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Abstract
Demand for influenza vaccine rose as countries prepared for the second COVID-19
wave over the winter months of 2020-2021. High coverage of the influenza vaccine
can significantly reduce morbidity and mortality of the burden of influenza. Natu-
ral influenza infection creates short-term non-specific immunity against respiratory
viruses (virus interference). We model two viral diseases, both of the SEIR type, to
investigate whether the influenza vaccine increases the combined disease burden of
influenza and COVID-19 in a dual outbreak. We show that the combined disease
burden’s behavior depends on virus interference factors and the proportion of the pop-
ulation vaccinated against influenza. Our results indicate that influenza vaccination
only lowers the overall disease burden when net virus interference is relatively low.

Mathematics Subject Classification 92D30 · 92B99

1 Introduction

The current pandemic of coronavirus disease 2019 (COVID-19) is caused by infection
with a new coronavirus (called SARS-CoV-2). Influenza (flu) is a contagious respi-
ratory disease caused by influenza viruses. Both diseases are infectious respiratory
illnesses. There are some critical differences between flu and COVID-19. COVID-
19 differs from influenza in the mortality rate, infectiousness by individuals with no
symptoms, and spreading more quickly.While there has long been a vaccine to protect
against influenza, vaccines for COVID-19 are just beginning to be distributed around
the world.
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Even though the influenza vaccine gives no protection against COVID-19 (Shahid
et al. 2020), demand for influenza vaccine rose as countries planned for the second
COVID-19 wave over the winter months of 2020-2021. High coverage of the vaccine
can significantly reduce morbidity and mortality of the burden of influenza.

Although the influenza vaccine may protect against the risk of influenza, natural
influenza infection may reduce the risk of noninfluenza respiratory viruses (NRV)
by activating short-term non-specific immunity against these viruses, a phenomenon
known as virus interference. In other words, individuals who have received the
influenza vaccine may be at higher risk for NRV infections than individuals who
have had influenza infections because they do not exhibit the non-specific immunity
associated with natural infection (Feng et al. 2017; Suzuki et al. 2014; Cowling and
Nishiura 2012; Cowling et al. 2012; Kelly et al. 2010). Studies in children and adults
support the idea that the influenza vaccine may increase the risk of NRV infections
compared to individuals recently recovered from influenza. A recent Dutch study
among older adults showed an increased incidence of NRV infections in vaccinated
versus unvaccinated persons (Van Beek et al. 2017). A study in children who received
the influenza vaccine reported four times more NRV infections (Cowling et al. 2012).
In the case of adults, one study found a 36% increase in risk related to coronavirus
infections (Wolff 2020).

It is still not clear whether COVID-19 infection causes similar interference with
influenza or other respiratory viruses. Further, there is no definitive evidence about
whether the influenza vaccine prevents virus interference with COVID-19. Limited
knowledge has been available regardingwhether the influenza vaccine affects COVID-
19 infection risk. There are conflicting studies concerning this aspect. While some
studies found that the influenza vaccination coverage rates correlated negatively with
all COVID-19 outcomes (Amato et al. 2020; Martínez-Baz et al. 2020), other stud-
ies found that influenza vaccination coverage rates are associated significantly with
recently observed COVID-19 infection rates (Lisewski 2020; EBMPHET Consortium
2020).

Ozaras et al. demonstrated thatCOVID-19 and influenza co-infection is rare.During
their study period, 1103 patients were diagnosed with COVID-19. Among them, six
patients (0.54%) were diagnosed co-infected with influenza (Ozaras et al. 2020). Ding
et al. confirmed that few patients were co-infected by both diseases. A total of 5 of
the 115 patients confirmed with COVID-19 were also diagnosed with influenza virus
infection, with three influenza A cases and two influenza B (Ding et al. 2020).

Mathematicalmodels have been developed to improve our knowledge of respiratory
virus transmission and study different aspects of viral interference dynamics, such as
influenza-influenza interactions and influenza-NRV interactions. Despite the mount-
ing evidence of influenza and NRV interactions, mathematical models on influenza
and NRV interference are rare (Opatowski et al. 2018). A recent study by Velasco-
Hernández et al. explained the interaction observed between influenza and respiratory
syncytial virus (RSV) by using an SEIRS model and provided some evidence that
RSV dominates influenza. Their model is a superinfection model where RSV infec-
tion takes over influenza infection. Furthermore, in their model, individuals already
infected with influenza are less susceptible to RSV infection than healthy individuals
because the authors assume that infected individuals will be taking some precautionary
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measures (Velasco-Hernández et al. 2015). Merler et al. used a mathematical model
to illustrate the role of acute respiratory infections in the transmission dynamics of the
1918 influenza pandemic. The authors proposed that co-infection with other respira-
tory pathogens leads to enhanced influenza transmission. Theirmodel produced results
that agree with mortality excess data during 1918 pandemic influenza (Merler et al.
2008). None of these studies have to do with the virus interference phenomenon and
vaccination. There is no mathematical study that incorporates both virus interference
and influenza vaccine to the best of our knowledge.

This study aims to evaluate whether the influenza vaccine increases the combined
disease burden of influenza and COVID-19 in a dual outbreak by using a mathemat-
ical compartmental model with differential equations. In this study, the well-known
concept of DALY (Disability-Adjusted Life Years) is used to measure the combined
disease burden. This calculation has two components for each disease: DALY for the
survivals and DALY for non-survivals. We use dynamical systems models as tools to
compare the outcomes of the influenza vaccine on the population.

2 Model development

The model is developed to analyze respiratory infection, in which we consider two
distinct diseases; disease 1 indicates influenza, and disease 2 indicates COVID-19.
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We divide the total population into susceptible (S), vaccinated (V ), exposed (E1 and
E2), infected (I1 and I2), and recovered (R1 and R2) compartments for each disease.
Those vaccinated individuals infected by COVID-19 retain partial protection against
influenza, requiring a separate chain of exposed (F2), infective (K2), and recovered
(W2) compartments. Individuals who recovered from disease 1 or 2 remain suscepti-
ble to the other disease, also requiring a separate chain of exposed (G1 and G2) and
infective (J1 and J2) for each disease and recovered (R3) compartments. Suscepti-
ble and vaccinated individuals can be infected by disease 1 (with a reduced rate for
vaccinated individuals because of the vaccine’s protection) through their contact with
infected individuals in classes I1 and J1, or by disease 2 through their contact with
infected individuals in classes I2, K2 and J2 (with no vaccine protection). Following
the observation that co-infection is rare, we assume that no one acquires a secondary
infection during a primary infection. The model is described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = (1 − φ)� −

[
β1

I1+J1
N + β2

I2+J2+K2
N + μ

]
S,

dV
dt = φ� −

[
κβ1

I1+J1
N + β2

I2+J2+K2
N + μ

]
V ,

dE1
dt = β1

I1+J1
N S + κβ1

I1+J1
N V − (η1 + μ)E1,

dE2
dt = β2

I2+J2+K2
N S − (η2 + μ)E2,

dF2
dt = β2

I2+J2+K2
N V − (η2 + μ)F2,

d I1
dt = η1E1 − (γ1 + μ)I1,
d I2
dt = η2E2 − (γ2 + μ)I2,
dK2
dt = η2F2 − (γ2 + μ)K2, ,

dR1
dt = γ1 I1 − μR1 − τ1β2

I2+J2+K2
N R1,

dR2
dt = γ2 I2 − μR2 − τ2β1

I1+J1
N R2,

dW2
dt = γ2K2 − μW2 − κτ2β1

I1+J1
N W2,

dG1
dt = τ2β1

I1+J1
N R2 + κτ2β1

I1+J1
N W2 − (η1 + μ)G1,

dG2
dt = τ1β2

I2+J2+K2
N R1 − (η2 + μ)G2,

d J1
dt = η1G1 − (γ1 + μ)J1,
d J2
dt = η2G2 − (γ2 + μ)J2,
dR3
dt = γ1 J1 + γ2 J2 − μR3,

(1)

where β1 and β2 are influenza and COVID-19 infection rates, respectively. These
infections are spreading in a large population; therefore, we assume that the contact
rates are already saturated. Hence, we use standard incidence in this model instead of
mass action. κ is the reduced susceptibility factor due to influenza vaccine protection,
a dimensionless value between zero and one. Here η1 and η2 are the rates at which an
individual departs exposed classes by becoming infectious. γ1 and γ2 are the recovery
rates of influenza and COVID-19, respectively (Fig. 1).

123



How influenza vaccination and virus interference may … Page 5 of 15 10

Table 1 State variable and parameter definitions and their units

Notation Definition

State variables S(t) Number of susceptible individuals at time t

V (t) Number of individuals who have received the influenza vaccine at time t

Ei (t) Number of individuals who have been exposed to disease i at time t

Ii (t) Number of individuals who have been infected by disease i at time t

F2(t) Number of individuals who have received the influenza vaccine and
exposed to disease 2 at time t

K2(t) Number of individuals who have received the influenza vaccine and
infected by disease 2 at time t

Ri (t) Number of individuals who have recovered from disease i at time t

W2(t) Number of individuals who have received the influenza vaccine and
recovered from disease 2 at time t

Gi (t) Number of individuals who have been exposed to disease i and immunized
by the other disease due to recovery at time t

Ji (t) Number of individuals who have been infected by disease i and immunized
by the other disease due to recovery at time t

R3(t) Number of individuals who have recovered from both diseases at time t

Parameters � Recruitment rate (Individual/Time)

μ Per capita natural mortality rate (1/Time)

βi disease i infection rate (1/Time)

φ The proportion of individuals who have received the flu vaccine
(Dimensionless)

κ Reduced susceptibility factor due to the flu vaccine protection
(Dimensionless)

ηi 1/The duration time from exposure to onset of infectivity for disease i
(1/Time)

γi Disease i recovery rate (1/Time)

τi Virus interference reduced rate after recovery from disease i
(Dimensionless)

We consider that individuals who recover from disease 1 or 2 (R1 or R2) will be
less susceptible to the other disease due to virus interference. We incorporate the
phenomenon of virus interference as parameters τ1 and τ2 that can tune between 0
and 1. τ1 (τ2) is the factor by which individuals who have recovered from disease 1
(disease 2) are less susceptible to a disease 2 (disease 1) infection (Table 1).

By adding Eq. (1), we get
dN

dt
= � − μN

and

N (t) = �

μ
+ e−μt

(

N0 − �

μ

)

,
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where N0 is the initial total population of the system. Then, taking the limit as t → ∞:

lim
t→∞ N (t) = �

μ
.

Since we are aiming at a constant population and not interested in the demographic
growth in this study, we assume that N is a constant population by taking N (0) = �

μ
.

Therefore, the total population is constant for all t .
In this study, we have two additional differential equations to calculate the cumu-

lative number of infections of disease 1, C1(t), and disease 2, C2(t)

dC1

dt
= β1

I1 + J1
N

S + κβ1
I1 + J1

N
V + τ2β1

I1 + J1
N

R2 + κτ2β1
I1 + J1

N
W2,

dC2

dt
= β2

I2 + J2 + K2

N
S + β2

I2 + J2 + K2

N
V + τ1β2

I2 + J2 + K2

N
R1.

The combined disease burden can be estimated by using a cost function determined
by the cumulative number of infections and the total number of deaths for each disease.
The cost function determines the number of Disability Adjusted Life Years (DALY),
which can be considered a loss of healthy life. The DALY is formed of Years of Life
lived with Disability (YLD), resulting from infections, and Years of Life Lost (YLL)
caused by death (Murray 1994). To estimate DALY components, we have

Y LDi = (1 − di )Ci (t)DWi
1

γi
,

where di is the case fatality ratio for disease i , Ci (t) is the cumulative number of
infections for disease i at time t , 1

γi
is the average duration (in years) of infection for

disease i , and DWi is the disease weight. The term DWi is assumed to be one for each
disease. Further, we have

Y LLi = diCi (t)Li ,

where Li is the standard life expectancy at the age of death for disease i (average life
expectancy at birth − average age of infection). Therefore, for each disease i we have

DALYi = Y LDi + Y LLi

= (1 − di )Ci (t)DWi
1

γi
+ diCi (t)Li

= Ci (t)[(1 − di )DWi
1

γi
+ di Li ].

Then, finally the combined disease burden cost function is

DB(t) = C1(t)

[

(1 − d1)DW1
1

γ1
+ d1L1

]

+ C2(t)

[

(1 − d2)DW2
1

γ2
+ d2L2

]

.
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3 Analysis

3.1 Disease free equilibrium and control reproductive numbers

In this section, we compute the control reproductive number (CRN)which is one of the
most significant thresholds that measures the infection’s ability to spread. We useRc

instead of using the basic reproduction number,R0, because it includes vaccination as
a control measure. In order to derive theRc for model (1), we perform an equilibrium
analysis.

The disease-free equilibrium (DFE) is a point where no disease is present in the
population and occurs for model (1) when I ∗

i = J ∗
i = K ∗

2 = 0 for all i = 1, 2. By
setting all differential equations in (1) equal to zero, we find the DFE of the form
�
μ

((1 − φ), φ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
To determine under what conditions infection with disease 1 or disease 2 can persist

in the population, we determine the control reproductive numbers for each infection.
The control reproductive number is a threshold condition defined to be the average
number of secondary infections caused by one primary infected individual in a wholly
uninfected population under a control strategy. We computeR1 for disease 1,R2 for
disease 2, and Rc for the presence of any infection with either disease.

To drive the various reproductive numbers of the diseases in the model, we use the
next-generation operator method (Van den Driessche and Watmough 2002). We find
Rc = max{R1,R2} where

R1 = η1

η1 + μ

β1

γ1 + μ
[(1 − φ) + κφ] , R2 = η2

η2 + μ

β2

γ2 + μ
.

The first two parts of R1 and R2 can be interpreted as the following. The first
fraction ( ηi

ηi+μ
) is the proportion of exposed individuals who did not die before they

progress to infectious status. The second fraction ( βi
γi+μ

) is the product of the disease
i infection rate and the average time an individual remains infected with disease i .
The additional part of R1 is the proportion of vaccinated individuals (φ) times the
reduced susceptibility factor (κ) due to the vaccine effectiveness added to the propor-
tion of individuals who have not received the vaccine (1 − φ).

We see that reduced infection factors of recovered individuals due to virus inter-
ference (τ1 and τ2) do not appear in the CRN because each of them occurs when the
other infection is persistent. In an initial outbreak scenario, neither infection would be
persisting in the population. Therefore, τ1 and τ2 should not be expected to appear in
the CRN, but in the invasion reproductive numbers (IRNs).

3.2 Endemic equilibria and invasion reproductive numbers

We find another equilibrium when there is no infection with disease 2. In this
case, I ∗

2 = K ∗
2 = J ∗

2 = 0. By setting all the nonlinear differential equa-
tions in model (1) equations equal to zero, we get E∗

2 = F∗
2 = G∗

2 =
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W ∗
2 = R∗

2 = G∗
1 = J ∗

1 = R∗
3 = 0 and the equilibrium is EE1 =

�
μ

(
1−φ
1+m ,

φ
1+κm ,

(γ1+μ)mμ
η1β1

, 0, 0, mμ
β1

, 0, 0, γ1m
β1

, 0, 0, 0, 0, 0, 0, 0), where

m = κ(R1 − 1) − (1 − (1 − κ2)φ) + √
((1 − (1 − κ2)φ) − κ(R1 − 1))2 + 4κ(1 − (1 − κ)φ)(R1 − 1)

2κ(1 − (1 − κ)φ)
.

Observe that this equilibrium makes biological sense only when R1 > 1. Further,
the sum of uninfected compartments at EE1 is

1+m(κ(1−φ)+φ)
(1+m)(1+κm)

and infected compart-

ments is m(1−(1−κ)φ)
R1

.
The second single-disease equilibrium is found when there is no infection with

disease 1. In this case, I ∗
1 = J ∗

1 = 0. By setting all differential equations in model 1
equal zero, we get E∗

1 = G∗
1 = R∗

1 = G∗
2 = J ∗

2 = R∗
3 = 0 and and the equilib-

rium is EE2 = �
μ
( 1−φ
R2

, φ
R2

, 0, (R2−1)(1−φ)(γ2+μ)μ
β2η2

, (R2−1)φ(γ2+μ)μ
β2η2

, 0, (R2−1)(1−φ)μ
β2

,

(R2−1)φ(γ2+μ)μ
β2

, 0, (R2−1)(1−φ)γ2
β2

, (R2−1)φγ2
β2

, 0, 0, 0, 0, 0).

We observe that the total population at EE2 is �
μ
(the sum of uninfected compart-

ments is 1
R2

and infected compartments is 1 − 1
R2

) . Further, this equilibrium makes
biological sense only when R2 > 1.

The invasion reproductive number (IRN), which is defined to be the average number
of secondary infections caused by one primary infected individual with one disease in
an environment where the other disease is endemic, measures the ability of a disease to
invade while another disease is present and at equilibrium (Mitchell and Kribs 2019;
Kribs-Zaleta and Mubayi 2012; Zhang et al. 2007; Porco and Blower 1998).

We define IRN R̃1 to be the average number of secondary disease 1 infections
caused by an infected individual introduced into a population at EE2. R̃2 is defined
similarly.

R̃1 is found through the next-generation operator method at EE2, where we cal-
culate the spectral radius of the matrix F1V

−1
1 (Van den Driessche and Watmough

2002). In this method, we assume implicitly that R2 > 1. We compute the spectral
radius of F1V

−1
1 is given by

R̃1 = R1

[
1

R2
+ τ2

(
γ2

γ2 + μ

η2

η2 + μ

) (

1 − 1

R2

)]

.

We observe that R̃1 is essentiallyR1 multiplied by a term representing a weighted
average susceptibility to infection: the uninfected proportion at EE2 ( 1

R2
) weighting

relative (unchanged) susceptibility 1, and the infected proportion (1− 1
R2

) weighting
their average susceptibility τ2 multiplied by the proportion of infecteds who do not
die while infected (since by assumption the infected are unavailable for infection until
they recover).

We also consider the IRN R̃2. R̃2 represents the ability of disease 2 to invade a
susceptible population at EE1. R̃2 is found similar to R̃1 and given by

R̃2 = R2

[(
1 + m(κ(1 − φ) + φ)

(1 + m)(1 + κm)

)

+ τ1

(
γ1

γ1 + μ

η1

η1 + μ

) (
m(1 − (1 − κ)φ)

R1

)]

.
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Fig. 2 Contour plot of IRN1 (IRN2) over φ and τ2 and (τ1)

R̃2 can be interpreted term by term similarly to those for R̃1. From this view, we
can see that R̃2 is R2 multiplied by a weighted average susceptibility to infection:
the uninfected proportion at EE1 ( 1+m(κ(1−φ)+φ)

(1+m)(1+κm)
) weighting relative (unchanged)

susceptibility 1, and the infected proportion (m(1−(1−κ)φ)
R1

) weighting their average sus-
ceptibility τ1 multiplied by the proportion of infecteds who do not die while infected.

4 Numerical simulations

To address this study’s goal, we take parameter values directly fromAlharbi and Kribs
(2021, 2022).We consider disease 1 to be influenza H3N2 and disease 2 is COVID-19.
Further, we allow the proportion of individuals who have received the vaccine (φ) to
vary between 0 and 1 as a control measure.

For the estimation of parameter values of our cost function, we have the average
age of the infection of influenza in the U.S. as 32.36 (CDC 2020) and COVID-19 as
41.1 (CDC 2021), and the average life expectancy at birth for the total U.S. population
as 77.8 years (U.S. Census Bureau 2019). That gives L1 = 77.8 − 32.36 = 45.44
and L2 = 77.8 − 41.1 = 36.7. We estimate case fatality ratios for influenza and
COVID-19 by calculating the case fatality ratio for each age group from CDC (2020,
2021) and then multiplying each age group’s case fatality ratio by the proportion of
the whole population in that age group, and summing the results (U.S. Census Bureau
2019), which gives d1 = 0.031% and d2 = 1.96%. All these parameters give us an
estimate of 0.02 DALY for one average case of influenza and 0.73 DALY for one
average case of COVID-19.

Figure 2(a) (Fig. 2(b)) is a contour plot of R̃1 (R̃2) over τ2 (τ1) and φ. First, for Fig.
2(a), we observed that R̃1 increases with τ2, which indicates that virus interference
plays a major role in reducing R̃1. Besides, R̃1 decreases with φ, indicating that as
the proportion of individuals who received the influenza vaccine increased, the ability
of influenza to spread becomes difficult. Then, for Fig. 2(b), we observed that R̃2
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(a) (b)

Fig. 3 Cumulative infected of disease 1 (disease 2) vs. φ with different amount of τ2 (τ1)

increases with τ1 and φ, except if τ1 is close to one. R̃2 increases with φ can be
interpreted as the more individuals who have received the influenza vaccine results
to the more of them are available for infection with COVID-19. However, the closer
φ to making R1 = 1, the fewer individuals are infected with influenza. Therefore,
the ability of virus interference to affect COVID-19 transmission is irrelevant at the
top of Fig. 2(b). τ1 describes an altered characteristic of individuals who recovered
from influenza; however, if φ is high enough, there are no individuals infected with
influenza (R1 < 1). Therefore, τ1 is pointless for high values of φ.

Figure 3(a) (Fig. 3(b)) indicates the cumulative proportion of infectedwith influenza
(COVID-19) after 365 days of introducing one infected case with varying φ between
zero and one, and with different values of τ2 (τ1). For Fig. 3(a), we noticed that high
values of φ indicate that R1 < 1 and virus interference (τ2) is irrelevant since the
influenza is not going to spread, which is consistent with Fig. 2(a). Further, for lower
values ofφ, τ2 plays a significant role in reducing the cumulative proportion of infected
since by preventing individuals who have had COVID-19 and recovered from getting
influenza, that is also preventing them from infecting other individuals. For Fig. 3(b),
we observed that asφ > 0.2, τ1 is irrelevant whereas if no one gets vaccinated (φ = 0),
then natural virus interference makes about 5% difference.

We provide numerical simulations of the combined disease burden with varying
amounts of influenza vaccine proportion (φ) and virus interference factors (τ1 and τ2).
Figure 4(a) indicates how variations in virus interference factors (τ1 and τ2) affect
the combined disease burden characteristics when the amount of influenza vaccine
proportion (φ) varies. The horizontal axis is virus interference by influenza against
COVID-19 (τ1). The vertical axis is virus interference by COVID-19 against influenza
(τ2). Figure 4(a) is created by incrementing τ2 along the vertical axis, and then for each
value of τ2 increasing τ1 along the horizontal axis until the threshold characteristic is
observed. The first threshold, between region I and II, is whether the disease burden
exceeds the asymptotic line, i.e., the first point where the non-monotone increase

123



How influenza vaccination and virus interference may … Page 11 of 15 10

occurs. The second threshold is between region II and III, where the combined disease
burden at φ = 0 exceeds the asymptotic line for φ > 0.6.

Increasing φ from 0 to around 0.2 increases overall COVID-19 incidence due to
reduced virus interference; this increases the overall disease burden. At the same time,
influenza incidence is decreasing due to vaccination, but the decrease in overall disease
burden is outweighed by the increase in COVID-19 until the point where COVID-19
incidence plateaus. After that, flu incidence decreases (as φ increases) until it drops to
zero asR1 reaches 1. In region I, this occurs before COVID-19 incidence plateaus, but
in regions II and III there is a drop in overall disease burden after COVID-19 incidence
plateaus. For virus interference factors (τ1 and τ2) in region I, increasing φ always
raises the combined disease burden (see the solid curve in Fig. 4(b)). For τ1 and τ2 in
region II, increasing φ increases the combined disease burden until the point where
the cumulative number of COVID-19 infections stops rising, then combined disease
burden decreases until it reaches the asymptotic level, which is the point where the
cumulative number of influenza infections is zero. However, in this region, influenza
vaccination always increases the combined disease burden relative to vaccinating no
one (see the dashed curve in Fig. 4(b)). For τ1 and τ2 in region III, increasing φ will
share the same characteristics as in region II. Still, vaccinating two-thirds or more of
the population decreases the combined disease burden relative to vaccinating no one
(see the dash-dotted curve in Fig. 4(b)).

Another way to illustrate the net virus interference is by a mathematical description

r =
√

(1 − τ1)2 + (1 − τ2)2,

where r is a measure of the net virus interference. (It is the Euclidean distance from
(τ1, τ2)=(1,1), the top right corner of Fig. 4(a), which represents no virus interference.)
Therefore, very roughly, region III is the regionwhen r < 0.35,which can be described
as low net virus interference. Region II has r > 0.35 but τ2 > 0.6, which can be

(a) (b)

Fig. 4 a Variations of virus interference factors (τ1 and τ2) against the combined disease burden; b The
combined disease burden vs. φ) with varying amounts of τ1 and τ2
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explained as significant net virus interference but limited COVID-19-on-influenza
interference. Finally, region I has τ2 < 0.6, which can be described as high COVID-
19-on-influenza interference.

5 Discussion and conclusions

Mathematical models help forecast disease dynamics and estimate significant quan-
tities such as disease burden that can be incorporated to evaluate disease control
measures such as vaccination. One of the advantages of studies like ours is that it
can be carried out early in an outbreak to illustrate the impact of individual factors,
before extensive time-series data are available. This study analyzed deterministicmod-
els to investigate whether the influenza vaccine increases the combined disease burden
of influenza and COVID-19 in a dual outbreak due to a virus interference phenomenon
that reduces susceptibility to secondary infections in those who recover from natural
primary infections (rather than being vaccinated). The control reproductive numbers
R1 and R1 as well as the invasion reproductive numbers R̃1 and R̃2 were computed
in this study. Together, these quantities measure a disease’s ability to spread in a com-
pletely susceptible population or to invade while another disease is present and at
equilibrium.

According to this study, the combined disease burden’s behavior depends on virus
interference factors (τ1 and τ2), representing reduced susceptibility, and on the propor-
tion of the population vaccinated against influenza (φ). Regardless of virus interference
levels, vaccinating two-thirds or more of the population against influenza eliminates
the flu outbreak (R1 < 1). In this case, the cumulative number of influenza infections
drops off, and the cumulative number of COVID-19 infections levels off in φ, so that
for vaccine coverage φ of 60% or more, there is effectively no change in the combined
disease burden as virus interference levels vary (see Fig. 4(b)). However, virus inter-
ference still plays a strategic role, as it affects disease burden at lower vaccine coverage
levels, and thus affects whether the combined disease burden is lower for high or low
coverage. Depending on the degree of virus interference, the combined disease burden
either increases monotonically in φ, or rises and then falls to an asymptotic level. As
seen in Fig. 4(b), these effects divide virus interference levels into three regions.

If τ1 and τ2 fall in region I, indicating that for all values of τ1 virus interference by
COVID-19 (τ2) gives a 40% or more protection against influenza, then the influenza
vaccine is always unhelpful, and the lowest value of the combined disease burden
is when no one has received the flu vaccine (φ = 0). In this region (region I), the
combined disease burden only increases when the vaccine coverage (φ) is between
0% and 20% since, in this interval, the cumulative number of COVID-19 infections
increases and the cumulative number of flu infections dies out. Further, when the
vaccine coverage (φ) is more than 20%, there is no change in the combined disease
burden due to no changes in the cumulative number of flu and COVID-19 infections
(see the solid curve in Fig. 4(b)).

If τ1 and τ2 fall in region II, indicating that virus interference by the flu gives at
least 30% protection against COVID-19 and virus interference by COVID-19 gives
at most 40% protection against the flu, then influenza vaccine is not beneficial since
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the combined disease burden is lower for no vaccine coverage φ = 0 than for vaccine
coverageφ of 60%.Under this condition, the combineddisease burden’s lowest value is
whenφ = 0. In this region, the combineddisease burden increaseswithφwhenvaccine
coverage (φ) is between 0% and 20% since the cumulative number of COVID-19
infections increases at a much larger scale than the cumulative number of flu infections
decreases. Further, when vaccine coverage (φ) is between 20% and 60%, the combined
disease burden falls approaching the asymptotic level since the cumulative number
of flu infections decreases and no changes in the cumulative number of COVID-19
infections. However, the end results in this region are that vaccinating no one is better
than vaccinating two-thirds of the population (see the dashed curve in Fig. 4(b)).

For low net virus interference (region III), influenza vaccination is only beneficial
if two-thirds of the population or more have received the influenza vaccine (φ > 0.6)
because the combined disease burden is lower for vaccine coverage φ of 60% or more
than for no vaccine coverage φ = 0. Under this condition, the combined disease
burden shares the same qualitative trends as in region II, but the lowest value is when
φ ≥ 0.6 (see the dash-dotted curve in Fig. 4(b)).

In general, influenza vaccination only lowers the overall disease burden when net
virus interference is relatively low (region III) and vaccine coverage is high enough that
the reduction in influenza cases more than compensates for any increase in COVID-
19 cases. Influenza vaccination may increase the overall disease burden because the
average disease burden for one case of COVID-19 is significantly higher than the
average disease burden for one case of influenza. Additionally, the actual degree of
virus interference in each direction remains a source of some debate, and further
studies are needed to measure these factors. However, according to (Wolff 2020),
influenza-on-COVID-19 interference (τ1) is 0.64, which places us either in region I or
region II, depending on what COVID-19-on-influenza interference (τ2) is. Regardless
of COVID-19-on-influenza interference (τ2), the combined disease burden is always
higher relatively when vaccinating two-thirds or more of the population.

In cases where two co-circulating diseases have separate burdens and case fatality
ratios, vaccinating only a few individuals against one of the diseases may make the
other disease increase the combined disease burden more than the vaccine reduces it
due to virus interference being a part of the cause. It is essential to get a proper amount
of vaccine coverage to overcome the range of increasing overall disease burden. The
model structure that we developed could also be used to evaluate the risk of vaccination
increasing disease burden by preventing virus interference for other diseases. Hence,
it would be important to develop estimates for the degree to which the respective
infections interfere with each other by stimulating the body’s nonspecific immune
response.

The sustained drop in influenza cases during the COVID-19 pandemic is attributed
largely to behavior changes (preventive measures) aimed at containing COVID-19
but impacting the spread of most respiratory infections. Behavior changes are another
significant factor to take into account (see Alharbi and Kribs 2022), independent of
viral interference. Such factors interact and may interfere, as clearly occurs with these
two.

One of the limitations of this study is that the actual degree of virus interference is
still being debated. As all the epidemiological parameters in the study become better
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known, we will have not just a better idea of where the region boundaries are, but a
better idea of which region we are in. In the future, a study can be extended to consider
vaccination in both diseases since vaccinating the world’s population against COVID-
19 is currently a primary focus of world public health. Only when a large proportion
of the population has been vaccinated will we begin to observe effects such as those
outlined in this study.

A long enough epidemic–certainly including the present COVID-19 epidemic–
changes certain transmission elements. Vaccine efficacy may wane over time,
especially as new variants emerge, and since virus interference occurs when two infec-
tions take place within the time frame of the body’s nonspecific immune response,
those who recover from either disease will eventually pass into a state where any viral
interference is greatly diminished, as that nonspecific immune response winds down.
This partially mitigates the overall effect of viral interference. COVID-19 vaccination,
not incorporated in the original model, also further affects susceptibility to infection.
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