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Abstract
Background  Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease with variable clinical and 
molecular features. Studies have highlighted the significant role of γδ T cells in the survival of leukemia patients. 
However, the heterogeneity of γδ T cells and their impact on clinical correlation in the peripheral blood of patients 
with DLBCL remain unclear.

Method  Single-cell RNA sequencing (scRNA-seq) was employed on 9 blood samples, sourced from 6 patients with 
diffuse large B-cell lymphoma (DLBCL) and 3 healthy individuals (HIs), to delineate clinically pertinent γδ T cell states 
and subsets in DLBCL patients. Flow cytometry was then employed to validate the relationship between DLBCL 
prognosis and γδ T cell subsets.

Result  Our study integrated genetic drivers through consensus clustering, leading to the identification of 6 distinct 
γδ T cell subsets in DLBCL and HIs. These subsets include a naïve γδ T cell subset characterized by TCF7 and LEF1 
expression, a memory γδ T cell subset sharing common genes such as GZMK, IL7R, an anti-tumor γδ T cell subset with 
overexpression of IFNG, TNF, and CD69, and two subsets exhibiting TIGIT overexpression indicative of an exhausted γδ 
T cell phenotype. Additionally, a cytotoxic γδ T cell subset marked by increased NKG7 and GZMB levels was identified. 
Our results revealed that while γδ T cells possess anti-tumor capacities, their functional effectiveness is diminished 
due to differentiation into exhausted subpopulations. Several clusters with high cytotoxicity scores also showed 
elevated exhaustion scores (C13-γδ-TIGIT.1, C14-γδ-TIGIT.2), suggesting the presence of a population in DLBCL 
samples that is simultaneously exhausted and cytotoxic. In particular, the TIGIT.2 γδ T cell subset manifests a more 
pronounced exhaustion score relative to TIGIT.1 γδ T cell subset, indicating differential levels of cellular exhaustion 
among these groups. Our analysis reveals a significant correlation between high expression of TIGIT γδ T cell subsets 
and poorer patient prognoses. We also discovered unique expression profiles within these subgroups: TIGIT.1 γδ 
T cells are marked by elevated CXCR4 expression, contrasting with the TIGIT.2 γδ T cell subgroup which exhibits 
increased CX3CR1 expression. Pseudotime analysis implies a potential differentiation trajectory from naïve and GZMK 
γδ T cells to various terminally differentiated subsets, with genes associated with stemness (e.g., TCF-1) subsequently 

Heterogeneous characteristics of γδ T cells 
in peripheral blood of diffuse large B-cell 
lymphoma
Peng-Lin Wang1,2†, Wen-pu Lai3,4,5†, Jia-Mian Zheng1,6†, Xiao-Fang Wu1, Jian-Nan Zhan1, Ting-Zhuang Yi7*, Zhen-
Yi Jin8,9* and Xiu-Li Wu1,9,10*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1186/s40364-025-00795-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s40364-025-00795-x&domain=pdf&date_stamp=2025-6-7


Page 2 of 18Wang et al. Biomarker Research           (2025) 13:82 

Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most 
common subtype of non-Hodgkin’s lymphoma, which 
is a heterogeneous group of tumors that widely in 
biological behavior and prognosis [1]. The clinical 
outcome has improved with treatment protocols com-
bining anti-CD20 monoclonal antibody rituximab with 
cyclophosphamide-doxorubicin-vincristine-predni-
sone (R-CHOP); however, relapse and drug resistance 
are the main challenge for current DLBCL [2]. γδ T 
cells possess both adaptive and innate cytotoxic effec-
tor functions, with the potential to enhance thera-
peutic efficacy and reduce the possibility of immune 
escape [3]. Consequently, γδ T cells could offer prom-
ising therapeutic prospects for DLBCL treatment.

Human γδ T cells constitute up to 5% circulating 
CD3+ T cells and exert strong non-major histocompat-
ibility complex (MHC) restricted cytotoxicity which 
contributing to immunosurveillance against malignan-
cies [4]. Upon antigen activation, both γδ T cell sub-
types differentiate from naïve (Tn) to central memory 
(Tcm), effector memory (Tem), and terminally differ-
entiated effector memory (Temra) cells [5, 6]. Similar 
to αβ T cells, effector γδ T cells can exert a directly 
anti-tumor effect through producing various cytokines 
such as perforin, granzyme B and interferon gamma 
(IFN-γ) [7]. Several hallmarks of γδ T cells illustrated 
their essential role in tumor immune surveillance and 
their potential interest in anti-tumor immunotherapy 
[8]. Clinical trials have evidenced that low numbers 
of γδ T cells in peripheral blood adversely affect the 
treatment outcomes of patients with leukemia [9]. 
Decreased numbers and low density of γδ T cells in 
hematologic malignancy patients have been linked 
with poor survival outcomes [9]. Yet it is worth noting 
that the increased frequency of peripheral blood γδ T 
cells have been associated with favorable prognosis in 
acute myeloid leukemia (AML), leading to their exploi-
tation for cancer immunotherapy [10]. Regulatory γδ T 
cells or inhibitory γδ T cells can regulate the immune 
balance and maintain immune tolerance.

However, different γδ T cell subtypes also have been 
distinguished based on their varied functions and 

some exhibit a “pro-tumor” role harboring regulatory 
functions [11]. γδ T cells expressing immune check-
point receptors (ICRs) that prevent overt activation of 
the immune response, a mechanism often exploited by 
tumor cells to shift the balance towards immunosup-
pression and thus evade immune response. A novel 
inhibitory checkpoint receptor, T cell immunoglobu-
lin and ITIM domain (TIGIT), has received extraor-
dinary advertence in solid and hematological tumors 
immunotherapy [12]. Our previous study revealed the 
high frequency of TIGIT+ γδ T cells in de novo AML 
patients and further found that higher TIGIT+ Foxp3+ 
γδ T cells were associated with poor overall survival 
[13]. Hence, reagents targeting ICRs on γδ T cells have 
seen recent success in developing responses to persis-
tent antigen stimulation [14].

Currently, the single-cell RNA sequencing (scRNA-
seq) technologies have been increasingly applied to 
characterized immune microenvironment at the sin-
gle-cell resolution [15, 16]. Our previous study iden-
tified functional T cell clusters and characterized 
exhausted T cell populations with up-regulated gene 
expression of TIGIT, PD-1, LAG3, and CTLA4 [17]. 
However, the characterization and diverse composi-
tion of blood circulating γδ T cell remains underex-
plored in DLBCL, despite γδ T cells showing potential 
to kill cancer cells and shift the pro-tumoral tumor 
microenvironment into one favoring acute response 
and potent anti-tumoral activity. To address this issue, 
the characterization of single-cell transcriptomes from 
circulating γδ T cells is required to identify these cells 
exhaustively and selectively in multiple scRNA-seq 
datasets from DLBCL. In this study, our aim is to pro-
vide a comprehensive global perspective on the het-
erogeneity of γδ T cells in DLBCL, achieved through 
the analysis of single-cell transcriptional profiles 
obtained from both patients with DLBCL and healthy 
individuals (HIs). It is anticipated that a comprehen-
sive investigation of the accumulated exhaustion of γδ 
T cells in DLBCL will contribute to the development of 
enhanced treatment strategies and improved outcome 
prediction.

downregulated. These findings suggest that TIGIT.2 subset may be further along in the differentiation trajectory, 
potentially representing a more terminally differentiated state than TIGIT.1 subset. According to our clinical validation 
cohort, the TIGIT+ γδ T cell subset is highly expressed in patients and correlates with poor prognosis.

Conclusion  We identified genetic subtypes of γδ T cells with distinct genotypic and clinical characteristics in DLBCL 
patients. Expression levels within these subgroups emerged as potential indicators for patient outcomes and as 
crucial factors in shaping therapeutic strategies. These insights significantly advance our understanding of intricate 
relationships among cellular subgroups and their roles in influencing disease progression and patient prognosis.

Keywords  Diffuse large B-cell lymphoma, Single-cell RNA sequencing, Tumor immunology, Γδ T cells
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Methods
Patients’ recruitment and sample collection
Six individuals with DLBCL (4 newly diagnosed and 2 
relapsed/refractory patients) and 2 HIs were recruited 
at First Affiliated Hospital of Jinan University and 
Guangdong Provincial People’s Hospital in Guang-
zhou, China between 2020 and 2021. The patients were 
diagnosed by pathology. Peripheral blood (PB) samples 
were collected from each individual, immediately fol-
lowed by single cell preparation as described below. 
The study was approved by the Ethics Committee of 
the Medical School of Jinan University (JNUKY-2023-
0104), and with informed consent from each partici-
pant. In total, the study involved the participation of 
29 DLBCL patients (13 males, 16 females; with ages 
ranging from 22 to 86, and a median age of 54) and 30 
HIs (14 males, 16 females; with ages ranging from 17 
to 80, and a median age of 51).

Preparation of single cell suspensions
Peripheral blood mononuclear cells (PBMCs) were 
isolated from blood sample by Ficoll density centrifu-
gation (Sigma Aldrich). Briefly, 10–20 mL of fresh 
peripheral blood was collected in EDTA anticoagulant 
tubes and subsequently transferred onto Ficoll. After 
density gradient centrifugation for 20 min at 500 × g, 
PBMCs settled at the plasma-Ficoll interphase were 
carefully collected and washed twice with PBS. PBMCs 
were then re-suspended with MACS buffer for subse-
quent sorting.

γδ T cells isolation
The γδ T cells were sorted from PBMCs by magnetic-
activated cell sorting (MACS) technology using the 
Anti-pan-γδ-conjugated magnetic microbeads (Milt-
enyi Biotec, Germany). Then, we loaded the cell sus-
pension onto LS columns (130-050-701, Miltenyi 
Biotec), where the magnetically labeled γδT cells were 
retained. Purity was confirmed more than 50% by 
TCRγδ-peridinin chlorophyll A protein (PerCP-Cy5.5, 
Clone: B1) after collecting and washing from columns. 
Then, isolated γδ T cells were frozen at -80 ℃.

Single-cell suspension Preparation
Frozen vials of isolated γδ T cells were rapidly thawed 
in a 37  °C water bath for 2  min, and the vials were 
removed when a tiny ice crystal was left. Thawed 
cells were mixed with 4 mL of 37  °C prewarmed 1× 
PBS (Thermo Fisher Scientific) supplemented with 
10% FBS. Cells were centrifuged at 500× g for 10 min 
at room temperature. The supernatant was removed, 
and the cell pellet was resuspended in 3 mL 1× PBS 
containing 0.04% bovine serum albumin (BSA, San-
gon Biotech), passed through a 40-mm cell strainer 

(Falcon), and then centrifuged as above. and then cells 
were resuspended in cell resuspension buffer at a con-
centration of 1,000 viable cells/mL for scRNA-seq.

Single-cell multiplex labeling and single-cell transcriptome 
construction
All samples were resuspended and washed twice 
with PBS (with 0.1% BSA). Then, the cells were incu-
bated in 1 mL of staining buffer (with 0.1% BSA) and 
counted. First, each sample was stained with Calcein 
AM (Thermo Fisher Scientific Cat. No. C1430) and 
Draq7 (Cat. No. 564904), followed by accurate deter-
mination of cell concentration and viability with the 
BD Rhapsody™ Scanner, and cell viability ≥ 60% were 
qualified. Enriched γδ T cells from each sample were 
sequentially labeled with the BD Human Single-Cell 
Multiplexing Kit (Cat. No. 633781), rinsed with BD 
Pharmingen™ Staining Buffer (Cat. No. 554656) to 
remove any excess reagents. All qualified samples were 
then pooled and carefully loaded into BD Rhapsody™ 
Cartridges, ensuring strict handling procedures were 
followed. The cell capture beads are then overloaded 
onto the cartridges in excess to maximize cell capture 
efficiency. Any surplus beads were thoroughly washed 
away to prevent interference during subsequent steps. 
The BD Rhapsody™ Scanner was once again utilized 
to detect wells containing live cells bound to capture 
beads, ensuring accurate identification and isolation 
of target cells. To prepare the sequencing libraries, 
whole-transcriptome amplification products were sub-
jected to random priming PCR. This process enriched 
the 3′ end of transcripts linked to both the cell label 
and the Unique Molecular Identifier (UMI), facilitat-
ing accurate sequencing and data analysis. Quantifica-
tion of the prepared sequencing libraries was carried 
out using a High Sensitivity DNA chip (Agilent) on a 
Bioanalyzer 2200. Additionally, the Qubit High Sen-
sitivity DNA assay (Thermo Fisher Scientific) was 
employed to ensure precise measurement of DNA 
concentration. Finally, the qualified single-cell library 
was sequenced using the state-of-the-art Illumina 
Novaseq6000 system. This high-throughput sequenc-
ing platform ensured accurate and reliable sequencing 
data, critical for downstream bioinformatics analysis 
and interpretation.

Quality control, data processing and determination of cell 
types
We performed multiplexing and converted the raw 
sequencing data into FASTQ format using the bcl-
2fastq tool. scRNA-seq count matrix quality control 
was performed to filter out low quality cells and low 
expression genes. Cells with less than 200 or more than 
3,000 detected genes were removed. Meanwhile, cells 
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with more than 20% of reads mapped to mitochondrial 
genes were removed. Moreover, only genes expressed 
in more than 3 cells were kept. After quality control, 
downstream analyses were performed using R package 
‘Seurat’ [18]. scRNA-seq data were normalized using 
Seurat ‘NormalizedData’ function with default param-
eters. High variable genes were identified with param-
eters ‘selection.method = vst’ and ‘nfeatures = 2,000’ 
using ‘FindVariableFeatures’ function. Then scaled by 
performing ‘ScaleData’ function. ‘RunPCA’ function 
was performed for dimension reduction analysis, and 
‘ElbowPlot’ function helped to select suitable dimen-
sionality. Different resolution parameters for unsuper-
vised clustering were tested to find the best numbers 
of clusters. Non-linear dimensional reduction was 
performed by ‘RunUMAP’ function. Batch effects 
was removed by using the ‘RunHarmony’ function of 
R package ‘harmony’ [19]. before clustering analysis 
in Seurat. In total, 23,533 PBMCs were annotated as 
different major cell types based on their average gene 
expression of well-known marker genes, including T 
and NK cell (CD3D, NKG7), B cell (CD19, CD79A) and 
myeloid cell (LYZ, CST3). Next, T and NK cell clus-
ter was subset using Seurat ‘subset’ function. After 
that, 17,571 T and NK cells were acquired and ana-
lyzed using ‘Seurat’ and ‘harmony’ packages as above. 
According to expression of marker genes, T and NK 
cells were grouped into 16 cell types. In addition, we 
collected published scRNA-seq data of healthy human 
peripheral γδ T cells and re-annotated the cells based 
on the expression of marker genes according to the 
clustering described in the original publication [20].

Calculation of functional gene module score
To evaluate the potential functions of interest for cell 
clusters, the enrichment scores of functional gene 
modules were calculated by using ‘AddModuleScore’ 
function in ‘Seurat’ at single cell level. The average 
expression levels of the corresponding cluster or group 
were subtracted by the aggregated expression of con-
trol gene sets. The functional modules included genes 
for inferring cell cytotoxicity (KLRF1, GNLY, CTSW, 
NKG7, KLRD1, GZMA, ADGRG1, CST7, KLRK1, 
FASLG, HCST, KLRB1, ITGB1, GZMB, PRF1) and 
exhaustion (HAVCR2, LAG3, TIGIT, CTLA4, PDCD1, 
LAYN, BTLA, CD16, TOX, HLA-DRA, HLA-DRB1, 
CXCL13) scores.

Pathway enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis 
was conducted using R package ‘clusterProfiler’ [21]. 
‘FindMarkers’ function of Seurat with parameters 
‘min.pct = 0.1’ and ‘logfc.threshold = 0.25’ was used to 

identify DEGs. Then, ‘enrichGO’ and ‘enrichKEGG’ 
functions were used for pathway enrichment analysis 
of these genes. Gene symbols was converted using the 
‘bitr’ function before pathway enrichment if necessary.

GSVA analysis
Pathway analyses were predominantly performed on 
the GO and KEGG pathways described in the molecu-
lar signature database (MSigDB) [22]. Pathway activ-
ity estimates were obtained using the GSVA [23]. The 
GSVA algorithm obtains the pathway enrichment score 
matrix based on the given gene expression matrix and 
the marker gene set downloaded from MSigDB. Then 
we used the lmFit analysis of the ‘limma’ [24]. package 
to obtain the differential pathways. p value was calcu-
lated by limma and FDR was also inferred.

SCENIC analysis
To assess transcription factor regulation activity, we 
applied the Single-cell regulatory network inference 
and clustering (SCENIC) workflow [25]. The SCENIC 
analysis included four steps: [1] the single-cell gene 
expression count table for cells from each subtype of 
γδ T cells was first fed into SCENIC with a list of 1,390 
known human TFs (https://scenic.aertslab.org/), and 
sets of genes that are co-expressed (either positively or 
negatively) with TFs were identified by random forest 
models; [2] putative target genes in each coexpressed 
module were then subjected to cis-regulatory motif 
discovery analysis, and only modules with significant 
motif enrichment in the ± 500-bp or ± 10-kb region 
around the transcription start site (TSS) for the cor-
responding TF were kept for further analysis; [3] the 
AUCell algorithm of SCENIC was used to score the 
activity of each regulon in each cell, and regulons with 
average AUC score (that is, regulon activities) ≥ 0.05 
were retained; and [4] regulon specificity score (RSS) 
of γδ T cell subtype was calculated by ‘regulon_speci-
ficity_scores’ function.

Reconstructing cell development trajectories
To explore the developmental progression of the γδ 
T cell subset, R package ‘Monocle’ [26]. was used for 
reconstructing their development trajectories. In 
detail, the raw counts for cells in each cell types were 
extracted and normalized by the ‘estimateSizeFactors’ 
and ‘estimateDispersions’ functions with the default 
parameters. Then, ‘differentialGeneTest’ function was 
used to select top 1,900 significant genes (ordered 
by Q value) of γδ T cell for cell fate trajectory recon-
struction. Cell fate trajectory of γδ T cell was split into 
three different cell fates. Top 100 genes that had most 
significantly correlated (or anti-correlated) expres-
sion profile (ordered by Q value) to each cell fate were 

https://scenic.aertslab.org/
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Fig. 1 (See legend on next page.)
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selected using ‘differentialGeneTest’ function. Dif-
ferential genes between the three branch states were 
placed into three groups by expression pattern using 
the ward.D2 clustering algorithm. Meanwhile, GO 
enrichment analyses were performed on genes in dif-
ferent clusters. Finally, the expression heatmap of top 
100 genes correlated (or anti-correlated) to the γδ T 
cell fate pseudotime was visualized using ‘plot_pseu-
dotime_heatmap’ function.

Flow cytometry
PBMC, derived from blood samples of DLBCL patients 
and HIs, were stained for flow cytometric analysis 
using 3-color staining combinations with the mono-
clonal antibodies CD3-allophycocyanin (APC-Cy7) 
(Biolegend, Clone: UCHT1, 300317), TCRγδ-peridinin 
chlorophyll A protein (PerCP-Cy5.5) (Biolegend, 
Clone: B1, 331223), TIGIT-phycoerythrin (PE) (Biole-
gend, Clone: A15153G, 372704). Whole blood samples 
were incubated with an excess amount of monoclonal 
antibody at 4  °C for 20 min in the darkness. After the 
red blood cell lysis, the solution was centrifuged by 
447×g for 5  min and the supernatant was discarded, 
followed by a PBS wash (centrifuged by 447×g, 5 min). 
The wash step was repeated once and single-cell sus-
pensions were resuspended in 250 µL PBS. Data were 
acquired with a FACS Verse flow cytometer (BD, USA) 
and analyzed with FlowJo software. The percentages of 
γδ T cells were initially obtained by gating on the CD3 
T-cell population. Subsequently, a gate was applied to 
the γδ T-cell subtype to determine the expression of 
TIGIT on the T-cell subtypes. In the course of deter-
mining gates, appropriate negative controls (unstained 
cells and isotype-matched controls, Biolegend, San 
Diego, USA) and positive controls (single stained anti-
body) were used.

Validation of biomarker expression by quantitative Real-
time polymerase chain reaction
Total RNA was extracted from the PBMCs using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s instructions and 
reverse transcribed into complementary DNA (cDNA) 
using the PrimeScript™ RT reagent Kit (Takara, Japan) 
according to the experimental instructions. The rela-
tive expression levels of CCL3, CCL4, CCL5, and CCR5 
were measured by quantitative real-time polymerase 
chain reaction with SYBR Master Mix (TIANGEN, 

Beijing, China), and B2M was selected as an inter-
nal control. The expression levels of CD69, CX3CR1, 
CXCR4, and GZMB, IFNG, PRF1 and TNF are pre-
sented as 2−ΔCT. The primer sequences in this study are 
listed as follows:

CD69-F TGCCATCAGACAGCCATGTT
CD69-R ACCCTGTAACGTTGAACCAGT
GZMB-F TCAAAGAACAGGAGCCGACC
GZMB-R CGCACTTTCGATCTTCCTGC
TIGIT-F TGGTGGTCATCTGCACAGCAGT
TIGIT-R TTTCTCCTGAGGTCACCTTCCAC
IFNG-F GAGTGTGGAGACCATCAAGGA
IFNG-R GGACATTCAAGTCAGTTACCGAA
PRF1-F CGAGTGGCTCTTCTCAGCAA
PRF1-R GCTGCGAAATTCACTCCCAG
TNF-F GCCCATGTTGTAGCAAACCC
TNF-R GGAGGTTGACCTTGGTCTGG

Statistical analysis
All statistical analyses were performed in R (version 
4.1.0) and SPSS (version 13.0). P value less than 0.05 
was considered statistically significant. According to 
data distribution, we used the Wilcoxon rank sum test 
as appropriate based on distributional assumptions.

Results
Identification of the γδ T cell subtypes of DLBCL by scRNA-
seq
To illuminate the complexity of γδ T cell subtypes 
within DLBCL, we employed scRNA-seq to probe a 
cohort of 6 DLBCL patients and 2 HIs (Fig. 1A). Addi-
tionally, we performed unsupervised clustering analy-
sis to define groups of cells with similar expression 
profiles. Each cluster was identified as a specified cell 
subpopulation according to the expression of the most 
variable genes and the canonical markers, including T/
NK cell (gene markers: CD3D, NKG7), B cell (CD19, 
CD79A) and myeloid cell (LYZ, CST3) (Fig. S1E). In 
order to identify γδ T cells from T/NK cell cluster, we 
grouped all T and NK cells into 16 distinct subtypes 
with clustering analysis. These encompassed: CD4+ 
T cells (CD3+CD8A−CD4+, clusters 1, 2, 3); CD8+ T 
cells (CD3+CD8A+CD4−, clusters 4, 5, 6, 7, 8, 9); γδ T 
cells, defined by a requisite co-expression of a positive 
gene set (CD3D, CD3E, TRDC, TRGC1 and TRGC2) 
and the exclusion of a negative gene set (CD8A and 
CD8B) (clusters 10, 11, 12, 13, 14); mucosal-associated 

(See figure on previous page.)
Fig. 1  Identification of γδ T cells of patients with DLBCL and HIs through scRNA-seq. (A) Schematic of the overall study design. (B) UMAP visualization 
of T and NK cells from peripheral blood analyzed by scRNA-seq showing 17 major subtypes. Clusters are colored and labeled according to different cell 
subtypes. (C) The dot plot of marker genes for each cell cluster. Color-scale represents the mean normalized expression of marker genes within each cell 
type, and the size of the dots corresponds to the percentage of cells expressing the marker genes within each cell cluster. (D) Fluctuation in the percent-
age of each γδ T subtype across HI, ND DLBCL and R/R DLBCL groups. (E) Boxplots comparison of γδ T subset proportions between DLBCL patients and HIs
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Fig. 2 (See legend on next page.)
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invariant T cells (MAIT) characterized by SLC4A10 
(cluster 15), and NK cells (CD3D−, CD3E−, NCR+, 
NCAM1+, NKG7+, GNLY+) (cluster 16) (Fig. 1B and C).

Furthermore, given the potential functional heteroge-
neity of γδ T cells, a total of 5 distinct clusters represent-
ing 5 different functional γδ T cell subtypes are identified. 
The C10-γδ-TCF7 subtype was characterized by the high 
expression level of TCF7 and LEF1 commonly identified 
as naïve γδ T cells. The C11-γδ-GZMK, defined by high 
expression of GZMK and IL7R, thus likely represent-
ing memory γδ T cells. Additionally, the C12-γδ-TNF 
subtype specifically enriched for TNF, promoting the 
activation of naïve and effector T cells, is mainly exert-
ing activation function. The C13-γδ-GNLY subtype 
exhibited the expression of cytotoxic molecule NKG7 
and GNLY which indicated the status of cytotoxic γδ T 
cells. Furthermore, the C14-γδ-TIGIT subtype, expressed 
high levels of exhaustion marker TIGIT, suggestive of 
the identity of exhausted γδ T cells (Fig. 1B and C). An 
interesting yet converse observation was made regard-
ing patients with DLBCL, especially those with relapsed 
or refractory (R/R) DLBCL. Not only did they present 
an increase in circulating C14-γδ-TIGIT, but they also 
exhibited a reduction in circulating C11-γδ-GZMK and 
C12-γδ-TNF (Fig.  1D and E). Moreover, we analyzed a 
large-scale scRNA-seq dataset of peripheral γδ T cells 
from healthy individuals and identified a similar TIGIT+ 
γδ T cell subset (cluster2 and 3, Fig. S2A-B) [20]. Nota-
bly, the proportion of TIGIT+ γδ T cell was consistent 
with our results, showing a lower frequency in healthy 
individuals compared to DLBCL patients (Fig. S2C). The 
aforementioned results imply more than a possibility 
that DLBCL may tend to favor an enrichment in C14-γδ-
TIGIT, along with a decrease in C12-γδ-TNF and C11-
γδ-GZMK; they imply a potential association between 
C14-γδ-TIGIT and poor prognosis specifically.

Assessing functional heterogeneity through calculation of 
cytotoxic and exhausted immune scores for γδ T cells
To evaluate the functional heterogeneity of γδ T cells, 
the cytotoxic and exhausted immune scores for γδ T 
cells were calculated. The γδ T cells in DLBCL patients 

exhibited a higher cytotoxic and exhausted score 
(P < 0.05) when compared with HIs (Fig.  2A). Further-
more, we performed GSVA analysis of KEGG signaling 
pathway to gain more insights into the functional diver-
gence of γδ T cells: The status of DLBCL disease upregu-
lates a list of genes in γδ T cells categorized into signaling 
pathways, including cell apoptosis, TGF-β signaling path-
way (Fig.  2B). Conversely, the pathways associated with 
cell activation are downregulated (e.g., T cell receptor 
signaling pathway) (Fig. 2B). In general, these results con-
firm that γδ T cells possess a more potent immunosup-
pressive capacity in DLBCL patients compared to HIs; 
however, given the tumor-specific differences in γδ T cell 
subtypes, it remains to be investigated whether there was 
significant functional heterogeneity among γδ T cell sub-
sets, particularly those accounting for the high levels in 
patients.

Thus, the cytotoxicity and exhausted immune scores 
for each γδ T cell subset were calculated, respectively. 
Compared with other subsets, C13-γδ-GNLY and C14-
γδ-TIGIT possessed a higher cytotoxicity score, while 
C14-γδ-TIGIT also demonstrated a higher cell exhaus-
tion score (P < 0.001) (Fig.  2C). As depicted in dot plot 
of typical functional genes among each cluster, C10-γδ-
TCF7 expressed high level of naive genes (LTB, LEF1, 
TCF7, SELL, CCR7), C11-γδ-GZMK expressed high 
level of GZMK and C12-γδ-TNF expressed high level 
of GZMK, IFNG, CD69 (Fig.  2D). Moreover, C14-γδ-
TIGIT and C13-γδ-GNLY both exhibited high expres-
sion for various genes associated with effector function 
(KLRD1, KLRG1, NKG7), cytotoxicity (PRF1, GZMB), 
yet it is noteworthy to mention that the genes associated 
with immune inhibition (TOX, CD160, TIGIT) are higher 
expressed in C14-γδ-TIGIT (Fig.  2D). Our preliminary 
qPCR validation confirmed a lower expression of effec-
tor molecules, including perforin, IFNG, TNF, and the 
activation marker CD69 in patients (Fig. S5C). To fur-
ther probe the functional heterogeneity of γδ T cells, GO 
enrichment analysis was performed. C14-γδ-TIGIT and 
C13-γδ-GNLY are shared with some enriched functions 
related to T cell mediated cytotoxicity, natural killer cell 
mediated immunity, pyroptosis, and cytolysis (Fig.  2E). 

(See figure on previous page.)
Fig. 2  The functional characteristics and expression differences of specific genes across various γδ T-cell subtypes. (A) The functional characteristics and 
expression differences of specific genes across various γδ T-cell subtypes. Violin plots with boxplot insert showed the comparison of the cytotoxicity (left 
panel) and exhausted (right panel) scores of γδ T cells between DLBCL patients and HIs. **P < 0.01, ****P < 0.0001; P-values were calculated by Wilcoxon 
Rank Sum test (two-sided). (B) Comparation of KEGG signaling pathway activities scored per cell by GSVA for γδ T cells between sample group (DLBCL pa-
tients vs. HI). Bar plots represented the up-regulated (blue) and down-regulated (green) pathways for significantly enriched pathways in DLBCL patients. 
(C) Comparison of the cytotoxicity (upper panel) and exhausted (lower panel) scores among each γδ T cell subtype. **P < 0.01; ****P < 0.0001. P-values 
were calculated by Kruskal-Wallis test. (D) The dot plot of functional genes for each cell cluster. Color-scale represents the mean normalized expression of 
functional genes within each cell type, and the size of the dots corresponds to the percentage of cells expressing the functional genes within each cell 
cluster. (E) Gene ontology (GO) biological process activities scored per cell by GSVA for γδ T cells between sample group (DLBCL patients vs. HI). Heatmap 
modules exhibited up-regulated (indicated by the color blue) or down-regulated (indicated by the color green) for significantly enriched pathways in 
each γδ T cell subtypes. (F) The heatmap reflects cell-type-specific TF regulon activities at single-cell resolution, (blue represents high-regulon activity, 
red represents low-regulon activity)
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Whereas, compared to C14-γδ-TIGIT, C13-γδ-GNLY 
additionally involved in gamma delta T cell differentia-
tion (Fig.  2E). According to regulatory program analy-
sis, the regulon activities of prioritized TFs are similar 
in C14-γδ-TIGIT and C13-γδ-GNLY (including HLTF, 
SREBF2, STSY1, EOMES, STAT6, TBX21, ZBTB7A). 
The regulon activities of FOS, FOSB, PBX1, JUNB, etc. 
are significantly higher in C12-γδ-TNF, and the regulon 
activities of PLAG1, MYB are significantly higher in C10-
γδ-TCF7 (Fig.  2F). Interestingly, not only did C14-γδ-
TIGIT exhibit immune inhibition but also cytotoxicity, 
indicating a complex cell state. In light of these results, 
we uncovered a more cytotoxic and exhausted function 
among patients’ γδ T cells. This may be attributed to 
their high proportion of C14-γδ-TIGIT, which were more 
exhausted than other γδ T cell subtypes yet exhibited 
cytotoxicity comparable to that of C13-γδ-GNLY, aris-
ing from the high expression of cytotoxic, effector and 
immune inhibition genes.

Functional characterization of the TIGIT.1 and TIGIT.2 γδ T 
cells in DLBCL
We then focused on further characterization of C14-
γδ-TIGIT and reclustered them into two subtypes, 
γδ_TIGIT.1 (CXCR4 high expression) and γδ_TIGIT.2 
(CX3CR1 high expression) (Fig.  3A and B). Along the 
analysis of DEGs, accounting for some functional specific 
genes, γδ_TIGIT.1 highly expressed TCF7, LTB, CD69, 
IFNG, GZMK, CD160, while γδ_TIGIT.2 exhibited high 
expressions in GNLY, GZMB, PRF1, NKG7, KLRG1, 
KLRD1, TIGIT, TOX, PDCD1 and LAG3 (Fig. 3C). There 
was a higher percentage of γδ_TIGIT.1 in the HIs and 
ND DLBCL patients whereas γδ_TIGIT.2 constituted the 
majority in R/R DLBCL patients (Fig. 3D). The increased 
cytotoxicity and exhaustion scores in γδ_TIGIT.2 poten-
tially imply that this subtype is cytotoxic and exhausted 
at the same time (Fig.  3E and F). Furthermore, the RSS 
presented the top novel candidate TFs of γδ_TIGIT.1 
(top 6: FOSB, NRF1, JUN, ATF3, FOS, and JUNB) (Fig. 
S4A) and γδ_TIGIT.2 (top 6: TBX21, STAT1, EOMES, 
ZBTB7A, SREBF2, and POLR2A) (Fig. S4B). The analysis 
of co-expression network identified the novel candidate 
TFs (ATF3, BCLAF1, BHLHE40, CEBPB, CFL2, CHD2, 

EGR1, ELF1, ELF2, ELF4, ELK4, EOMES, ETS1, FOS, 
FOSB, IRF2, JUN, JUNB, JUND, KDM5A, KLF2, KLF6, 
KLF9, MXI1, NFIL3, POLR2A, RELA, RUNX3, SRF, 
YY1) that co-expressed to regulate the marker gene co-
expression (notably, CXCR4 and TIGIT) in γδ_TIGIT.1 
(Fig. S4C). The analysis of co-expression network iden-
tified the novel candidate TFs (POLR2A, KLF2, SRF, 
RUNX3, IRF2, YY1, KDM5A, ETS1, ELF4, ELK4, RELA) 
that concomitantly regulate the marker gene co-expres-
sion (notably, CX3CR1 and TIGIT) in γδ_TIGIT.2 (Fig. 
S4D). The GO enrichment results revealed that the 
enriched functions and signaling pathways of γδ_TIGIT.1 
were related to differentiation, such as “cytosolic ribo-
some”, “regulation of leukocyte differentiation”. Further-
more, γδ_TIGIT.2 were of genes upregulated in “negative 
regulation of immune system process”, “T cell activation”, 
“leukocyte mediated immunity” (Fig. 3G and H). In com-
parison, γδ_TIGIT.1 might still potentially be endowed 
with cell stemness, while γδ_TIGIT.2 might play a 
dichotomous role in terms of cytotoxic mediator (GZMB, 
and GNLY) expression and IFN-γ production.

Potential transition from Naive γδ T cells to terminally 
differentiated γδ T cells revealed by scRNA-Seq
To further investigate the differentiation direction of γδ 
T cells in DLBCL, we identified potential relationships 
among each state by cell fate trajectory analysis. The 
ordering of cell fate trajectories for all γδ T cells yields 
a combination of 6 states, branching into 3 primary cell 
fates (Fig. 4A and B). Mapping of the γδ T cells along the 
trajectory, it became apparent that the C10-γδ-TCF and 
C11-γδ-GZMK primarily occupied the tip of the initial 
trajectory. In contrast, the C12-γδ-TNF and primar-
ily aligned with the branches corresponding to cell fate 
1 (Fig.  4B and C). Cell fate 2 was significantly enriched 
with C13-γδ-GNLY while γδ_TIGIT.2 cells are primarily 
localized toward the end of the trajectory of fate 3 (Fig. 
S4A and B). γδ_TIGIT.1 cells are located between the 
main trunk and fate 3, suggesting that they may represent 
a transitional state between the main lineage and exhaus-
tion, potentially corresponding to pre-exhausted pro-
genitor cells. Apparently, the majority of their locations 

(See figure on previous page.)
Fig. 3  The functional characteristics between TIGIT.1 and TIGIT.2 γδ T-cell subtypes. (A) UMAP visualization TIGIT.1 γδ T cell subtype and TIGIT.2 γδ T cell 
subtype after reclustering of C14-γδ-TIGIT from DLBCL patients and HIs. (B) Volcano plots showing significantly differentially expressed genes (DEGs) (Fold 
change > 1.5, two-part hurdle model, adjusted p-value < 0.05, Bonferroni correction) in TIGIT.1 vs. TIGIT.2 γδ T cells. (C) The dot plot of functional genes for 
TIGIT.1 and TIGIT.2 γδ T cells. Color-scale represents the mean normalized expression of functional genes within each cell type, and the size of the dots cor-
responds to the percentage of cells expressing the functional genes within each cell cluster. (D) Variation of the proportion of TIGIT.1 and TIGIT.2 γδ T cells 
among HI, ND DLBCL and R/R DLBCL groups. (E) Violin plots with boxplot insert showed the comparison of the cytotoxicity (right panel) and exhausted 
(left panel) scores between TIGIT.1 and TIGIT.2 γδ T cells. *P < 0.05, ****P < 0.0001; P-values were calculated by Wilcoxon Rank Sum test (two-sided). (F) 
Violin plots with boxplot insert showed the comparison of the cytotoxicity (right panel) and exhausted (left panel) scores between TIGIT.1 and TIGIT.2 γδ 
T cells. *P < 0.05, ****P < 0.0001; P-values were calculated by Wilcoxon Rank Sum test (two-sided). (G) Gene Ontology (GO) term enrichment analysis. Sig-
nificantly enriched GO terms were selected based on FDR < 0.05. GO terms of the categories of Biological Processes, Cellular Components, and Molecular 
Functions are depicted in green, yellow, and blue, respectively
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are situated in close proximity to the terminal stages of 
differentiation.

Of particular note, to offer a nuanced visualization of 
how gene expression patterns evolve with the γδ T cell 
developmental trajectory, we selected the top 100 genes 
that had most significantly correlated (or anti-correlated) 
expression profile (ordered by Q value) to each cell fate 
(Fig. 4D). Along the progression of the pseudo-time axis 
(specifically, fate 1), we observed a decline in the expres-
sion of genes related to ribosome biogenesis (e.g., RPS8, 
RPL10A, RPS6), T cell differentiation (e.g., IL7R, LEF1, 
CAMK4, ZBTB16). Conversely, genes associated with 
tumor necrosis factor production (e.g., IFNG, ZFP36, 
CCL3), negative regulation of immune system process 
(e.g., TIGIT) and regulation of leukocyte mediated cyto-
toxicity (e.g., KLRC2, CD160, TYROBP, LILRB1, KLRD1) 
manifested a progressive upswing along the trajectory 
of fate 1 (Fig. 4D). Along the pseudotime trajectory fate 
2, we observed an increase of genes related to leuko-
cyte mediated immunity (e.g., HLA-DPA1, GZMB, SPN, 
ITGB1) and cellular defense response (e.g., CX3CR1, 
GNLY, PRF1), while a list of genes correlated with T cell 
differentiation (e.g., IL7R, TCF7, LEF1, RPS6, ZFP36L2) 
and response to calcium ion (e.g., FOS, JUND, DUSP1, 
JUNB, FOSB) were decreased. As C10-γδ-TCF and 
C11-γδ-GZMK differentiated towards γδ_TIGIT.2 (cell 
fate 3), genes involved in leukocyte mediated immunity 
(e.g., FGR, PRF1, GZMB, CX3CR1) and negative regula-
tion of immune system process (e.g., CFT7, TIGIT) are 
increased. Additionally, the genes implicated in negative 
regulation of intrinsic apoptotic signaling pathway (e.g., 
RTKN2), ribosome biogenesis (e.g., RPS6, RPS8, RPS14, 
RPL10A) and T cell differentiation (e.g., IL7R, TCF7) 
(Fig. 4D).

The smoothed expression curves for functional genes 
alone each cell trajectory was of special interest. Immune 
inhibition-related genes, such as CD160 and TIGIT were 
highly expressed along cell fate 1 and 3, while activation-
related gene CD226 was up-regulated along cell fate 2 
and 3. Cytotoxic-related gene GNLY was declined sub-
stantially along cell fate 1 and 3, but notably so in cell fate 
(1) However, another effector gene, IFNG, was increased 
along cell fate 1 and 3, as opposed to cell fate (2) Cell 
stemness-related gene TCF7 was decreased along all cell 
fates, indicating a differentiation towards terminal cell 
states (Fig. 4E).

With the temporal dynamics of γδ T cell states across 
differentiation, it can be inferred that C10-γδ-TCF and 
C11-γδ-GZMK may serve as progenitor γδ T cells and 
may potentially leading to three directions of terminal 
differentiation, enriched with C13-γδ-GNLY, γδ_TIGIT.2 
and C12-γδ-TNF. Since Fate 1 possessed γδ_TIGIT.1 at 
the end of the branch, there may be a transition potential 
between naïve and exhaustion.

γδ T cell subtype distribution in peripheral blood from 
DLBCL patients and his
To validate the findings from scRNA-seq analysis, flow 
cytometry was performed on PBMCs derived from the 
blood samples of DLBCL patients and HIs (Fig.  5A). A 
comprehensive synthesis pertaining to the proportion of 
γδ T cells within CD3+ T cell population, along with the 
expression of TIGIT in γδ T cells, is concisely presented 
(Fig. 5B and C). The proportion of γδ T cells significantly 
decreased in DLBCL, while the proportion of TIGIT+ γδ 
T cells significantly increased (P = 0.0004, 0.03). The clini-
cal data are summarized (Fig.  5D). To confirm whether 
the TIGIT expression is associated with cancer pro-
gression and/or outcomes, samples were segregated 
into 2 groups based on TIGIT median expression: high 
expression (n = 14); and low expression (n = 15) (Fig. 5D). 
The Kaplan-Meier survival analysis demonstrated that 
patients with higher TIGIT expression experienced the 
poorer outcomes, as evidenced by a reduced time to 
progression-free survival (PFS) (P = 0.037) (Fig.  5E). The 
average proportion of PD-1+ γδ T cells were not statisti-
cally significantly different between γδ_TIGIT.1 (TIGIT+ 
CXCR4+ γδ T cells) and γδ_TIGIT.2 (TIGIT+ CXCR4− 
γδ T cells) (Fig. S5A). However, the proportion of PD-1+ 
γδ_TIGIT.1 and γδ_TIGIT.2 cells were lower in HIs than 
in DLBCL patients (Fig. S5B and C). Furthermore, we 
performed preliminary validation of key genes and pro-
teins through quantitative PCR. Our data claimed that 
the PBMC from DLBCL possess a lower expression of 
effector molecules such as perforin, IFNG, TNF and acti-
vated marker CD69 (Fig. S5D). Moreover, the expression 
of CXCR4 in DLBCL were higher while CX3CR1 were 
lower.

Discussion
In this study, we utilized single cell RNA-sequencing 
technique to systematically explore the complex immune 
landscape of DLBCL focusing on γδ T cells. This method 
facilitated: [1] revealing 6 subtypes of γδ T cells (C10-
γδ-TCF, C11-γδ-GZMK, C12-γδ-TNF, C13-γδ-GNLY 
and C14-γδ-TIGIT.1 and C14-γδ-TIGIT.2) [2], observ-
ing the heterogeneity in gene expression among γδ T cell 
subtypes [3], hypothesizing different roles of each γδ T 
cell subtype (stemness [27], memory T cell function [28], 
activation [29], cytotoxicity [30, 31], immunosuppression 
[32, 33], etc.) [4] predicting the differentiation trajec-
tory of γδ T cells, and exploring a potential relationship 
between TIGIT+ γδ T cells and negative outcomes in 
DLBCL patients.

γδ T cells represent an evolutionarily conserved 
group of innate lymphocytes characterized by signifi-
cant functional heterogeneity, performing both active 
immune responses and immunosuppression across 
tumor progression [34]. It is commonly known that the 
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upregulation of tumor necrosis factor (TNF) subsequent 
to immune-cell activation indicates an active involve-
ment in modulating immune responses [35]. while tumor 
immune evasion is attributed to the loss of TNF sensitiv-
ity [36]. Our results are in agreement with this, as circu-
lating C12-γδ-TNF was observed to trend toward decline 
in DLBCL compared with HIs.

Additionally, among the previous study, the role of 
TIGIT in pancreatic cancer and hematological malignan-
cies has been related to anti-inflammatory and exhausted 
phenotypes as a consequence of tumor progression and 
negative patient outcomes [15, 37–40]. A similar pattern 
was observed for γδ T cells, the C14-γδ-TIGIT was the 
largest such subtype available in patients with DLBCL, 
consistent with findings from our clinical cohort study. 
This might be attributed to the following aspects, the 
interaction of TIGIT with its ligands, primarily CD155, 
suppresses T cell activation and function, enhancing 
the immunosuppressive capacities of regulatory T cells 
(Tregs) and inducing exhaustion in cytotoxic T cells [41]. 
Besides, in accordance with our previous studies, γδ T 
cells in patients with AML appear out of balance on dis-
tribution of TIGIT and CD226, accompanying increased 
TIGIT+ CD226− γδ T cells [38]. After chemotherapy, 
TIGIT+ CD226− γδ T cells decreased in AML patients 
who achieved complete responses (CR) [38], thereby 
emerging as a potential prognostic or risk factor [38]. 
These results are consistent with the findings of this study 
in DLBCL patients, suggesting that TIGIT+ γδ T cell sub-
types are characterized by high expression of TIGIT and 
low expression of CD226. In contrast to TIGIT, CD226 
plays a pivotal role in the initiation and stimulation of T 
cells, thereby augmenting their cytotoxicity, particularly 
in the presence of PVR-expressing within tumor micro-
environment. However, TIGIT competes with CD226 for 
ligand binding, potentially inhibiting the functionality of 
T cells [42].

Nevertheless, we also observed discrepancies upon 
further analysis of C14-γδ-TIGIT. We speculated that in 
the DLBCL microenvironment, circulating TIGIT+ γδ 
T cells exhibit a multifaced state; they are cytotoxic (on 
par with C13-γδ-GNLY) yet al.so prone to exhaustion. 
According to our analysis of cell trajectories, we assumed 
that γδ T cells gradually differentiate towards termi-
nal states along the pseudo-time trajectories. In relative 
terms, C13-γδ-GNLY, γδ-TIGIT.1 and γδ-TIGIT.2 are 
terminally differentiated and gradually incapable of cell 

stemness as a result of the loss of TCF-1 expression. Rela-
tively, however, γδ-TIGIT.1 exhibited high expression of 
CD69, IFNG, GNLY and stemness related genes (TCF7, 
LEF1, LTB). This finding aligns with previous research, 
which indicated that CXCR4 is highly expressed on T 
cells with differentiation potential, but its expression is 
subsequently downregulated upon T-cell activation [43–
46]. The presence of native CXCR4 has also been demon-
strated to enhance T cell immunotherapy by stabilizing 
immune synapses, suggesting a potential good prognostic 
marker on T cells [47, 48].

Aside from CXCR4hi (γδ-TIGIT.1) subtype, the other 
TIGIT+ subtype was CX3CR1hi (γδ-TIGIT.2). Compared 
with γδ-TIGIT.1 (CXCR4hi), γδ-TIGIT.2 (CX3CR1hi) 
both highly expressed cytotoxic, activation genes (GNLY, 
GZMB, PRF1, KLRG1, KLRD1) and immune inhibi-
tion genes (TIGIT, TOX, LAG3, etc.). As corroborated 
by Carmen Gerlach, high expression of CX3CR1 can be 
identified as a marker for effector memory T cells (Tem) 
[49]. Moreover, CX3CR1+ T cells demonstrate strong 
cytotoxic activity, whereas CX3CR1– T cells are pre-
dominantly non-cytotoxic and have higher proliferative 
potential [50]. The observation from Gerlach was applied 
to explain our result, yielding another reason that may 
have resulted, almost all KLRG1+ T cells were CX3CR1hi 
[49]. As postulated to be the marker of senescence, 
KLRG1 is highly expressed on γδ-TIGIT.2, demonstrat-
ing their cell-division ability is progressively lost, result-
ing in proliferative arrest and apoptosis [51].

Of great interest, we also observed a dichotomous role 
for TIGIT+ γδ T cells in terms of the cytotoxic media-
tor (PRF1, GZMB, and GNLY) and IFN-γ expression. For 
instance, higher expression of TIGIT on γδ T cells (par-
ticularly γδ_TIGIT.2) indicates an exhaustion popula-
tion. However, such γδ T cells exhibit enhanced cytotoxic 
function by upregulating PRF1, GZMB, and GNLY and 
impaired function with diminished IFNG. Such dichot-
omous role has previously been reported in NK cells of 
HIV patients [52]. Nevertheless, our findings provide 
a previously unidentified, as we can tell, role for TIGIT 
in DLBCL pathogenesis, potentially elucidating how the 
cytotoxicity of γδ T cell subtypes can be improved in 
DLBCL patients.

Thus, another striking discovery in TIGIT+ γδ T cells 
is that the γδ_TIGIT.1 subtype (TCF-1hi, GZMBlo) exhib-
its similarities in gene expression with the Tpex (precur-
sor exhausted T cell) subtype, whereas the γδ_TIGIT.2 

(See figure on previous page.)
Fig. 4  Cell fate trajectory of γδ T cells. (A) DDR (discriminative dimensionality reduction) tree visualization of γδ T subtype trajectory. (B) DDR (discrimina-
tive dimensionality reduction) tree visualization of γδ T subtype trajectory with cell type. (C) The distribution of each γδ T cell subsets in DLBCL patients 
during development of DDR trees. (D) Heat map displaying the differentially expressed genes across γδ T cell pseudotime trajectory. The x-axis represents 
pseudo-temporal ordering, with gene expression levels normalized to their maximum values and smoothed across the pseudotime axis. Genes are cat-
egorized based on their functions and expression patterns. The bottom portion of the heat map includes cell type annotations for cells aligned along the 
pseudotime axis. (E) The dynamic genes during the cell differentiation were visualized for fate1 (middle), fate2 (left panel), and fate3 (right panel). Each dot 
indicates a single cell colored by its cluster, the solid lines showed smoothed expression curves of representative genes along the trajectory
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subtype (TCF-1lo, GZMBhi) appears akin in gene expres-
sion to the Ttex (terminal exhausted T cell) subtype, rem-
iniscent of the Ttex and Tpex subpopulations observed in 
CD8+ T cells [53–55]. This finding implies that we may 
have identified potential markers for the first time that 
could denote the Tpex and Ttex subtypes within γδ T 
cells in DLBCL patients [53, 54]. Moreover, this obser-
vation substantiates that with the sequential exposure 
to tumor antigens, γδ T cells progressively lose TCF-1 
expression. This occurs concurrently with the upregu-
lation of a variety of inhibitory receptors, leading to an 
incapacity for functional recuperation in γδ T cells [27, 
56]. Moreover, in chronic infections and cancer, the 
TCF-1 (TCF-7) in supporting the stemness and self-
renewal of T cells is of utmost importance [57]. TCF-1 
serves as a key factor in preventing the exhaustion of T 
cells during prolonged and intense immune challenges. 
Its function lies in the preservation of functionality and 
reactivity of T cells, exerting a substantial influence on 
the outcomes of ongoing struggles against chronic infec-
tions and cancer, thereby providing a foundation for 
the sustained immune defense mechanisms of the body 
[58]. Consequently, despite remaining viable in vivo, the 
diminished expression of TCF-1 in γδ T cells will pro-
gressively render non-functional.

Of significant clinical importance, our study revealed 
that the active transcriptional factors in the γδ_TIGIT.2 
subtype are involved in regulating exhaustion and ter-
minal differentiation [59–61]. Specifically, we identified 
TBX21, STAT1, EMOS, SREBF2, POLR2A and ZBTB7A 
as the predominant transcription factors associated 
with γδ_TIGIT.2, indicating their potential role in gov-
erning the exhaustion differentiation of γδ T cells [62]. 
Additionally, the presence of the γδ-TIGIT.2 subtype 
is characterized by high expression of CX3CR1 and low 
expression of TCF-1. Previous studies reported that TCF-
1−CX3CR1+ exhausted T cells, exhibit the utmost effec-
tor function and play a crucial role in exerting a certain 
degree of control during chronic viral infections [63, 64]. 
Since TCF-1+ Tpex cells align with the characteristics of 
our γδ_TIGIT.1 subtype, it can be inferred that our γδ_
TIGIT.2 subtype corresponds to the TCF-1−CX3CR1+ 
exhausted subtype. Thus, it is possible to speculate that 
CX3CR1 and ITGB1 may potentially participate in regu-
lating the differentiation from the γδ_TIGIT.1 subtype 
to the γδ_TIGIT.2 subtype through these transcrip-
tional factors with high transcriptional activity in the 

γδ_TIGIT.2 subtype. A further investigation is ongoing 
to elucidate the mechanism of those chemokines, tran-
scriptional factors and immune-checkpoints. Addition-
ally, the use of complementary single-cell techniques will 
be necessary to correlate single-cell phenotypes with the 
spatial organization of cells within DLBCL. It is crucial 
to integrate multiple different platforms to fully compre-
hend the tumor microenvironment (TME) heterogeneity 
in DLBCL and its clinical significance.

Despite belonging to the same ICRs family as PD-1, 
TIGIT has unique functions, especially in different dis-
eases where they regulate various aspects of immunity 
[65]. Our findings are crucial in identifying pivotal tran-
scription factors and genes that may regulate the differ-
entiation process of γδ_TIGIT.1 subtype to γδ_TIGIT.2 
subtype, thereby enhancing the comprehension of the 
intricacies involved in γδ T cell differentiation dynamics.

While this study provides valuable insights into the 
role of TIGIT in γδ T cells, several important limitations 
need to be addressed in future research. One key limita-
tion is the lack of a direct functional comparison between 
γδ T cells from DLBCL patients and healthy donors. 
This comparison is crucial for understanding the poten-
tial alterations in γδ T cell functionality in the context of 
DLBCL and the effects of TIGIT blockade on these cells. 
Unfortunately, due to resource constraints and the com-
plexity of obtaining patient samples, this aspect could not 
be fully explored in the current study. Future work should 
focus on detailed functional assays comparing γδ T cells 
from both DLBCL patients and healthy donors, including 
the evaluation of cytotoxicity, cytokine production, and 
surface marker expression.

Conclusions
In our study, we have identified 6 distinct subpopula-
tions of γδ T cells, among which two exhibited features of 
exhaustion, characterized by the expression of immuno-
suppressive factors such as TIGIT. These particular sub-
types have been categorized as Ttex and Tpex clusters, 
distinguished by their differentiation trajectories and 
associated cytokine expression profiles. Notably, these 
γδ T cell subpopulations might have disparate effects on 
the prognosis of patients with DLBCL, exerting divergent 
effects on clinical outcomes. In summary, our findings 
provide novel insights into the genotypic and character-
istics of γδ T cells and propose a potential approach for 

(See figure on previous page.)
Fig. 5  TIGIT expression levels on γδ T cells in determining the prognosis of patients with DLBCL. (A) Gating strategy for γδ T cells sorting in peripheral 
blood. (B) Percentage of γδ T cells in the peripheral blood of HIs and DLBCL patients. (C) Percentage of TIGIT+ γδ T cells in the peripheral blood of HIs and 
DLBCL patients. (D) The swimmer plot visually represents the impact of both clinical and molecular characteristics on patient survival. Horizontal bars 
indicate the duration of survival in months, while data points signify the outcomes for individual patients. The data matrix on the left matches patient 
identifiers with their corresponding clinical and molecular attributes. On the right side of the diagram, a concise visual summary of survival outcomes 
correlated with each factor is provided. This offers vital insights into the prognostic significance of each variable under consideration. (E) The PFS (progress 
free survival) of DLBCL patients; the optimal cutoff for PFS in relation to the expression of TIGIT was determined to be 68.6%
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immunotherapeutic intervention and prognostic assess-
ment in the context of DLBCL.
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