image myocardial 
angiogenesis on rat models in vivo [21]. Figure 4 highlights 
the ability of this tracer to identify areas of active angiogen-
esis when compared with 201Tl perfusion scans that iden-
tify areas of ischaemia. These results showed the maximum 
quantitative uptake in the infarct area at 2 weeks after MI 
which is comparable to Higuchi et al. [49] using the PET 
tracer 18F-galacto-RGD 1 or 3 weeks following reperfusion 
in a similar murine model.

Meoli et al. have evaluated an SPECT tracer 111In-RP748, 
which shows a similar increase in tracer activity to that of 
99mTc-RAFT-RGD in the re-perfused zone post-MI [93]. The 
authors also showed an infarct-to-normal zone tracer activity 
ratio of 1–1.6, with dual isotope SPECT imaging of 111In-
RP748 and 99mTc-MIBI in a canine model.

CMR imaging with αvβ3-targeted paramagnetic nanopar-
ticles is currently an active area of research, and although 
this is not yet used to assess post-MI remodelling, it has been 
studied in the context of atherosclerosis [9, 157].

All of the above tracers are aimed at targeting the αvβ3 
integrin signal which is actually a rather controversial 
topic. This is owing to the signal may not solely represent 
angiogenesis, but also myofibroblast and leucocyte activ-
ity, although more studies need to be performed to evaluate 
these effects [4, 50, 143, 144]. Furthermore, the post-MI 
uptake of an SPECT tracer targeting αvβ3/β5 has been shown 
to predict the extent of fibrosis 1 year later, which highlights 
the potential of this signal to be used to visualise myofibro-
blasts [149].

VEGF is an abundant and potent angiogenic agent and its 
receptors are potentially good targets for imaging of angio-
genesis. 111In-labelled recombinant human VEGF121 was 
used to visualise areas of active angiogenesis in a rabbit 
model with unilateral hind limb ischaemia. In this study, 
tracer levels were detected using scintillation well counting 
and planar scintigraphy studies, demonstrating that the tracer 
uptake in ischaemic muscle was significantly increased, 
10 days after occlusion [81]. More recently, 64CU-DOTA-
VEGF121 has been explored as a PET tracer, targeting VEGF 
receptors in a rat model of MI. In this study, tracer levels 

Fig. 4   Myocardial short-axis images from base to apex with 201Tl perfusion SPECT, 99mTc-RAFT-RGD SPECT scan and fused images. The 
arrows highlight areas of infarct (figure adapted from [21])
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peaked 3 days post-MI and decreased over time until it 
reached baseline levels on day 24 [115].

There are clearly many tracers, predominantly radiola-
belled PET and SPECT tracers that have been evaluated in 
animal models to visualise angiogenesis for the purpose of 
post-MI remodelling, with some having even been tested on 
humans. There is a growing consensus that this technology 
could be of pronounced clinical benefit to define the risk 
of patients who may develop cardiac remodelling post-MI. 
There is, therefore, a need for further evaluation of these 
tracers in clinical trials. However, many challenges, as dis-
cussed through this section, have been identified in bring-
ing these tracers to the bedside and researchers will have to 
choose which tracer to invest in for their studies. Further-
more, the specificity of the αvβ3 integrin to angiogenesis has 
been questioned which should play a role in future studies.

Apoptosis

Apoptosis can also be evaluated using imaging techniques 
by targeting the protein annexin V which is expressed on 
the cell surface of apoptotic cells [51]. Kietselaer et al. [66] 
successfully labelled annexin V to 99mTc, allowing for visu-
alisation of apoptosis using SPECT, showing a direct cor-
relation between annexin V uptake and deterioration in left 
ventricular function.

First, MRI approaches to image apoptosis were reported 
by Sosnovik et al. [127] using AnxCLIO-Cy5.5, a novel 
annexin-based magneto-optical nanoparticle. They reported 
a significant decrease in myocardial T2* compared to the 
unlabelled control probe (Fig. 5). In addition, a significant 
correlation was reported between the local extent of signal 
loss and the infarcted area, suggesting that the AnxCLI-
OCy5.5 probe accumulated specifically in regions of injured 
and apoptotic myocardium. More recently, Sosnovik et al. 
[128] presented a dual contrast-molecular MRI approach 
to simultaneously evaluate apoptosis and necrosis. In this 
study, AnxCLIOCy5.5 was used to image apoptosis and a 

gadolinium chelate, Gd-DTPA-NBD, was used to detect car-
diac necrosis. Interestingly, only 21% of the myocardium 
with active apoptosis colocalizes with the Gd-DTPA-NBA 
signal, suggesting that viable myocardium may be present 
within the apoptotic area.

Inflammation

During ischaemic injury, the infarct area becomes oedem-
atous due to increased capillary permeability and mac-
rophages migrate to the infarct zone, where they accumu-
late. Magnetic iron oxide nanoparticles (MNPs) are ideal 
for imaging scarce molecular targets within cardiac tissue 
[130], as they are very small (nanometres), have high mag-
netic relaxation properties, and are designed to be biologi-
cally inert [126]. During the inflammatory phase, MNPs 
extravasate into the infarcted myocardium, permitting them 
to accumulate at the imaging target. MNPs are recognised 
as foreign bodies and are taken up by phagocytes in the 
infarct zone and, therefore, can be used to visualise inflam-
mation within the myocardium. A T2*-weighted gradient-
echo sequence is performed and MNP accumulation is seen 
as hypo-intense regions within the image, due to the high 
relaxivity of MNPs.

An additional probe to image the inflammatory phase 
is the use of perfluorocarbon nanoemulsions (19F). These 
particles are avidly taken up by macrophages which then 
migrate to the infarcted zone. Low-resolution 19F-MRI has 
been validated to visualise macrophages in a post-MI state. 
Macrophage accumulation was detected within the infarcted 
area over time [26].

An additional approach to image inflammation is tar-
geting myeloperoxidase (MPO), an enzyme produced by 
neutrophils and monocytes that has been correlated with 
an adverse effect on LV remodelling and function [148]. 
Gadolinium-labelled MPO has been validated for assessment 
of MPO activity in post-MI myocardium with a significant 
increase 2 days after myocardial injury [98].

Fig. 5   Post-MI state in mouse 
models injected with Anx-
CLIO-Cy5.5 (a) and a control 
probe inact_CLIO-Cy5.5 (b). 
Significant hypo-intensity can 
be seen with AnxCLIO-Cy5.5 
(a), depicted by yellow arrows. 
There are no areas of significant 
uptake seen using the control 
probe (b). Regions of hypo-
intensity represent the visualisa-
tion of active apoptosis [128]
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Several preclinical studies have shown how 18F-FDG-
PET can be used to evaluate the innate immune response 
after MI [57, 78, 116]. Using a similar approach 18F-FDG-
PET uptake has been successfully correlated inversely with 
the functional outcome 6 month post-MI [114], presenting 
18F-FDG-PET uptake as a possible marker of myocardial 
outcome. However, imaging of inflammation using 18F-FDG 
has few limitations. First, 18F-FDG is a glucose analogue and 
can be used for the metabolism of different cells. Moreover, 
18F-FDG is generally used to evaluate myocardial viability 
[117] and metabolism response to hypoxia [2]. Therefore, 
imaging inflammation using 18F-FDG in the heart requires 
the suppression of cardiomyocytes by dietary pre-prepara-
tion of the patients [138]. However, it has not been shown 
how reliable this method is to suppress signal coming from 
viable cardiomyocytes after MI or hibernating myocardium, 
among others. Other limitations of the use of 18F-FDG are 
that it is not possible to differentiate between different sub-
populations of inflammatory cells, which play different roles 
in myocardial healing. Therefore, it is crucial to develop 
new targeted tracers to detect the different subpopulations 
of inflammatory cells. In light of that, it has been proven 
in cells, animals and men that the tracer 11C-Methionine is 
taken up by inflammatory cells, preferentially inflammatory 

macrophages [137]. The absence of cardiomyocyte uptake 
renders 11C-methionine as a very attractive tracer for imag-
ing inflammation post-MI. Finally, PET imaging with 68Ga-
pentixafor targeting CXCR4, a protein involved in leukocyte 
recruitment to the injured region, has shown robust results 
in the infarcted myocardium in mice (Fig. 6) [139]. The use 
of this tracer in a small cohort of patients has shown more 
heterogeneous results, not providing any correlation between 
tracer uptake and any clinical predictive parameter. How-
ever, further larger and controlled cohort studies testing the 
usefulness of 68Ga-pentixafor imaging to determine outcome 
post-MI are required.

Magnetic resonance spectroscopy

Magnetic resonance spectroscopy (MRS) is the only tech-
nique that allows the evaluation of metabolites in the myo-
cardium without the use of external contrast agents in vivo. 
MRS uses similar acquisition principles to MRI; however, it 
requires special broad band RF amplifiers and multinuclear 
RF coils to evaluate other atoms, apart from 1H that also 
have magnetic moment such as 31P, 13C, 23Na, and 87Rb [52]. 
The nuclei most investigated in human cardiac MRS is 31P, 

Fig. 6   Uptake of 68 Ga pentixafor in patients after acute ST-segment 
elevation myocardial infarction indicating various levels of CXCR4 
expression in myocardial segments with different patterns of myocar-
dial injury as defined by the presence (+) or absence (−) of gadolin-
ium-diethylenetriamine pentaacetic acid (DTPA) late enhancement 

(LE) or edema on T2-sequences (T2) at cardiac magnetic resonance 
imaging. a Representative short-axis slices characterizing four differ-
ent types of segments. b Results of segmental pentixafor uptake score 
in respective segment types. *p  <  0.05 versus remote; **p  <  0.05 
versus all others. HLA horizontal long axis, SA short axis [139]
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where a normal spectrum is composed by six phosphorus 
peaks including ATP (three peaks: γ, α, and β), phospho-
creatine (PCr), phosphodiesters (PDE), and 2,3-diphospho-
glycerate (2,3-PDG) [108] (Fig. 7). From the 31P spectrum, 
it is possible to calculate the PCr-to-ATP ratio which reflects 
the index of the energetic state of the heart [3]. In the context 
of ischemic heart disease, Weiss and collaborators demon-
strated that in a cohort of 16 patients with coronary artery 
disease, during handgrip exercise, there was a transient 
imbalance between the oxygen supplied and required by 
the myocardium, which was reflected by a decreased ATP/
PCr ratio measured by 31P-MRS [153]. ATP/PCR ratio 
returned to normal after recovery. This transient effect was 
not detected in healthy volunteers and nonischemic patients 
[153]. In addition, several approaches to evaluate the effi-
cacy of treatment interventions after ischemia have been 
tested [28]; however, large-scale trials to investigate long-
term effects are needed.

1H-MRS is more widely available and has significantly 
more sensitivity and, therefore, more realistic potential than 
31P-MRS to become a clinical tool. However, the informa-
tion obtained using 1H-MRS differs from the information 
obtained by 31P-MRS. 1H-MRS allows the measurement of 
important metabolites such as creatine, lactate, carnitine, 
deoxymyoglobin, and cardiac lipids. The measurement of 
cardiac lipids provides information about the accumulation 
of triglycerides that are associated with impaired myocardial 
contractility [108]. 23Na-MRS, 13C-MRS, and 87Rb-MRS 
have been very little explored, mainly due to their very low 
sensitivity; however, 23Na signal has been correlated with 
acute necrosis and chronic myocardial scarring, therefore, 
a potential method to evaluate cardiac viability without the 
use of contrast agents [108]. 13C has very limited applica-
tion in the myocardium; however, some studies revealed the 
applicability of this spectrum to evaluate metabolites from 
the Kreb’s cycle, β-oxidation of fatty acids and pyruvate 
flux. Finally, 87Rb is an analogue of K+, so it is believed 

that this spectrum can provide valuable information about 
Na+/K+ ATPase pumps [108]. One of the main advantages 
of MRS is the possible combination of the spectrums from 
different atoms that would provide a full characterisation of 
the myocardial state in coronary artery disease.

Cardiac MRS is a promising technique that could be 
used as a prognostic tool in the future. However, 31P-MRS 
is limited by its low spatial and temporal resolution and 
the low sensitivity of 31P (6.6% of 1H sensitivity). Techno-
logical advances using higher field strengths (> 3 T) have 
improved temporal and spatial resolutions and the signal-
to-noise; however, more advanced coil design, well-defined 
protocols, and sequence development are required to trans-
late this method into clinical practice.

Hybrid PET/MR imaging

As we have stated throughout this review, both PET and MRI 
have been successfully in providing data for diagnosis, prog-
nosis, and monitoring myocardial changes after myocardial 
infarction. Hybrid systems like PET/CT or SPECT/CT have 
already demonstrated their important clinical value. PET/
MRI systems have entered the market recently, and allow 
the acquisition of the PET data simultaneously or sequen-
tially to MRI data. It has been presented as a possible alter-
native to PET/CT due to the lower radiation exposure and 
the improved cardiac and respiratory motion compensation. 
However, one of the common disadvantages of hybrid sys-
tems and in particular PET/MRI is the increased complexity 
of the workflow, due to the higher complexity of the MRI 
compared to CT. However, there are several advantages of 
using MRI compared to CT, such as improved tissue charac-
terization, tissue perfusion, diffusion, T1, T2, spectroscopic 
data, and motion estimation.

Myocardial tissue characterization is usually performed 
using 18F-FDG-PET. However, the myocardial uptake may 
be reduced in diabetic patients resulting in poor image qual-
ity together with the low spatial resolution of PET not being 
enough to assess the distribution of the tracer through the 
myocardium [113] (Fig. 8). LGE MRI after administration 
of a Gd-contrast agent is an alternative and has become 
the standard of reference for viability assessment [68, 69]. 
There are only few small studies, where the feasibility of 
18F-FDG-PET together with LGE MRI has been successfully 
tested [99]. Moreover, the use of 18F-NaF-PET/MRI has 
been successfully validated this year to detect myocardial 
scar in a small cohort of STEMI patients [87]. Our group 
has recently developed a simultaneous CMRA—FDG-PET 
protocol, whereby respiratory motion is estimated from the 
CMRA acquisition and used to correct both the MR and PET 
attenuation and emission data [96]. These examples show 
the feasibility of PET/MRI to assess myocardial changes 

Fig. 7   Typical 31P-magnetic resonance spectroscopy spectrum show-
ing 2,3-diphosphoglycerate (2,3-DGP), phosphodiester (PDE), phos-
phocreatine (PCr), and the three phosphorus peaks of ATP (γ, α, and 
β). The x-axis is expressed in parts per million (ppm) [108]
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after MI. However, this new technology is at the beginning 
of its development and technological advances and other 
challenges related to the complexity need to be evaluated. 
In addition, larger clinical validations in different patholo-
gies are required to present PET/MRI as a real clinical 
alternative.

Diffusion tractography

Diffusion MRI tractography and its use in cardiac imaging are 
an active area of research. Diffusion tractography has already 
been well described in imaging of the matter tracts of the 
central nervous system [76]. Tractography consists of imaging 
the direction of particular fibres of interest, producing a dif-
fusion tensor (a vector made up of numerous eigenvalues) for 
each voxel within an image and this helps determine its direc-
tion. The computing system determines the main direction 
followed by various voxels and draws a pathway following the 
main direction of the diffusion tensor. Diffusion tractography 
can be useful in cardiac imaging to evaluate the architecture 
of the myofibers within the heart (Fig. 9). It has been shown 
that in healthy hearts, the myofibre architecture is smooth and 
constant, whereas in infarcted hearts, there is a severe disrup-
tion in the architecture [125, 129].

Discussion

Molecular cardiac imaging is a relatively new and exciting 
approach with a large scope for future work and improve-
ments before its introduction into clinical practice. This 
review has focused on molecular imaging of post-MI cardiac 
remodelling which subsequently may lead to heart failure. 
These techniques allow visualisation of molecular path-
ways that occur during remodelling, allowing serial imag-
ing showing disease progression and therapeutic response. 
Ultimately, this technology could be used by clinicians for 
prognostic purposes and for individual medication tailoring.

Although the current tracers have been successfully vali-
dated to image specific targets, they can always be improved. 
One of the chemical engineering challenges may be to 
achieve better sensitivity and stability of the current tracers 
and consequently superior images. Likewise, new tracers 
can be developed to broaden the library of tracers available, 
allowing the evaluation of different molecular pathways, and, 
therefore, increase our knowledge to provide a more person-
alised evaluation and treatment of patients. Some examples 
of possible targets that may have an important impact on car-
diac imaging are pH, tissue oxygenation, troponin, creatinine 
kinase, and specific cell populations such as inflammatory 
or reparative monocyte/macrophages. However, the tracers 

Fig. 8   Multimodal characteriza-
tion of the myocardial tissue 
after AMI using PET/MRI. 
Short-axis images of a patient 
who was imaged shortly after 
acute MI using simultaneous 
18F-FDG and 13N-NH3 PET/
MRI. Myocardial scarring can 
be imaged using LGE MRI 
(left column, top; white arrows 
pointing at subendocardial 
non-transmural infarction). The 
area of myocardial infarction 
is exceeded by the myocar-
dial oedema imaged using 
T2-weighted sequences (right 
column, top; red arrows). Using 
fasting-heparin 18F-FDG-PET/
MRI, the area of post-ischemic 
inflammation or ischemic 
memory can be assessed. After 
revascularization by percutane-
ous coronary intervention (PCI), 
only a slightly reduced perfu-
sion of the inferior wall was 
observed in this patient [113]
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discussed are very specific to their target and have proven to 
be successful at visualising their targets, and perhaps, at this 
stage, we should focus on these tracers to pursue translation 
to clinical practice as opposed to researching new potential 
tracers.

There is extensive literature on how bringing this research 
into clinical practice is an expensive and time-consuming 
task [62, 83, 123]. Many of these studies have been con-
ducted on mice and multiple authors have described the 
different behaviour of the tracers between mice, pigs, and 
humans, especially in patients with co-morbidities and more 
complex cellular mechanisms [12, 62]. However, recently, 
we have seen human trials in many of the imaging tech-
niques described. Although initial pilot studies, they have 
so far shown tracers to be safe in humans and to success-
fully visualise their targets. Clearly, more human studies are 
required to evaluate the safety and viability of these tracers, 
but translating this new technology into clinical practice is 
becoming more realistic than first thought. Once these trac-
ers have been deemed safe for use in humans, large multi-
centre clinical trials will be required to ensure they can suc-
cessfully image their targets, provide prognostic information 
to patients and offer evidence to clinicians to individually 
tailor medication to the patient. Imaging techniques will 
only be considered for clinical practice if they are deemed 
safe, robust and have a clinically relevant outcome that will 
aid or change the management of a patient. We are confident 

that these techniques will make it to the bedside in the future 
and will enable clinicians to monitor disease progression and 
therapeutic response.

Furthermore, these techniques could be used as an adjunct 
to novel molecular therapeutics. Anti-inflammatory and pro-
angiogenic or other molecular therapies have recently been 
studied [5, 65, 111]. The imaging techniques described in 
this review can act as guidance for these therapies both in 
experimental studies and clinically if these therapies make 
it to the bedside.

Efficient healthcare spending is vitally important in 
today’s climate and the question of cost-efficiency of this 
new technology must be asked. However, as imaging sys-
tems become more advanced and scan acquisition times 
decrease so does the price of running a single scan, and 
given the significant cost of heart failure on healthcare sys-
tems if these techniques contribute to a decrease in morbid-
ity and mortality then perhaps overall spending would be 
reduced. Naturally, as imaging systems continue to improve 
so will the imaging techniques described in this review. As 
PET/MRI hybrid systems are a recent addition to the market, 
this will also become an active area of research in this field 
as these two individual modalities make up the majority of 
this field.

This field is in an exciting phase, given the recent human 
trials. Further evaluation and clinical trials need to be imple-
mented. Ultimately, more work needs to be done in this area 

Fig. 9   Diffusion tractography in 
a healthy rat heart (a, b). Two 
infarcted rat hearts show severe 
distortion of myofibre architec-
ture (c, d) [125, 129]
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before molecular cardiac imaging becomes part of the clini-
cian’s toolbox; however, large steps have been taken recently 
and clinical translation is becoming ever more promising.

Conclusion

The main clinical experience with cardiac molecular imag-
ing is with nuclear imaging due to the availability of tracers, 
their high sensitivity, and low risk. New molecular imag-
ing techniques have been proposed and studied within both 
nuclear imaging and MRI. SPECT, PET, and MRI have the 
ability to image different cardiac processes, providing an 
extensive, non-invasive examination of the infarct process, 
and subsequent healing. Early human trials have shown 
promising results, and while significant challenges remain, 
these advances have shown potential advantages and may 
lead to improved, more individualised patient management. 
Large, multi-centre clinical trials are needed for safety eval-
uation of tracers in addition to diagnostic and prognostic 
value confirmation.
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