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Abstract

The information transfer rate provides an objective and rigorous way to quantify how much information is being
transmitted through a communications channel whose input and output consist of time-varying signals. However, current
estimators of information content in continuous signals are typically based on assumptions about the system’s linearity and
signal statistics, or they require prohibitive amounts of data. Here we present a novel information rate estimator without
these limitations that is also optimized for computational efficiency. We validate the method with a simulated Gaussian
information channel and demonstrate its performance with two example applications. Information transfer between the
input and output signals of a nonlinear system is analyzed using a sensory receptor neuron as the model system. Then, a
climate data set is analyzed to demonstrate that the method can be applied to a system based on two outputs generated
by interrelated random processes. These analyses also demonstrate that the new method offers consistent performance in
situations where classical methods fail. In addition to these examples, the method is applicable to a wide range of
continuous time series commonly observed in the natural sciences, economics and engineering.
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Introduction

Shannon’s classical information theory [1] has been widely

applied to the fields of engineering and natural sciences. Instead of

a general measure of information transfer, the information

capacity of a Gaussian channel (later referred to as information

capacity) is the most often used estimator for analyzing

information processing. However, its use assumes that the input

has Gaussian statistics, that the system is linear and time-

invariant, and that any noise in the data is Gaussian and additive

[2]. Here we introduce a novel information rate estimator that

only requires assumptions of stationarity and ergodicity. It works

with a single realization of the signals of experimentally realistic

duration. Practical implementation of the estimator is further

facilitated by signal conditioning methods that increase compu-

tational efficiency.

Results

Derivation of the method
We start by deriving an auxiliary equation for the random

processes. A random process, �XX , can be formulated as a time

indexed sequence of random variables, Xi, as �XX~fXiji~1,2,3,:::g.
By assuming that �XX is stationary and ergodic the entropy rate of the

random process, h( �XX ), can be defined as:

h( �XX )~lim i??H(XijXi{1,Xi{2,:::,X1), ð1Þ

where H(XijXi{1,Xi{2,X1) is the conditional entropy, which

follows the general definition for two random variables X and Y,

X*p(x) and Y*p(y), respectively:

H(Y jX )~{
X

x,y
p(x,y) log p(yjx), ð2Þ

where p(x,y) is the joint probability distribution and p(y|x) is the

conditional probability distribution. The entropy rate is a measure

of how fast entropy of the random process increases at the limit of

infinitely long random processes. To circumvent the requirement

for infinitely long samples of the random processes, we approximate

them as a Markov process of order L. This means that the random

process generating the data works in such a way that any data point

only depends on L points in the past but no further. Following this

approximation, the conditional state of Xi is independent of states

beyond Xi-L and the following holds for the probability distribution:

p(xijxi{1,xi{2,:::,xi{L{j)~p(xijxi{1,xi{2,:::,xi{L), ð3Þ

where i~1,2,3,::: and j~1,2,3,::: (j is an index parameter related to

the Markov assumption). Using this formulation the entropy rate in

equation (1) can be presented as:

h( �XX )~lim i??H(XijXi{1,Xi{2,:::,Xi{d ), when d§L ð4Þ

and d is defined as d~jzL. By using the general chain rule of

entropy

H(Y jX )~H(X ,Y ){H(X ), ð5Þ
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where H(X )~{
P

x p(x) log p(x) and H(X ,Y )~{
P

x,y p(x,y)

log p(x,y), and equation (4), the auxiliary equation for the entropy

rate can be written as:

h( �XX )~H(Xi,Xi{1,:::,Xi{d ){H(Xi{1,Xi{2,:::,Xi{d ), when d§L

ð6Þ

The information rate, R, between two random processes �XX and
�YY quantifies the rate of increase in the mutual dependencies

between the processes (i.e. it provides a dynamic measure of

information transmission). �XX could be the input and �YY the output

of a random process, or they could be two outcomes of interrelated

random processes. The information rate can be defined as [3]:

R~h( �XX )zH( �YY ){h( �XX , �YY ) ð7Þ

Assuming that �XX and �YY are Markov processes and that they are

also jointly a Markov process of order L, allows writing the

probability distribution as:

p(xi,yijxi{1,xi{2,:::,xi{L{j ,yi{1,yi{2,:::,yi{L{j)~

p(xi,yijxi{1,xi{2,:::,xi{L,yi{1,yi{2,:::,yi{L),
ð8Þ

where i~1,2,3,::: and j~1,2,3,::: The information rate of

equation (7) can be reformulated using equation (6) and the

Markov assumptions in equations (3) and (8) as:

R~H(Xi,Xi{1,:::,Xi{d ){H(Xi{1,Xi{2,:::,Xi{d )z

H(Yi,Yi{1,:::,Yi{d ){H(Yi{1,Yi{2,:::,Yi{d ){

H(Xi,Xi{1,:::,Xi{d ,Yi,Yi{1,:::,Yi{d )z

H(Xi{1,Xi{2,:::,Xi{d ,Yi{1,Yi{2,:::,Yi{d ), when d§L

ð9Þ

Below, a definition of mutual information (MI), a measure of

mutual dependence between two random variables is used (i.e. a

static measure of the information transmission). MI, I(X,Y), can be

defined as:

I(X ,Y )~H(X )zH(Y ){H(X ,Y ) ð10Þ

where the MI between the two random variables X and Y is:

I(X ,Y )~
X

x,y
p(x,y) log

p(x,y)

p(x)p(y)
, ð11Þ

allowing a reformulation of equation (9) to give the information

rate R as:

Figure 1. Illustration of the steps involved in the information rate estimation. A, Sections of simulated input, X, and output, Y; (1) input and
time-delayed output with d = 30; (2) the three largest principal components used for the MI estimate. B, CMIF with T = 20 ms. C, MI as a function of d;
information rate of 220 bits/s was obtained from the linear fit (grey). Graph corresponds to the 4th data point in Figure 2.
doi:10.1371/journal.pone.0018792.g001
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R~I(Xi,Xi{1,:::,Xi{d ; Yi,Yi{1,:::,Yi{d )z

I(Xi{1,Xi{2,:::,Xi{d ; Yi{1,Yi{2,:::,Yi{d ), when d§L
ð12Þ

This recursive equation can be solved with respect to the MI, as a

linear function of d:

I(Xi{1,Xi{2,:::,Xi{d ; Yi{1,Yi{2,:::,Yi{d )

~Rdzc, when d§L
ð13Þ

In this equation i~1,2,3,::: and c is an additional constant that

depends on the initial conditions. In practical terms, samples of

some tens of thousands to a hundred thousand data points are

required from the two simultaneously measured signals (i.e.

outcomes of the random processes). Then the information rate

can be estimated from the linear slope of the obtained MI values as

d is increased (see Figure 1a for practical illustration of the d

parameter).

Several algorithms exist to estimate the MI between two

random variables. However, in the case of continuously distributed

random processes, estimation of MI through direct application or

binning of the probability density could produce severely biased

results [4]. Therefore, we selected a k-nearest neighborhood

algorithm for estimating the MI, which is also known to handle

multivariate MI adequately [4,5]. However, according to the

original publication of the MI algorithm [5], d is expected to be

limited to values below 5 with practical data sets. This was found

to be insufficient in preliminary testing of the estimator. Therefore,

we introduce two signal conditioning methods to circumvent this

limitation as next steps in the derivation of the estimator.

Significant lags arise in physical systems, which mean that

information from one signal may only appear in the other after a

delay. Estimating MI does not require sampling the random

processes in any specific time progression (assuming d$L) and it is,

therefore advantageous to arrange the analysis to use the most

mutually dependent samples. The degree of mutual dependence

can be measured by the cross MI function CMIF [6]:

CMIF ( �XX , �YY ,t)~I(Xi,Yizt) ð14Þ

where i~1,2,3,::: and t is the delay between the two processes.

The CMIF is closely related to the more familiar cross-correlation

function but, instead of the linear dependencies, it estimates

the mutual dependencies. Maximum CMIF occurs at mean

latency, T, which is introduced to the MI estimates as:

I(Xi{1,Xi{2,:::,Xi{d ; YizT{1,YizT{2,:::,YizT{d ), i.e. it shifts

the latter dataset (Y) by T points forward in time. This also

changes the joint probability distribution accordingly:

p(xi,yizT jxi{1,xi{2,:::,xi{L{j ,yizT{1,yizT{2,:::,yizT{L{j)~

p(xi,yizT jxi{1,xi{2,:::,xi{L,yi{1zT ,yi{2zT ,:::,yi{LzT ) ð15Þ

i~1,2,3,::: and j~1,2,3,::: Equation (15) is satisfied at smaller L

than equation (8), which means that the information rate estimate

is obtained with smaller d. Therefore, introduction of a system-

dependent delay to the estimator will make it converge faster as a

function of d.

As a second signal conditioning method, principal component

analysis (PCA) can be used to focus analysis on the most significant

features of the high-dimensional samples of the two signals

(dimensionality is defined by d). In PCA a data set is analyzed to

find orthogonally most independent sets of components in the

order of variance in the data that they can account for. An

additional benefit of using the PCA is that practical data sets are

always contaminated by noise, which can be at least partially

filtered out by PCA without changing the information rate

estimate. The PCA is first applied to the second signal, time shifted

by T, as described above. The N highest principal components

(PCs), Y PC
1 ,Y PC

2 ,:::,Y PC
N , are selected and multiplied with the first

signal to give the corresponding N highest PCs, X PC
1 ,X PC

2 ,:::,X PC
N .

As a result, the dimensionality of the original two signals is reduced

from d to N. It should be noted that all PCs with significant

contribution to the original random processes should be included

in the estimator to avoid biased results. In practice, we have found

it sufficient to use 2–4 PCs, which in our data sets corresponded to

over 98% of the eigenvalues.

The time-shifted and dimensionally reduced signals are

introduced to equation (13) to give the final formulation of the

information rate estimator:

I(X PC
1 ,X PC

2 ,:::,X PC
N ; Y PC

1 ,Y PC
2 ,:::,Y PC

N )

~Rdzc, when d§L
ð16Þ

In principle, it is possible to estimate the information rate, based

on the MI, with just two different d values, but more should be

used to decrease the statistical error of the estimate. Using the

base-2 logarithm for the MI calculation gives units of bits/

transmission, which can be converted to time-dependent measure

of bits/s when the interval between the two sample points of the

signals is known. The major steps of the novel estimator are

illustrated in the Figure 1 (see also Materials and Methods).

Validation of the method
To validate the novel estimator, a data set was simulated that

meets the assumptions of the Shannon’s information capacity

estimate, allowing the results from the novel estimator to be

compared with a known, valid estimate of information capacity.

Input x(t) was generated as a random process of 40000 normally

distributed data points with time difference of 1 ms between the

points (Figure 1A). The input was filtered by a low pass filter with

coefficients of a(i), where i = 0,1,…40, to generate output

y(t)~
X40

i~0

a(i)x(t{i)zz(t), ð14Þ

where z(t) indicates linearly added Gaussian noise with variance

ranging from 0.0025 to 2.26 (Figure 1A). This produced simulated

test data with varying information rates that could readily be

computed. The information rate estimated by the novel method

was found to match the information capacity of the Gaussian

channel up to about 360 bits/s, after which the novel estimate

started to plateau at an underestimate (Figure 2). This deviation is

attributable to the MI estimator algorithm, which requires ever

longer samples for data at higher MI values. Additional analysis

showed that a sample size of 600000 points is required to achieve

an accurate information rate estimate at 430 bits/s (Figure 2).

However, it should be noted that this problem is alleviated with

real data sets. With correlated signals the k-nearest neighbor

statistics of the MI algorithm [5] can be estimated reliably with

smaller sample sizes and the computational efficiency is also

improved as the number of the required PCs is significantly lower

than with the uncorrelated, random signals.

Example applications
Two example applications, visual sensory neuron signals and

surface temperature measurements from climate data, were

Novel Information Rate Estimator
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selected to demonstrate the general applicability of the novel

estimator. Blowfly photoreceptors were used to illustrate informa-

tion processing by a nonlinear system through input-output

analysis. This is a well established model system where the

dynamic light input is efficiently and reliably encoded into a

graded membrane voltage response of limited amplitude range. A

majority of previous studies have relied on information capacity

estimates obtained by white noise stimulation [7–11]. However,

the statistics of naturally occurring inputs are non-Gaussian and

correlated in time, giving highly nonlinear responses [12–15]. We

recorded voltage responses from six photoreceptors to three

different sequences of naturalistically varying light intensity

stimuli, selected randomly from a published data set [12]

(Figure 3A and B). The CMIF between the stimulus and the

responses indicated that a lag of approximately 11 ms existed in

the system (Figure 3C). Depending on the specific stimulus

sequence used, the information rate was found to vary from 152

bits/s to 332 bits/s. The information capacity estimates for the

same data set ranged from 102 bits/s to 226 bits/s (Figure 3D).

The significant underestimation by information capacity analysis is

attributable to the failure of the data to meet the required

assumptions. This underlines the importance of using an accurate

estimator in this and similar cases of nonlinear processing. The

observed strong dependence of information rate on the specific

naturalistic stimulus sequence is also an interesting finding that

deserves more careful investigation in future work.

Surface temperature measurements from US weather stations

with varying distances from each other either by latitude (from San

Diego, CA to Charleston, SC) or longitude (from Dallas, TX to

Grand Forks, ND) were retrieved from a climate data set (Table 1;

see Methods). From a systems analysis point of view, these

measurements can be considered as readouts of interrelated

processes that share a common input. Information theory has been

previously applied to climate data to estimate the quality of

weather forecasts [16,17], but we are not aware of reports where

the information transfer rate between any two observation points

have been analyzed. Temperature data showed clear seasonal

(Figure 4A) and daily rhythms (Figure 4B). The lag between the

two observation sites was quantified with the CMIF and varied

from 10 to 50 minutes without any apparent correlation with

distance. Therefore, the variability is likely to result from the

latitudinal variation of the weather stations within a time zone,

which results in a variable delay of the sun-dependent ambient

temperature cycle. Linear correlation coefficients were also

calculated from the data and they were found to decrease with a

linear trend as the distance between observation points increased

(Figure 4C). This finding matches results of earlier work [18].

However, the MI that captures all the dependencies instead of just

the linear ones was found to decrease with much faster trend

(Figure 4C), suggesting that previous estimates of the dependencies

were significantly underestimated. Continuing, information rates

estimates showed no variation with distance (Figure 4D). This

contrasts with information capacity estimates that were most likely

to fail because of strong nonlinear dependencies between any two

datasets (Figure 4D). These consistent information rates suggests

that, although MI varies as a function of distance, the average

amount of new information added over time is independent of

Figure 2. Information rate vs. information capacity of a
Gaussian channel. Grey square corresponds to the estimate from
600000 data points.
doi:10.1371/journal.pone.0018792.g002

Figure 3. Information processing in blowfly photoreceptors. A, An example of the photoreceptor response (top) to the light stimulus (below;
stimulus 2 in D). B, Enlargement of the section marked with the grey box in A; output follows the input with a delay of ca. 11 ms (grey box). C, CMIFs
from six photoreceptors; delay observed in B is marked with the grey dashed line. D, Mean 6 s.d. of the information rates (grey) and information
capacities (light grey) for three different stimulus sequences (significantly different in each case; Student’s t-test; (1) p,0.00031, (2) p,0.000011 and
(3) p,0.048).
doi:10.1371/journal.pone.0018792.g003
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distance between observation points (i.e. the slope of the MI(d)

curve is constant, see Figure 5). This could be interpreted as

meaning that despite the local variation of the nonlinear

transformation of common inputs (e.g. sunlight) into a surface

temperature, the temporal dynamics of the underlying climate

process is similar across the observation sites. However, more

detailed analysis and interpretation of the data are beyond the

scope of this work.

Discussion

We have presented a novel method of estimating the

information rate between two continuous signals. Unlike the

popular information capacity estimator, our method does not

restrict the signal and noise statistics or require linearity.

Importantly, it is also practical to implement and computationally

efficient.

An alternative information rate estimator was recently intro-

duced for continuous signals, based on varying digitization levels

and extrapolation to infinite data size, number of signal levels and

sampling rate [15]. In contrast to the present estimator, it depends

on reliable estimates of the entropy rate of the signal and the noise

in the output, requiring data sets with numerous input-output

realizations. This limits its use to studies where the input can be

controlled by the investigator, which is not possible for data such

as the climate records analyzed here.

Although the main purpose of the example applications was to

demonstrate the performance of the estimator, some interesting

preliminary results about the two applications were also obtained.

Photoreceptor information rate was found to vary strongly with

the specific stimulus sequence (Figure 3D). Although varying mean

brightness of the stimuli might explain part of this phenomenon

(dimmer stimuli inherently contain larger shot noise), even the

approximately equally bright stimulus sequences gave significantly

different information rates. This suggests that the system is better

tuned to some stimuli than to others, which is an interesting topic

for future studies. With the climate data set, MI was more strongly

dependent on distance than the linear correlation coefficient

would indicate. This suggests that nonlinear transformations of the

sunlight-to-surface temperature and/or the extrinsic influences

become increasingly different at longer physical separations. In

contrast, information rate was found to be constant, suggesting

that surface temperature results from dynamic processes that

integrate past events in a similar manner at different observation

sites.

In conclusion, we anticipate that the presented estimator could

become a powerful analysis tool in applications where information

theoretical analysis has not been previously possible. In biomedical

research, it could be applied to the analysis of signals such as those

obtained by MRI imaging or to fluorescence signals from cellular

dye indicators. Emerging applications also include analysis of

biochemical networks [19] and control of gene expression [20]. In

general, the method is widely applicable to analysis of continuous

time series commonly studied in the natural sciences, economics

and engineering.

Materials and Methods

Specification guide for the estimator parameters
Parameters used in the information rate estimator are presented

in the Table 2. A MatlabH implementation of the method is

available at the authors’ website (http://www.physics.oulu.fi/

bons/). The recipe for using the estimator can be summarized as

follows:

1. Specify input and output signals. At least 10000 points

are required for the multivariate statistics; increasing n

decreases the statistical error and allows reliable estimates of

high MI.

2. Determine T (the time-lag between two data sets). T is

automatically determined using the CMIF. Its exact value is

not critical but poor estimates may result in an increased L.

3. Specify N (number of PCA components). N should be

selected so that over 98% of the variance is explained by the

PCA eigenvalues (this restriction may be loosened for noisy

signals). High MI requires large N. It should be noted that too

small N leads to an underestimated information rate and, on

the other hand, too large N may give rise to a second erroneous

linear region leading to an overestimate (Figure 6).

4. Select range for the linear fit (in the MI-plot). L should

be used as the lower limit for the d-values included in the fit

(d$N). L can be estimated from the point when the MI curve

becomes linear. If the auto-correlation of the input signal is

zero, L is the half-width of the CMIF peak. Maximum d-values

used for the fit should be limited to the point where MI starts to

Table 1. US Weather stations used in the analysis.

Station 1 Station 2 Distance (km)

Latitudinal variation

Dallas Fort Worth International Airport, TX Dallas Love Field, TX 18

Evers International Airport, MS Meridian Key Field Asos, MS 125

Charleston Air Force Base-International Airport, SC Montgomery Regional Airport, AL 599

Evers International Airport, MS Charleston Air Force Base-International Airport, SC 942

San Diego International Airport, CA Charleston Air Force Base-International Airport, SC 3453

Longitudinal variation

Dallas Fort Worth International Airport, TX Dallas Love Field, TX 18

Grand Forks International Airport, ND Hector International Arpt, ND 117

Grand Forks International Airport, ND Sioux Falls/foss Fi, SD 487

Grand Forks International Airport, ND Lincoln Municipal Airport, NE 790

Grand Forks International Airport, ND Dallas Fort Worth International Airport, TX 1674

doi:10.1371/journal.pone.0018792.t001
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deviate from the linearity (d#T). Note that after the maximum

value is exceeded, the MI estimates become underestimated

and the slope of the curve reduces until it levels off at zero.

5. Adjust k (the number of nearest-neighbors in the MI
computation algorithm). The value of k should be adjusted

so that the linear part of the curve becomes well defined. A

value of unity produces too much statistical error (MI values

are scattered around the line) and too large k leads to an

underestimate. High MI requires small k, and in practice

values between 2 and 6 have provided good results.

Information capacity estimate
The information capacity was estimated using the coherence

function

c2(f )~P2
xy(f )=Px(f )Py(f ), ð21Þ

where Px(f) and Py(f) are power spectrum of the input and output,

and Pxy(f) their cross power spectrum, respectively. The informa-

tion capacity, C, can be estimated as:

C~

ð
log2(1{c2(f ))df ð22Þ

Electrophysiology
Female blowflies (Calliphora vicina) were used in the experiments

according to well-described preparation methods and using a

previously reported experimental setup [8,11,15]. Photoreceptor

voltage responses were recorded intracellularly with aluminosili-

cate microelectrodes manufactured with a laser puller (P-2000;

Sutter Instrument, USA) and filled with 2 M K-acetate solution

(electrode resistances 100–130 MV). Signals were amplified with

an intracellular amplifier (SEC-05L; NPI, Germany) and recorded

with a computer controlled data acquisition system with a

sampling frequency of 2.4 kHz (DAQ-board: PCIe-6259, National

Instruments, USA; custom MatlabH software). Light stimulus was

always aligned with the photoreceptor’s optical axis and a

photoreceptor was accepted to the data set if it had a resting

potential below 255 mV, input resistance higher than 25 MV and

a maximum response to a bright flash of light larger than 50 mV.

Climate data
Climate data recorded at weather stations across the USA with

1 minute intervals was downloaded from the National Environ-

Figure 4. Information theoretical analysis of the climate data.
A, 4 years of surface temperature data from two nearby weather
stations in Dallas, Texas. B, 10 day enlargement of the section indicated
with the grey bar in A. Data points are missing on the highlighted
section on either one or both of the traces (indicated by arrow). C, MI
(squares) and linear correlation coefficients (circles) as a function of
distance between the observation points. Latitudinal (black) and
longitudinal (grey) data sets span across the continent orthogonally.
D, Information rate (squares) and capacity (circles) as a function of
distance. The color coding is as in C.
doi:10.1371/journal.pone.0018792.g004

Figure 5. MI as a function of d for the weather stations with
varying latitudinal distance.
doi:10.1371/journal.pone.0018792.g005
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mental Satellite, Data and Information Service (http://www.

ncdc.noaa.gov/oa/climate/climatedata.html#asosminutedata). The

weather stations used in the analysis were selected along orthogonal

lines near latitude 33u and longitude 297u (Table 1).

Missing data points were commonly encountered in the data

sets (Figure 4A and 7A) and they were especially numerous for the

weather stations in Dallas, TX (Table 1; Figure 4A). Interpolation

was used to make the data continuous to enable estimation of bit

rates per time unit. The piecewise cubic Hermite polynomial

method was used to interpolate the missing data points (Figure 7A).

Further analysis of these Dallas observation sites was done for 4

years of data using a sliding window of 100,000 minutes, each

window overlapping 50% with the preceding one. It can be clearly

seen that both the MI and the information rate are relatively

constant over time, except for the sections where large fractions of

the data consist of missing data points (Figure 7A). This is

especially pronounced in sections where the data was simulta-

neously missing from both observation sites and where the data

consists of smooth curves generated by the interpolating algorithm

(Figure 7A). As a result the estimate of the MI was erroneously

increased and the estimate of the information rate was decreased.

However, it should be emphasized that this analysis represents the

worst case scenario of the used data set. In addition, the two first

years of data were used in the later analysis, which precludes most

of the section with largest errors of the illustrated data. Therefore,

we conclude that the errors due to the missing data points and/or

interpolation do not change the general validity of the results

presented in Figure 4.

To enable analysis of the data sets of several years in duration,

data was down-sampled with an anti-aliasing FIR filter and a

Kaiser window into 10 minute sample intervals. 100,000 data

points were used in the analysis corresponding to two years in time

Figure 6. N-parameter selection. No clear linear region is observed
if too small N is used in the estimator (black), which would result in an
underestimate; too large N gives rise to an erroneous linear range
appearing with large d and fitting that region would lead to an
overestimate (grey).
doi:10.1371/journal.pone.0018792.g006

Table 2. Parameters used in information rate estimator.

Parameter Definition Exemplary values*

n no. of data points 40000

k no. of nearest neighbors used in MI estimator 3

T delay between two signals 20

N no. of PCA components used in MI estimator 3

L order of the Markov process 10

d dimension of the random process (variable in information rate
estimator)

10–14 (used for linear fit)

*Example values are for the data shown in Figure 1.
doi:10.1371/journal.pone.0018792.t002

Figure 7. Climate data preprocessing. A, MI and information rate
(dashed line) over four years of data; inset shows the fraction of missing
data points occurring on either one (grey) or on both data series
simultaneously (black). B, MI (black), information rate per sample (dark
grey) or per minute (light grey) of 100,000 data points with different
sample intervals.
doi:10.1371/journal.pone.0018792.g007
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(years 2000 & 2001 in the data set no. 6406). The effect of the

down-sampling on the estimates was studied. Sample intervals of

1, 5 and 10 minutes were used and 100,000 samples were

analyzed in each case. The MI estimates were found to be

unaffected, but the information rate per sample increased slightly

with the longer sample intervals (Figure 7B). The original data

includes rather large discretization noise (temperature was

measured with one degree intervals) and the reduction of this

noise attributable to the interpolation could explain the observed

increase in the information rates. The information rate per time

unit decreased as expected, because the same amount of

information was divided by a larger time unit (as a universal law

the amount of information cannot be increased by any subsequent

processing). Although down-sampling affects the absolute bit rate

values the error is systematic and does not affect the results of the

comparative analysis made between the observation sites (Figure 4).
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