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Abstract: Biological systems are dynamic systems featuring two very common characteristics; Initial
conditions and progression over time. Conceptualizing this on tumour models it can lead to important
conclusions about disease progression, as well as the disease’s “starting point”. In the present study
we tried to answer two questions: (a) which are the evolving properties of proliferating tumour cells
that started from different initial conditions and (b) we have attempted to prove that cell proliferation
follows chaotic orbits and it can be described by the use of Poincaré maps. As a model we have used
the acute lymphoblastic leukemia cell line CCRF-CEM. Measurements of cell population were taken
at certain time points every 24 h or 48 h. In addition to the population measurements flow cytometry
studies have been conducted in order to examine the apoptotic and necrotic rate of the system and
also the DNA content of the cells as they progress through. The cells exhibited a proliferation rate of
nonlinear nature with aperiodic oscillatory behavior. In addition to that, the (positive) Lyapunov
indices and the Poincaré representations in phase-space that we performed confirmed the presence of
chaotic orbits. Several studies have dealt with the complex dynamic behaviour of animal populations,
but few with cellular systems. This type of approach could prove useful towards the understanding of
leukemia dynamics, with particular interest in the understanding of leukemia onset and progression.

Keywords: CCRF-CEM; Poincaré; Poincaré maps; chaos; chaotic mechanics; acute lymphoblastic
leukemia; chaotic orbits

1. Introduction

The answer to the argumentations between random and deterministic, was given
shortly before the end of the 19th century by Henri Poincaré. It simply took several decades
for its results to be properly interpreted. Poincaré proved that even in the simplest problems
of Engineering and Astronomy, there are solutions (or trajectories) so sensitive to their
initial conditions that makes their evolution over time completely unpredictable. Even the
simplest deterministic systems, moving in a space of at least three dimensions, have areas
where their solutions are so unstable that even minimal shifts in their initial state lead to
huge changes in their evolution. Henri Poincaré worked on the three-body problem in 1889,
during a contest on celestial mechanics. The three-body problem is related to the question
on the stability of the solar system, in particular the n-body problem. In this contest, the
winner was Henri Poincaré [1].
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1.1. Acute Lymphoblastic Leukemia of Childhood
1.1.1. Phenotypic and Molecular Characteristics of Leukemia

Childhood leukemia is the most common type of childhood cancer and represents
clonal proliferation of transformed hemopoietic cells as a result of genomic and proteomic
changes [2]. Further on, leukemia is a heterogeneous malignancy able to occur at different
stages of lymphoblast maturation/differentiation.

There are two main categories of childhood leukemia: Acute Leukemia and Chronic
Leukemia. Acute Leukemia can be subdivided further on, to acute myeloblastic (AML) and
acute lymphoblastic leukemia. Acute Lymphoblastic Leukemia (ALL) is the most common pedi-
atric malignancy. Leukemia stratification is placed on certain morphologic, immunopheno-
typic and cytogenetic criteria. Lymphoblasts share a common characteristic: both (B-cell
ALL and T-cell ALL) rearrange their immunoglobulin heavy chain and T-cell Receptor genes
respectively. Especially, in almost all cases of early pre-B-ALL (common ALL) the Ig heavy
chain gene is rearranged. The rearrangement also takes place in other types but in a lower
extent of about 40%. This property of leukemic cells is exploited in order to detect Minimal
Residual Disease (MRD) [3] using the Polymerase Chain Reaction method (PCR). In addition,
there are efforts for using Ig-heavy chain rearrangement as a prognostic and treatment
directed factor [2]. One of the most important criteria in leukemia classification are chromo-
somal aberrations. Some of the most significant aberrations, known up-to-date, are hyper-
diploidy (n > 50), the TEL/AML1 t(12;21)(p13:22), the BCR/ABL t(9;22)(q34;q11.2), the MLL
t(4;11)(q21;23), t(9;11)(p22;q23), t(11;19)(q23;p13) and the E2A-PBX1 t(1;19)(q23;p13) [2,4],
which are also considered to be strong prognostic factors. Treatment of childhood leukemia
has accomplished tremendous progress. Up-to-date approximately 80–90% of all cases are
cured and manifest complete remission, whereas approximately 10% do not respond to
therapy and relapse [2,3].

Although 85–90% of all leukemic patients, reach complete remission, there is a percent-
age that relapses. Thus, the importance of accurate diagnosis, including the type or subtype
of the disease, as well as the definition of prognosis are crucial to leukemia progression.

Among the two types of leukemia (B-ALL and T-ALL) T-cell ALL manifests a difficult
medical problem. Five different molecular pathways have been previously identified,
leading to T-ALL, involving activation of different T-ALL oncogenes; HOX11, HOX11L2,
TAL1, LMO1/2, LYL1, LMO2, and MLL-ENL. Gene expression studies identified the
activation of a subset of these genes (HOX11, TAL1, LYL1, LMO1, and LMO2) in a larger
fraction of T-ALL cases than those harboring chromosomal translocations. In many cases,
the abnormal expression of one or more of these oncogenes is biallelic, indicating upstream
regulatory mechanisms. Overexpression of the HOX11 orphan homeobox gene occurs
in approximately 5% to 10% of childhood and 30% of adult T-ALL cases. Patients with
HOX11-positive lymphoblasts have an excellent prognosis when treated with modern
combination chemotherapy, while high risk groups of early failure are included largely in
the TAL1- and LYL1-positive groups. Expression profiling of genes of T-ALL lymphoblasts
is especially needed for patients on modern combination chemotherapy trials to clearly
distinguish the 10% to 15% of patients who fail induction or relapse in the first year of
treatment. These high-risk patients would be ideal candidates for more intensive therapies
in first remission, such as myeloablative regimens with stem cell rescue. Based on the rapid
pace of research in T-ALL, made possible in large part through microarray technology,
deep analysis of molecular pathways should lead to new and much more specific targeted
therapies [5].

1.1.2. Leukemogenesis

Leukemogenesis is recognized as a multi-step process characterized by genetic insta-
bility and alterations in gene expression. Identification of these molecular changes can
provide numerous opportunities for discovery of biomarkers to be used for early detection
of cancers and for identifying novel molecular targets for preventive or therapeutic drugs.
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Chromosomal abnormalities detected at diagnosis are associated with a high per-
centage of childhood leukemias. The early detection of such aberrations is of significant
importance, not only for the classification of the leukemic subtype, but also for the prog-
nosis and therapeutic outcome of the patients. On the other hand, leukemias involving
the BCR-ABL fusion gene, present in about 4% of children with ALL, are characterised
by a high incidence of relapses, whereas leukemias involving the TEL-AML1 fusion are
associated with a good prognosis [6,7].

Studies on monozygotic twins with concordant leukemia [6–9] and retrospective
scrutiny of neonatal blood spots (Guthrie cards) of leukemia patients [10–12] have demon-
strated that for a significant number of childhood patients leukemia starts at the embryonic
stage. Further scrutiny of Guthrie spots showed that over 70% of children with ALL up
to 13 years of age had clonotypic markers of the disease at birth [10,12–14]; the molecular
markers present at birth were exactly the same as the ones detected in the leukemic cells a
few years later. In another study it was shown that the particular fusion (TEL-AML1) is
also detected in healthy children at birth with a frequency of 1% [15]. This 1% represents
100 times the risk of ALL with TEL-AML1 fusion gene, indicating that the frequency of
conversion of the pre-leukemic clone to overt disease is low [16,17]. This conclusion, in
connection with the fact that other subtypes of leukemia (e.g., the ones characterised by the
BCR-ABL fusion or MLL translocations) do not show clonotypic markers at birth [18–22],
has led scientists to believe that a gene fusion alone cannot be the causative effect for the
development of leukemia. Therefore, post-natal exposure and additional genetic events are
required for clinically overt leukemia to take place.

1.1.3. Non-Linear Dynamics in Leukemia Proliferation

Acute Lymphoblastic Leukemia (ALL) is the most common malignancy of childhood.
ALL has been extensively studied in all aspects of its biology, including, but not limited to,
classification, patient stratification, drug resistance and cell proliferation. However, in the
context of cell proliferation, to our knowledge, there are no previous studies investigating
its dynamics. A very important tool for the investigation of such problems are immortalized
cell lines. Some previous works have reported the use of cells lines in order to study non-
linear dynamics. Previous works by Wolfrom et al., (1994, 2000, 2004) [23–25], Guerroui
et al., (2005) [26] and Laurent et al., (2010) [27] has investigated the chaotic dynamics of
hepatocellular carcinoma cells as well as bone marrow progenitor cells [23]. In addition,
few works have highlighted the oscillatory nature of leukemic cell proliferation [28]. Finally,
in a previous work we have also reported that we have found evidence of deterministic
chaos in leukemia cells in vitro [29]. In vitro systems give the possibility of performing
long-term experiments, isolating the system under study, thus reducing noise, both of
which are not possible in in vivo systems.

1.2. The Dynamics of Cell Proliferation in Leukemia. An In Vitro Model

What are the dynamics of tumor cells before diagnosis? How does tumor progress
from its ontogenesis to formation of a complete system? These questions cannot be an-
swered due to a practical problem; it is almost impossible to study cell populations in
living organisms, in a temporal manner. Especially, in the case of cancer this is impossible
since both practical as well as bioethical restrictions prohibit us from understanding the
cell proliferation dynamics of a neoplasm.

It is known that biological systems do not follow “conventional” ways of growth.
Their behavior is not regulated by simple models but complex (although sometimes very
simple functions can manifest very complex behavior). However, why is it so important
to know the way biological cells behave as a system? In order to answer this question we
have to draw a line between two classes of different in vivo systems. The first, consist of
normal (physiological) biological systems i.e., cells that progress through time working as
a system in order to accomplish a certain purpose (e.g., a physiological process, a homeo-
static process). The second is pathological, in our case a tumorigenic system, which also
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progresses through time also as one sound system in order to accomplish another purpose
(or maybe not, since it is possible that tumor growth could be completely stochastic). In
the case of a tumor the only purpose that we can speculate is its survival. In both systems
their temporal progression is complex. This means that the state of the system cannot be
predicted by the preceding conditions.

A major problem, in examining biological samples, especially biopsies or rare samples,
is that the investigation gives a stationary “picture” (spatial, steady-state) of the system under
investigation. This, compared to dynamic observations as for example in time-dependent
studies, does not provide information for the evolution of the system rather it gives a
“snapshot” of the moment. For this reason, it is difficult to obtain useful information on the
examined samples. This is mainly to the fact that the term steady-state does not apply to
biological systems. Biological systems are in constant “turmoil” changing energy and mass
with their environment and at the same time they change their time-dependent behavior
with respect to the environmental stimuli. Further on, an extension of this problem raises
another question; what is the trajectory that tumor cells follow, i.e., proliferate, from the
point of their first emergence to the point of clinical presentation? Towards that question
there are not many methods that can facilitate its answer. Towards that end, we have
attempted to create a model that would allow the investigation of tumor proliferation
dynamics from the point of emergence to the point of clinical presentation.

1.3. The Mathematical Model and Analysis
1.3.1. A General Description of the Growth Model

Let a phenomenon being described by a function of the form:

y = f (x) (1)

If time is added to the system, then Equation (1) becomes:

dy
dt

= f (x), x ∈ R (2)

If the system can be described linearly then its initial conditions will determine its
further progression and it will be simple to calculate present states from previous ones,
iteratively. Thus, given the present state of a pathogenic condition (tumor in this case) it
would be required to know, with infinitesimal precision, the initial conditions. However,
this is not the case in tumorigenic systems.

A well-studied model of cell progression described by the logistic equation presents
the relation of cell population and competition for nutrition. The logistic equation is
given by:

f (x) = kx(1− x), x ∈ (0, 1) (3)

where k is the proliferation constant of cells. The graphical representation of this function
is nonlinear. Taking the iteration of Equation (3) it becomes:

f (xn+1) = kxn(1− xn), x ∈ R∧ n ∈ Z (4)

Two fixed points can be found for Equation (4), 0 and 1 [30]. This is true as long
as the value of k is constant. For k = 2 the function still has a linear form. However for
k = 2.90, k = 3.22 and k = 3.93 the function manifests a totally different behavior [30]. In
addition, when iterating Equation (4), for values of k: k ∈ [1, 3, 99] the system manifests a
complex dendrogram [30]. Thus, it is obvious that a very simple function can manifest a
very complex behavior. The bifurcartions manifested by the function for k: k ∈ [1, 3, 99],
represent the change in cellular status [30]. Each bifurcation declares a decision for life or
death, i.e., in cellular terms apoptosis or necrosis.

As x approaches 1 y approaches 0, which is expected since the competition for nutrients
reaches its maxima and cells start to die instead of proliferating. In addition, the factor of
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volume (i.e., space for growth) is introduced in our study, which will be shown to play
an important role in growth dynamics. In in vivo systems this is already known, as for
example in the case of CNS tumors. Space is a factor which influences tumor growth and
determines its behavior as far as its survival is concerned.

In the tumor setting, knowing the bifurcations of the system is of crucial importance
since if the bifurcation diagram was known then it would be easier to “hit” the disease at
those points where it turns itself to apoptotic pathways enhancing or even better amplifying
the cause of apoptosis. The study of such systems in vivo is impossible since it cannot be
estimated when exactly the first carcinogenic cells appeared in an organism. The reason
for this in thermodynamic terms is that the information I for the system is described as
I(x, t), x ∈ R∧ lim

t→∞
I(x, t)→ 0 . In addition, as time progresses the entropy of the system

increases as S(t)→ ∞ . For that purpose, in vitro systems are the most suitable, for they
can be maintained for long periods of time and their behavior can be studied.

1.3.2. Dynamic Systems

A dynamic system is defined as any set of interacting physical, chemical, biological
variables that evolve over time following specific laws [31,32]. Its only independent variable
is time, which can be either continuous or discrete. For a continuous-time dynamic system
to be studied, usually (ordinary) differential equations are required, while a discrete-time
dynamic system is described by difference equations. The fact that the independent variable
is discrete, means that we do not observe it constantly, but at regular intervals. Thus, let an
N-dimensional space of dependent variables xk(t), for k = 1, 2, . . . , N, which have as their
only independent variable time t and are components of the vector:

x(t) = (x1(t), x2(t), . . . , xN(t)), t ∈ I = (a, b) Dynamic continuous-time system (5)

The time evolution of these vectors is given by a system of differential equations
as follows:

.
xk = fk(x, t), k = 1, 2, . . . , N (6)

Such an example of a continuous-time dynamic system is the Lotka-Volterra equations.
Let x1(t) and x2(t) are the populations of two different species, which grow, interact and
compete. Their state can be described by a series of equation systems:

.
x1 = ax1 − x1x2.
x2 = ax2 − x1x2

.

.

.
.
xN = axN − x1x2


where a, b > 0 (7)

The study of these equations can give an estimation of the population growth, as well
as predict the system’s state. Similarly, for the discrete time system it is:

xn = x(tn) = (x1,n, x2,n, . . . , xN,n), xk,n = xk(tn) (8)

The temporal evolution of the system can be given by a system of equations such as:

xn+1 = g(xn)
xk,n+1 = gn(xn), k = 1, 2, . . . N (9)

The independent variable n counts the time intervals, while the function g defines the
laws of its evolution.
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1.3.3. Lyapunov Exponent

The Lyapunov exponent got its name from the Russian mathematician, Aleksandr
Mikhailovich Lyapunov (1857–1918) and it is used for the investigation of a system’s depen-
dence on its initial conditions. In the case of our cellular proliferating system, which follow
the logistic equation, their progression over time could be described as:

∆n = |xn+1 − xn| = ∆0eλn (10)

where, ∆0 is the difference at time 0 (that would be ∆1 − ∆0), xn is the population at time t
and xn+1 is the population at time t + 1. The sensitivity of the system to its initial conditions
can be quantified by the introduction of the Lyapunov exponent λ. The exponent calculates
the sensitivity to initial conditions by actually comparing the trajectories of the same system
for times t and t + 1. Assuming the Napierian logarithm:

ln
(

∆n

∆0

)
= nλ (11)

For very small ∆0→0 it can be written:
λ = 1

n ln
(

dx′n
dx

)
λ = lim

n→∞
1
n

n−1
∑

i=0
ln|x′|

 (12)

Thus, the exponent λ can estimate the degree of “hyper-stretching” for each iteration in
a trajectory. If λ > 0, it suggests the expansion of the phase-space of a trajectory, meaning
that its neighboring points separate rapidly, while a negative exponent (λ < 0) suggests
“shrinking” (or attracting) of the phase-space of all points in a trajectory [33]. If a system is
“attracted” to a fixed point, then all Lyapunov exponents are found to be negative, since the
system evolves to the inside to a final fixed point or equilibrium. An attractor manifesting
periodic behavior has exactly one exponent equal to zero and all others are negative. Yet, a
strange attractor has at least one exponent positive and this implies a chaotic behavior [33].
These statements can be summarized as [33]:

λi < 0, i = 1,2, . . . ,n: Fixed point. System reaches equilibrium

λ1 = 0 and λi < 0, i = 2, . . . ,n: Periodic. System oscillates periodically

λ1 = 0, λ2 = 0 and λi < 0, i = 3, . . . ,n: Torus.

At least one λi > 0, i = 1,2, . . . ,n: System is chaotic.

(13)

Many methods have been proposed for the calculation of Lyapunov exponents and it
is considered to be a tedious task [34,35]. In our case, given the function, which we have
based our model on, we used for the approximate estimation of Lyapunov parameters the
following definition: Let f be a smooth map on R. The Lyapunov number L(x1) for the orbit
{x1,x2, . . . ,xn} is defined as:

L(x1) = lim
n→∞

(∣∣ f ′(x1)
∣∣ . . .

∣∣ f ′(xn)
∣∣) 1

n (14)

If the limit exists, then the Lyapunov exponent λ is defined as:

λ(x1) = lim
n→∞

1
n
(
ln
∣∣ f ′(x1)

∣∣+ . . . + ln
∣∣ f ′(xn)

∣∣) (15)

1.3.4. Poincaré Maps

Poincaré maps, where named after Henri Poincaré, to whom we referred in the introduc-
tion of this work. The basic property of these maps is that it gives a different perspective on
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continuous complex functions, whose trajectories, are very complex to investigate. Thus,
instead of studying the whole trajectory/graph of a phenomenon, it is enough to find the
points of intersection or passage of the graph from a two-dimensional plane. Let a graph Sf
of the function f that intersects the plane at two points A and B. If A intersects the plane for
the kth time, and B intersects the plane for the kth+1 time, then it can be proven that there is
a graph such as:

G : G(A) = B (16)

In that way a dynamic system of n dimensions is transformed into a system of n − 1
dimensions. The following representation (Figure 1) manifests some interesting examples,
as well as the Poincaré cross-section diagrammatically. Poincaré’s overall work on periodic
solutions of differential equations has been extremely important and consists of the basis of
many achievements to date. Poincaré’s fundamental idea was that instead of studying the
whole trajectory (orbit), he would focus on its traces (sections) on a plane perpendicular to
the orbit [33].

Cells 2021, 10, 3584 7 of 25 
 

 

( )nnn
xfxfxL

1

11 )('...)('lim)(
∞→

=
 

(14)

If the limit exists, then the Lyapunov exponent λ is defined as: 

( )1 1
1( ) lim ln '( ) ... ln '( )nn

x f x f x
n

λ
→∞

= + +
 

(15)

1.3.4. Poincaré Maps 
Poincaré maps, where named after Henri Poincaré, to whom we referred in the intro-

duction of this work. The basic property of these maps is that it gives a different perspec-
tive on continuous complex functions, whose trajectories, are very complex to investigate. 
Thus, instead of studying the whole trajectory/graph of a phenomenon, it is enough to 
find the points of intersection or passage of the graph from a two-dimensional plane. Let 
a graph Sf of the function f that intersects the plane at two points A and B. If A intersects 
the plane for the kth time, and B intersects the plane for the kth+1 time, then it can be proven 
that there is a graph such as: 

: ( )G G A B=  (16)

In that way a dynamic system of n dimensions is transformed into a system of n − 1 
dimensions. The following representation (Figure 1) manifests some interesting examples, 
as well as the Poincaré cross-section diagrammatically. Poincaré’s overall work on periodic 
solutions of differential equations has been extremely important and consists of the basis 
of many achievements to date. Poincaré’s fundamental idea was that instead of studying 
the whole trajectory (orbit), he would focus on its traces (sections) on a plane perpendic-
ular to the orbit [33]. 

 
Figure 1. Examples of Poincaré maps. A trajectory intersects a plane at points x and P(x), where it is 
x = P(x) (A) (reproduced from https://en.wikipedia.org/wiki/Poincar%C3%A9_map, accessed on 24 

May 2021). The phase portrait of a Hamiltonian function (B), with the respective Poincaré map (C), as 
well as the Poincaré map of a Duffing system (D) are presented. 

Figure 1. Examples of Poincaré maps. A trajectory intersects a plane at points x and P(x), where it is
x = P(x) (A) (reproduced from https://en.wikipedia.org/wiki/Poincar%C3%A9_map, accessed on
24 May 2021). The phase portrait of a Hamiltonian function (B), with the respective Poincaré map (C),
as well as the Poincaré map of a Duffing system (D) are presented.

Thus, a Poincaré map is defined as the intersection of a periodic orbit in the phase-space
of a continuous dynamic system, being transversal to the flow of the system. In particular,
the map of the continuous system intersects the phase-space with a period of [33]:

T =
2π

ω
(17)

The map transforms a continuous trajectory of points to points, which yet retain the
momentum of the initial flow. The general equation for a map can be described as:

.
x = f (x), U ∈ RN → RN (18)

https://en.wikipedia.org/wiki/Poincar%C3%A9_map
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If a function has a flow ϕt, with a period T, then it can be proven that ϕ(t + T, x0) =
ϕ(t, x0). If a transversal cross-section (Σ) is taken to the function’s flow then a Poincaré map
P(x), is described as P(x): V ∈ Σ→Σ, which correlates the vector x, in space V with a point
P(x) for each intersection [33]. Therefore, when the function’s flow crosses the transversal
plane for the first time, it moves on and crosses the plane in a second point, then on a third,
a fourth and so on. This process is mapped through the operator P such as:

xt = kxt(1− xt) = 0⇒ xt = 0, xt =
R− 1

R
(19)

where (x’,y’) is the recurrence intersection of point (x,y). For every successful recurrence, it
can be proven that:

(x2, y2) = P(P(x0, y0) = P2(x0, y0) (20)

Thus, it is proven that (xn, yn) = Pn(x0, y0).
When the point where P(x) can mapped to itself, such as P(x0) = x0, this is called an

equilibrium point [33]. This was the solution invented by Poincaré, to solve the three-body
problem. Poincaré “invented” a plane, perpendicular to the trajectories of the bodies, which
would describe the orbits on a two-dimensional plane. The first advantage of his conception
was that it reduced the dimensions of the problem by 1. Thus, if three bodies (or planets)
would follow Newtonian dynamics then their mapping would be manifested by single
points on a plane (which is actually the phase-space of the trajectories). On the contrary,
trajectories that do not follow predictable dynamics would be represented by the mapping
of infinitesimally large number of points on a plane. Therefore, complex trajectories would
also manifest complex Poincaré maps. From his observations, Poincaré found that there are
trajectories that change their behavior due to small changes in their initial conditions, thus
introducing chaos [33].

1.4. Aim and Objectives

In the present work we have attempted to provide further evidence based on an
experimental model, that leukemic cell proliferation follows chaotic dynamics. Further on,
we have attempted to prove that leukemic cell proliferation can be described by Poincaré
maps. This study could provide insight on the dynamics, leukemia cells follow from the
point of initiation (that would be the time, the first leukemic cells appear) to the point
of clinical presentation. Towards that end, we have used in-house experimental data of
in vitro cell proliferation of the T-cell leukemic cell line CCRF-CEM. In addition, we have
used the approach of Poincaré recurrence maps in order to prove our concept.

2. Materials and Methods
2.1. The Cellular System

The system studied consisted of leukemic cells from an established cell line. The CCRF-
CEM (T-Acute Lymphoblastic Leukemia (ALL)) cell line was used as the model, obtained
from the European Collection of Cell Cultures (ECACC, Salisbury, United Kingdom). The
CCRF-CEM cell line, a CD4+ [36] and CD34+ presenting cell line [37], was initially obtained
from the peripheral blood of a 2 year old Caucasian female, with a karyotype of 46 XX.
It was diagnosed as lymphosarcoma which progressed later on to acute lymphoblastic
leukemia [38]. The child has undergone irradiation therapy and chemotherapy prior to
obtaining the cell line. Although remission was achieved at various stages, the disease
progressed rapidly [38]. The cell line has been observed to undergone minor changes
after long-term culture, except for the presence of dense granules in the nucleoli [39],
making it an ideal model system for long-term studies. Finally, the CCRF-CEM cell
line has been reported to manifest autocrine catalase activity which participates to its
mechanisms of growth and progression [40]. The CCRF-CEM cells give an excellent model
of avascular growth. In addition, we assume that extracellular signal transduction takes
place autocrinicaly.
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Cells were grown with RPMI-1640 medium (Invitrogen, Carlsbad, CA, USA), 10% FBS
(Invitrogen, Carlsbad, CA, USA) and 0.1 × Streptomycin/Penicillin (Invitrogen, Carlsbad,
CA, USA) at 37 ◦C, 5% CO2 and ~100% humidity. Cells were cultured in 75 cm2 flasks in
total medium volume of 25 mL. Cells were seeded at an initial concentration of 20 cells/µL
and ~200 cells/µL and were fed at regular intervals thereafter. Medium changes took place
by centrifugation at 1000 rpm for 10 min, the supernatant was discarded and the remaining
cells were rediluted in 25 mL media and were allowed to grow.

2.2. Cell Population Measurements

For the study of the growth dynamics of the cell culture system an experimental setup
has been developed where cells seeded at the aforementioned concentration were measured
at least every 48 h and every 3–5 days media was being renewed. For the measurements,
200 µL from each flask was taken and measured with a NIHON KOHDEN CellTaq-α
hematology analyzer. The applied method is reported to manifest precision at the 1.21%
coefficient of variance (CV) [41,42]. In addition, from in-house experiments we have per-
formed dilution-series experiments, in order to calibrate the Coulter counter and confirm
that the instrument was able to detect low populations (especially <100 cells/µL). Calibra-
tion was performed with spheres resembling leukocytes. Spheres of 10um in diameter were
obtained from DAKO (DAKO Fluorospheres, DAKO Denmark Inc.), with initial concentra-
tion of 1.1 × 106 spheres/µL. Initially, 1ml of the sphere solution was obtained and a 1:10
dilution was performed, in order to obtain a concentration of 1100 spheres/µL. Further on,
a series-dilution was performed ranging from 1100 spheres/µL down to ~9 spheres/µL.
The theoretical (Figure 2A) and experimental (Figure 2B) concentrations were measured
and recorded. Since the Coulter counter was not able to represent a value <100 particles/µL,
we have evaluated all dilutions using the histograms provided by the manufacturer. In
particular, the histograms for all dilutions from 1100 spheres/µL to 9 spheres/µL are pre-
sented in Figure 2C–J. The reason for this type of evaluation, was to examine whether the
instrument could detect much diluted sphere solutions and thus diluted cell populations.

All measurements were performed based on the experimental setup depicted in
Figure 3. The experiments were performed in quadruplicates, yet with a particular setup.
A set of experiments was performed for the total time period of approx. six months, and
the duplicates were used as technical replicates. At the end of this experimental period, the
experiment was repeated for another six months, which actually consisted of the biological
replicate. All results presented, are the mean ± stdev of all replicates, both technical
and biological.
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instrument. In particular, the theoretical (A) and experimental (B) regressions of the dilution series 
are presented. Further on, the actual coulter-counter measurements are presented for sphere con-
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Figure 2. The calibration measurements with the Coulter counter, investigating the sensitivity of
the instrument. In particular, the theoretical (A) and experimental (B) regressions of the dilution
series are presented. Further on, the actual coulter-counter measurements are presented for sphere
concentrations of 1100 spheres/µL (C), 550 spheres/µL (D), 275 spheres/µL (E), 137 spheres/µL (F),
69 spheres/µL (G), 34 spheres/µL (H), 17 spheres/µL (I) and 9 spheres/µL (J).
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Figure 3. The experimental setup of the growth model [43].

2.3. Cell Viability Assays

In order to validate the viability of our model, we have performed random samplings
throughout the experimental course, and samples were further analyzed with flow cytom-
etry (FC500, Beckman Coulter Inc.). Cells were evaluated for their viable, apoptotic and
necrotic content using the Propidium Iodide (PI)/AnnexinV method (Vybrant apoptosis
kit, Molecular Probes Inc.). The AnnexinV was stained by Alexa fluorochrome (466 nm
emission). Further on, cell cycle analysis was also performed using the Ethanol/RNAse/PI
as previously described [44].

2.4. Microscopic Evaluation of the Growth Model

During the course of the experiment, we have evaluated cellular condition with
microscopy. Microscopic images were taken with Nikon TMS inverted microscope, optical
condenser and lenses ×10, ×20 και ×40. In addition, a CCTV camera installed on the
microscope (JVC Digital Camera TK-421C-EG), was used for image capture connected to a
computer (Intel Celleron, RAM 256 MB). A representative microscopic image is presented
in Figure 4 [43].
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Figure 4. CCRF-CEM morphology during the experimental setup. Image acquisition was performed
with an inverted microscope and a polarized light filter (magnification ×100). The micrometer
presented is a Nikon micrometer, type MBM 11100 (stage micrometer type A), of 1mm total length
and graduations of 0.01 mm (=100 µm). The micrometer is in the same magnification (×100) as the
microscopy image [43].

2.5. Data Analysis

Data have been initially collected with the Microsoft Excel® for preprocessing. Data
were treated as time-series and in particular, we have studied the cell populations with
respect to the cell population per volume unit (µL), to the total cell population, as well
as with respect to the extrapolation of the population to a single volume. Further on, the
phase-space of the time-series has been used and the Poincaré mapping was estimated. In
addition, we have calculated the Lyapunov exponents for the time-series trajectories.
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3. Results
3.1. Time-Series

The first step in describing the cell population data was to present them as time series.
Cell population with respect to concentration per microliter (µL) appeared to be governed
by oscillations. In particular, we have measured the cell population with initial conditions
of n0 ∼= 20 cells/µL (Figure 5A) and n0 ∼= 200 cells/µL (Figure 5B). In addition, we have
superimposed the two time-series and it appeared that the two curves progressed similarly,
but with slight divergence (Figure 5C). The two experiments manifested small typical
errors, indicating that there was a good repeatability in the experimental setups, which we
also examined by regressing cell proliferation data with known growth models (Figure S1).
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Figure 5. The time-series presentation of the cell population CCRF-CEM with respect to cell concen-
tration (cells/µL) and in particular, for initial cell population of ~20 cells/µL (A), ~200 cells/µL (B).
Further on, the two time-series are presented together in one diagram for comparison (C) (n0: the
initial population).

Similarly, the time-series of the total cell population manifested oscillatory dynamics
for both initial cell populations i.e., 20 cells/µL (Figure 6A) and 200 cells/µL (Figure 6B).
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Figure 6. The time-series presentation of the cell population CCRF-CEM with respect to total cell
concentration for initial cell populations of ~20 cells/µL (A) and ~200 cells/µL (B) (n0: the initial
population. The arrows indicate the time-points of cell culture media replacement).

3.2. Cell Viability

In random time intervals we have evaluated the cell viability, in order to confirm that
first of all viable cells were present, as well that cells were proliferating. Total cell death was
described as the sum of both the apoptotic and necrotic cells. Interestingly, both viability
(Figure 7A) and total cell death (Figure 7B) manifested oscillatory behaviors. Viable cells
reached a minimum after 133 days, to rise again until the end of the experiment (Figure 7A).
Similarly, total cell death manifested an increasing tendency from the beginning to the end
of the experiment (Figure 7B).
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3.3. Cell Cycle

Further steps into the analysis of our cell population included the investigation of
the cell cycle, which would confirm that cells were actually proliferating. We have found
that all cell cycle phases followed oscillatory dynamics and in particular the G1 phase
(Figure 8A), the G2 phase (Figure 8B) and the S-phase (Figure 8C). In addition, we have
performed a scatter plot of the combinations of all cell cycle phases and showed that
all phases can be distinctively viewed (Figure 8D). Aside the cell proliferation we have
investigated in the present work, cell cycle appears to follow its own dynamics, which will
be the subject of a future investigation.
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3.4. The Phase-Space of Cell Proliferation

An interesting observation concerned the fact that despite the difference in the initial
population, cell proliferation converged with small differences. We have examined the
phase-space of the two experimental setups, and we have expected not to find orbital
trajectories, but a “waltz” of traversing orbits. This was true for both initial populations i.e.,
x0 = 20 cells/µL (Figure 9A) and x0 = 200 cells/µL (Figure 9B). Thus, this was an indication
that cell proliferation followed a chaotic orbit.
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3.5. Lyapunov Exponents

In order to examine the presence of possible chaotic trajectories, we calculated the
Lyapunov exponent. From our calculations it has been showed that the majority of the
exponents was greater than zero (Figure 10), which was an indication of chaotic behavior
since for a chaotic orbit one exponent greater than zero is sufficient to indicate chaos.
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Figure 10. Calculations of the Lyapunov exponent (λ) for initial population 20 cells/µL and
200 cells/µL. We have calculated the ∆0 as ∆0 = |x0 − x0′|, where x0 = 20/max and x0′ = 200/max.
The maximum population was considered to be the max population reached for each experiment
in cells/µL.

3.6. The Phase-Space of Cell Proliferation II

The first step in the investigation of applying a Poincaré map to the proliferation
phase-space we have analyzed the spatial trajectories for one of our experimental setups.
In particular, we have followed, step-by-step, the trajectory of the proliferation for initial
population 20 cells/µL (Figure 11) (we have also created a video, in which we showed the
movement of the trajectory. Please refer to Supplementary File Video S1.mp4). This type
of analysis allowed us to observe that the phase-space trajectory returns around points,
which could probably be on the diagonal of the phase-space.

3.7. The Phase-Space of Cell Proliferation III

Based on the previous observations, we have moved on to examine how exactly a
Poincaré map could be reconstructed. Additionally, based on our observation that the
trajectory follows chaotic dynamics, it should be able to follow the requirements of a
Poincaré map. Thus, a trajectory should be able to transverse the diagonal in a point
S, which we will call the “entrance” point, and then it should return to the diagonal
through another point S′, which we will call the “exit” point. A Poincaré map, in order
to manifest non-chaotic orbits, requires that a dynamic system converges to its limit cycle
(In a dynamic system of the form x′(t) = F(x(t)), with a function F such as: F : R2 → R2

and the trajectory of the function is also a smooth function x(t) with domain R2. Then,
such a trajectory is called closed (or periodic) (meaning it is not constant but returns to
its starting point) if there exists a t0 > 0 such as x(t + t0) = x(t)∀t ∈ R, ∀ t ∈ R). This is
an equilibrium point where S ≡ S′. On the contrary, in our experimental setup we did
not observe such an evidence of a global non-chaotic behavior. The system converged
in the first convolution of the trajectory (Figure 12A,B) as well as after cell culture media
supplementation (Figure 12E). In the other cases the trajectory (Figure 12C,D,F–K) diverged
from equilibrium indicating that a Poincaré cross-section followed chaotic dynamics.
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Figure 11. The phase-space steps of the experiment for x0 = 20 cells/μL. The red arrows indicate the course of the trajectory 
step-by-step. The x-axis corresponds to the population of cells at time t and the y-axis corresponds to the population of 
cells at time t + 1. Each of the subfigures (A–W) presents the phase-space recurrences from the first (A) to the 23rd (W). 

Figure 11. The phase-space steps of the experiment for x0 = 20 cells/µL. The red arrows indicate the course of the trajectory
step-by-step. The x-axis corresponds to the population of cells at time t and the y-axis corresponds to the population of cells
at time t + 1. Each of the subfigures (A–W) presents the phase-space recurrences from the first (A) to the 23rd (W).
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Figure 12. The phase-space of the experiment for x0 = 20 cells/μL. The red arrows indicate the course of the trajectory step-
by-step. In addition, in all subfigures the diagonal is drawn, which shows the Poincaré map crossings. The x-axis corre-
sponds to the population of cells at time t and the y-axis corresponds to the population of cells at time t + 1. The system 
converged in the first convolution of the trajectory (A,B) as well as after cell culture media supplementation (E). In the 
other cases (C,D,F–K) diverged from equilibrium. 

  

Figure 12. The phase-space of the experiment for x0 = 20 cells/µL. The red arrows indicate the course of the trajectory
step-by-step. In addition, in all subfigures the diagonal is drawn, which shows the Poincaré map crossings. The x-axis
corresponds to the population of cells at time t and the y-axis corresponds to the population of cells at time t + 1. The system
converged in the first convolution of the trajectory (A,B) as well as after cell culture media supplementation (E). In the other
cases (C,D,F–K) diverged from equilibrium.

In order to better understand the aforementioned dynamics, we have tried to illustrate
the cross-sections of the Poincaré map, in a series of graphs. In particular, in Figure 13 we
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have presented all points of the trajectory that cross the diagonal (Figure 13A), which is
also presented as a second phase-space of the S→S′ points (Figure 13B,C). In particular, in
the 3D representation the transition of the trajectory to its highest point became apparent,
which corresponded to a point of cell culture media supplementation, resembling an
in vivo situation of leukemic cells being provided with constant nutrients (Figure 13D).
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population of cells at time t and the y-axis corresponds to the population of cells at time t + 1.

4. Discussion

In the present work, we have attempted to provide a further insight into the dynamics
of leukemic cells proliferation dynamics. Previous works, such that of Wolfrom et al.,
(2000), have studied the proliferation dynamics of adherent cells and in agreement to our
study have also found that cells do follow chaotic orbits. In these previous works, the cell
population at the end of a time period has been investigated and it was shown that cells
grow in non-linear patterns [23–25]. All reports, to the best of our knowledge, concern the
investigation of adherent cells, which correspond to solid tumors in an in vivo situation.
Our study is the first that reports on the proliferation and chaos dynamics of leukemic cells.

Do cancer cells progress against the physiological norms? A normal eukaryotic cell is
created, ages and dies. Cancer follows a different path, that of birth, transformation and
immortality. If we examine the phenomenon from the systems theory point of view, it
appears that cancer cells follow a distorted course and therefore “violates” the physiological
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pathways [43]. Yet, how is it to define “normal” and “abnormal” in terms of cellular
physiology? How certain are we that carcinogenesis is just not another evolutionary
cellular path and not an aberration. Assuming that there are some general rules concerning
living organisms, the later follow some sort of pattern and therefore it can be assumed that
cancer cells move outside of these patterns/motifs (or maybe not). Yet, a new question
arises; are cancer cells that, if considered aberrant, live “illegally” within the patterns of
life? One thing is certain, there are some fundamental laws of nature that apply to all living
organisms and no kind of life is able to deviate from them [43]. Such examples include the
law of conservation of energy and the laws of thermodynamics, which are derived from
the laws of conservation of energy. At this point we could paraphrase the words of Planck
and Schrödinger by adding, “ . . . it is certain that the leopard will have a fur with polka
dots, but what will be their pattern this is a probability . . . ” [43]. In order to be able to
predict a chaotic/non-linear phenomenon, we must know with infinite detail its initial
conditions. However, this question can be reversed as, can we find the initial conditions
knowing the final? Previous studies have reported that biological systems have complex
dynamics [24,45]. To the best of our knowledge, no study has answered that question yet.
This very complexity makes biological systems interesting and challenging.

In the present study we addressed the question of whether chaotic dynamics could be
detected in the proliferation of acute lymphoblastic leukemia cells in in vitro cell culture.
In vitro systems offer the ability to perform long-term experiments and isolate the system
under study to reduce the complexity of in vivo systems [46,47]. Such studies are impossi-
ble to carry out in in vivo systems, both in terms of technical and experimental, as well as
bioethical restrictions. Therefore, in vitro systems are ideal, and perhaps the only ones that
allow, for the study of proliferation experiments, where the initial number of cells can be
controlled. Another aspect that should be taken into account was the total experimental
progress. In particular, we have referred to the “Materials and Methods” section in the
process followed, which included the media replacement, centrifugation of cells and the
re-substitution of cells in fresh media. This process was performed in order to simulate the
in vivo conditions, where leukemic cells are under a constant supply of nutrients. On the
other hand, centrifugation could probably affect cell proliferation, yet it was impossible to
do otherwise since the metabolic waste and starvation stress could affect the experimental
conditions drastically. Yet, removing cell media and replenishing the cells with fresh one,
poses two possibilities. First, cells could be stressed in such a way that it would disrupt
their progression and second, cells could have a sort of “memory” mechanism to assist
them in continuing their previous proliferation. It is possible that the present cellular
model is closer to the second hypothesis, as after each media change cells continued to
proliferate almost with the same rate. For example, media were changed at day 21 and at
day 22 cells moved from the G1 phase to S-phase, indicating cells continued proliferating
as they probably manifested a sort of “memory” of their previous state. Further on, it is
possible that cells do not die silently to other cells, but by releasing lysosomes that can harm
surrounding cells. Thus it is possible that changing the media mostly obviate the expected
inflammatory environment which occurs in vivo. In addition, it is possible that circulating
leukemic cells derive from the bone marrow which approximates a solid milieu. his should
be stated. As aforementioned, our cellular model it is known to manifest autocrine catalytic
signalling, indicating that extracellular releasing of lysosomes is possible. In our cellular
model we had to change the media, in order to renew nutrient, as well as remove toxic
metabolic waste. This was the closest way we could think of for approaching in vivo
conditions as much as possible. On the other hand, although the in vivo conditions can
produce inflammatory conditions they have at the same time “salvation” mechanisms,
which can alleviate the inflammatory effects.

Cancer is known to start and progress slowly, at least before the clinical diagnosis.
Knowledge on the mechanisms of progression before the onset of clinical symptoms can
contribute to the timely treatment of serious diseases, such as tumors. As aforementioned,
the main question is whether we can predict the course of a tumor from the time of its ap-
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pearance to the point of clinical presentation [29,30,43,44,48,49]. The only way to diagnose
cancer, up to date, is by its symptoms. Preventive examination is available, but for a small
number of malignancies. In addition, our knowledge is very restricted with respect to the
time between the onset of the first cancer cells and the point of diagnosis [29,30,43,44,48,49].

Cell cultures are thought to follow a linear growth pattern. Since the sigmoid function-
equation takes into account the limitation in resources i.e., food and space, it predicts that
a population of cells will reach a steady state within a certain period of time and cells
eventually die or cease to proliferate. In our model, we have introduced a new constant,
making food readily available but keeping the space constant, relative to the total volume
within which cells were allowed to grow. Under these conditions, we derived the time
series of cell proliferation, which showed aperiodic oscillations. The transformation of the
(aperiodic) time series to a phase space, the (positive) Lyapunov indices, as well as the
Poincaré representations we performed, confirmed the chaotic behavior of this dynamic
system. Our work provided evidence for deterministic chaos in the proliferative behavior
of leukemia cells in vitro. Given that this is a very complex phenomenon, much more
effort and studies are required in order to understand the underlying mechanisms. The
implications from understanding such dynamic systems are immense. Such experimental
approaches could provide us with insight on disease progression, such as cancer, and as a
consequence would allow us to model the disease in real-life situations.

Although, we have suggested that in vitro systems, are ideal for the questions posed
in the present study, they also pose some limitations. First of all, in vitro systems cannot
simulate the in vivo environment and in particular, the tumor microenvironment, which is
known to play a significant role in tumor progression. Simulating the tumor microenviron-
ment is a very tedious task. There are numerous factors that play a role, including growth
and inflammatory factors, which are difficult to study in an in vitro system. Another
significant limitation is the measurement of very small cell populations. For example, it
would be very interesting to simulate tumor ontogenesis, in vitro, starting from as few as
one or two cells. Yet, due to methodological limitations it is not possible to measure the
cell proliferation until cells reach a critical point, where methodological approaches are
able to determine the cell population.

Thus, based on the aforementioned limitations, future efforts could focus on adding
factors (for instance growth factors) to simulate the tumor microenvironment, and in par-
ticular, one factor at a time. Another interesting approach could focus on the investigations
of methods that could measure very small cell populations and thus facilitating tumor
progression at the very first stages of growth. Finally, these recommendations could be
investigated under the presence of chemotherapeutics (for example glucocorticoids, which
are first line agents in the treatment of childhood leukemia).

5. Conclusions

Tumor cell proliferation is considered one of the most important properties to consider
for the diagnosis and treatment of cancer. One basic question, concerning cancer, still
remains unsolved. How much time does it take for a tumor to be diagnosed beginning
from the day the first tumor cells appear. In other words, what happens from the emergence
of the first cancer cells to the clinical presentation? This question is difficult to answer. The
only way to solve this problem is by understanding the proliferation dynamics of tumor
cells and attempt to predict the phenomenon. Towards that end, in vitro models can prove
very useful since they allow us to perform multiple experiments from desirable low cell
populations and observe their proliferation patterns.

In that sense, we have made the observation that leukemic cells follow chaotic orbits,
in vitro, as well as their population dynamics is dependent on initial conditions. Thus, we
have presented evidence that cell proliferation progresses differently, dependent on the
initial cell population. Based on this observation, it is possible that it would be feasible
to estimate both the initial number of cells as well as the time needed for the leukemic
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cells to become diagnosed (in our case, produce a dense population resembling that of the
clinical presentation).

Our understanding of tumor cell proliferation dynamics is still very limited. We be-
lieve that our approach could prove useful towards the understanding of cell proliferation
mechanics and as such it consists for us an ongoing research topic.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10123584/s1, Figure S1: We have separated the growth curves for both the initial
populations i.e., 20 cells/µL (A) and 200 cells/µL (B) into four phases: the first phase included the
exponential growth (designated as “exp” and colored with blue), the logistic growth (designated
as “log” and colored with red), the logarithmic growth (designated as “logistic” and colored with
purple) and a polynomial growth (designated as “poly” and colored with grey). These regressions
consisted approximations of the total growth curve, therefore we have attempted to investigate the
detailed non-linear dynamics for chaotic orbits. This analysis was performed by regressing each
separate phase with known functions, whose R2 values are presented for each respective curve
(using the same coloring scheme). Although regressions were performed, they still concerned an
approximation of the growth curves, and therefore our intention was to investigate the details of
the manifested non-linear dynamics with more specialized tools, Table S1: Cell Proliferation Data,
Video S1: Animated Figure 11.
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