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Abstract: AI systems, especially artificial neural networks (ANNs), are increasingly in-
volved in the diagnosis and personalized management of ophthalmologic disorders. Back-
ground: This study shows the practical applications of artificial intelligence for predicting
the progression of intraocular hypertension (IOH) to glaucoma. Methods: This study
involved two groups of patients with IOH and a control group, analyzed using the com-
mercial Neurosolution simulator. The findings were compared with experimental data.
The performance of the neural models was evaluated using several metrics: Mean Squared
Error (MSE), Normalized Mean Squared Error (NMSE), correlation coefficient (r2), and
percentage error (Ep). Results: For all three patient groups, the best performance was
achieved with neural networks featuring two hidden layers: MLP(9:18:9:3) for group 1,
MLP(10:20:10:3) for group 2, and MLP(10:30:20:3) for group 3. The MSE values during
validation were 0.39 for groups 1 and 2, and 0.34 for group 3. For these neural networks, the
probability of producing correct outputs during validation was 75% (i.e., 9 correct responses
out of a possible 12). The findings in this study are in line with those reported by other
researchers in the field. Conclusions: The neural network models developed in this study
demonstrated their potential for predicting the progression of intraocular hypertension
to glaucoma.

Keywords: artificial intelligence; glaucoma; intraocular hypertension; artificial neural networks

1. Introduction
Glaucomatous optic neuropathy is the leading cause of irreversible blindness world-

wide. Glaucoma is a progressive, neurodegenerative optic neuropathy of multifactorial
etiology that results in the death of retinal ganglion cells (RGCs). Glaucomas comprise
a group of diseases that lead to the progressive loss of RGCs, producing a characteristic
pattern of optic nerve head damage and visual field (VF) defects. According to studies con-
ducted on healthy individuals, the association between glaucoma and intraocular pressure
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(IOP) was historically considered absolute—patients with an IOP more than two standard
deviations above the population mean (often above 21 mmHg) were believed to inevitably
develop glaucoma.

However, modern clinical, histopathological, and experimental evidence suggests that
the optic nerve head is the primary site of IOP-induced injury in glaucoma. Glaucomatous
damage is caused by a range of risk factors, including elevated intraocular pressure,
ischemic perfusion injury, structural abnormalities of the lamina cribrosa, and suspected
intrinsic factors acting at the level of RGCs and their supporting glia—such as oxidative
stress, calcium dysregulation, and increased intracellular signaling cascades.

IOP is known to exert pathological effects by inducing biomechanical stress at the level
of the lamina cribrosa and by disrupting axoplasmic flow, indirectly impairing RGC axonal
perfusion—either individually or through a combination of these mechanisms and others.
Another recognized mechanism is hypoperfusion of the optic nerve head, implicating
systemic blood pressure as a contributing factor in glaucoma pathogenesis. [1]

Diagnosing and monitoring the disease require combining clinical examination find-
ings with subjective data from visual field testing and objective biometric measurements
such as pachymetry, corneal hysteresis, and imaging of the optic nerve and retina. In clinical
practice, glaucoma is typically diagnosed and followed using a multi-modal approach,
including intraocular pressure (IOP) measurement through tonometry, visual field tests,
optical coherence tomography (OCT), and fundoscopic examination [2–4]

Each of these diagnostic tools has its limitations: tonometry readings can be influenced
by corneal thickness, visual field tests depend on the patient’s attention and cooperation,
and OCT and fundus exams require expert interpretation, often with a high degree of
subjectivity [2,3]. Furthermore, patients with intraocular hypertension who are at risk of
developing glaucoma need to be monitored regularly to allow for early detection and timely
intervention. Artificial intelligence (AI) has emerged as a valuable tool for harnessing this
extensive data, offering automated, consistent, and predictive support across all stages of
glaucoma care [3,4].

Neural networks have been widely applied in medical diagnostics due to their ability
to generalize—meaning they can operate with data different from the ones used during
training once the models have been validated [5–7]. Several studies in the literature have
demonstrated the potential of artificial intelligence (AI) in ophthalmology as well as in
other branches of medicine. In oncology, neural networks integrated with CT, MRI, and
PET imaging have been proposed for the detection of brain tumors. More recently, AI has
been used to predict medical events and patient outcomes [8–10]. Studies have shown
that neural networks can estimate survival rates in patients with breast, colorectal [10,11],
lung [12], and prostate cancer [13] more accurately than traditional clinical assessments. In
obstetrics and gynecology, AI tools are also gaining ground. The ability of AI to process
and store large volumes of data can support the identification of risk factors for premature
labor. Moreover, in assisted reproduction, AI is being used to select the most viable oocytes
and embryos [14–16]. Artificial neural networks can be useful tools for the prediction of
several neurodevelopmental outcomes, and their predictive performance can be improved
by including a large number of clinical and paraclinical parameters [17].

A recent study suggested that incorporating machine learning algorithms into first-
trimester screening for preeclampsia (PE) and intrauterine growth restriction (IUGR) could
enhance the overall detection rate of these conditions. However, this hypothesis should be
validated in larger groups of pregnant women from various geographic regions [18].

Artificial intelligence tools, and especially artificial neural networks, are progressively
involved in detecting and customizing the control of ophthalmic diseases. In ophthal-
mology, artificial intelligence is applied in several areas, most commonly in the diagnosis
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and prediction of conditions such as glaucoma, diabetic retinopathy, age-related macular
degeneration, and retinopathy of prematurity. Particularly, glaucoma has been extensively
studied, with several studies supporting the use of AI tools to predict disease progression
through image analysis [3,5]. The precise data of the explorations and, particularly, the
emergence of new imaging methods (OCT) have led to the increase in interest in the use
of these tools by multidisciplinary teams. The combination of AI technologies and optical
coherence tomography (OCT) proved to be trustworthy in detecting retinopathies or in
enhancing the diagnostic conduct of retinal diseases [5–7]. In a study we carried out in 2021,
the combination of DE and SVM proved to be effective, with the methodology offering
relevant results for the current issue: an accuracy of 100% for the training set and 95.23%
for the test set, with only one sample being incorrectly rated. The study was conducted
on a sample of 52 patients: particularly, 101 eyes with glaucoma and diabetes mellitus,
in the Ophthalmology Clinic I of the “St. Spiridon” Clinical Hospital of Iasi. The criteria
considered in the modeling action were normal or hypertensive open-angle glaucoma, in-
traocular hypertension, and associated diabetes [19]. In another recent work (2022), various
machine learning algorithms aiming at estimating the progression of open-angle glaucoma
(POAG) were used. The evaluation of glaucoma progression was conducted based on
parameters such as VFI (Visual field index), MD (Mean Deviation), PSD (Pattern Standard
Deviation), and RNFL (retinal nerve fiber layer). The best results of over 90% accuracy
were achieved by Multilayer Perceptron and Random Forest algorithms [20]. Additional
studies further support the link between sleep apnea syndrome and glaucomatous changes.
In this study, it was found that the increased rate of sleep apnea syndrome produced a
severe ocular surface disorder and a neurodegenerative disorder of the retina. The eyes
of patients with sleep apnea syndrome (SAS) and glaucoma had lower mean intraocular
pressure than the eyes with glaucoma without SAS. However, the mean C/D ratio in eyes
with glaucoma correlated with the severity of SAS. Applied neural network models have
demonstrated their potential in predicting glaucoma progression in patients with coexisting
sleep apnea. During the validation phase, most of the calculated parameters fell within a
±25% confidence interval, thus reinforcing the connection between sleep apnea syndrome
and glaucoma-related changes, as previously reported in the literature [21,22]. More recent
studies and meta-analyses (8, 2025), including 48 studies, have demonstrated that deep
learning (DL) algorithms exhibit high diagnostic performance in detecting glaucoma using
fundus photography and OCT imaging. This can be achieved by recognizing subtle struc-
tural changes indicative of glaucoma, such as the optic nerve head morphology (e.g., the
cup-to-disc ratio) or the thickness of the retinal nerve fiber layer. Additionally, by incorpo-
rating clinical data and visual field measurements, DL models can extract spatiotemporal
features that may provide improved assessments of glaucoma progression [23]. Another
recent review of studies in the literature shows that in glaucoma, AI can help analyze
large amounts of data from diagnostic tools, such as fundus images, optical coherence
tomography, and visual field tests [24].

In light of recent results and the critical importance of early glaucoma diagnosis—
particularly in preventing disease progression—this study aimed to employ artificial intelli-
gence tools to predict the progression of intraocular hypertension to glaucoma.

2. Materials and Methods
2.1. Study Group

To develop the neural networks, we used NeuroSolutions 4.01, a specialized software
product created by NeuroDimension, Inc. (Gainesville, FL, USA). This simulator is based on
visual programming and provides users with predefined neuron models, data interaction
modules, and training algorithm components. These elements are easy to configure and
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visually represented, enabling the intuitive construction of neural network structures.
NeuroSolutions also offers continuous and direct control over neural network parameters—
even during the training process—making it a versatile tool for designing and managing
artificial neural networks. Through its graphical interface, users can combine modular
blocks to generate a wide range of neural architectures. The type of neural network used is
the Multilayer Perceptron (MLP) with feedforward error propagation.

The Multilayer Perceptron is a feedforward neural network with one or more hidden
layers, consisting of the following:

• An input layer;
• One or more hidden layers;
• An output layer;
• Computation occurs only in the hidden and output layers;
• Input signals are propagated forward through each layer of the network.

A hidden layer is referred to as such because its desired output is not explicitly known;
given the input–output mapping of the entire network (treated as a “black box”), it is
not possible to determine the expected output of individual neurons in hidden layers.
Commercial neural networks typically have one or two hidden layers, each containing
between 10 and 1000 neurons. Experimental networks may include 3 or 4 hidden layers
with millions of neurons.

The number of layers—and more importantly, the number of neurons in each layer—
is generally determined through trial and error, with the goal of achieving optimal
model performance.

In this study, feedforward neural networks (Multilayer Perceptrons) were developed
using two hidden layers for each of three patient groups. The constructed database included
data from the following groups:

Group 1: 75 patients with untreated intraocular hypertension (IOH);
Group 2: 70 patients with treated IOH;
Group 3 (control group): 85 patients with primary open-angle glaucoma (POAG).
A total of nine input parameters were considered: age, sex, months since diagnosis,

diagnosis group, systolic blood pressure, diastolic blood pressure, pachymetry, maximum
intraocular pressure (IOP max), and minimum intraocular pressure (IOPmin). The model
outputs consisted of three parameters: PSD (Pattern Standard Deviation), RISC (risk of
glaucoma progression), and C/D ratio (cup-to-disc ratio).

The number of neurons per layer varied between 9 and 30. Neural network training
was performed using NeuroSolutions, a dedicated software developed by NeuroDimension.
The TanhAxon activation function was used in all layers. The training process, which
depended on the number of epochs, lasted less than 8 min in all cases. The Momentum
learning algorithm was employed.

The optimal number of training epochs was determined by evaluating the model’s
performance as the number of epochs increased. For networks trained on Group 1 and
Group 3, the optimal value was 80,000 epochs, while for Group 2, the optimal number was
60,000 epochs.

The most important stage in the neural network modeling was validation, during
which a dataset that was not used during training was employed to evaluate the model’s
ability to generalize (Figure 1).
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Figure 1. Stages of modeling with neural networks.

The criteria used to select the optimal network topology included the following
performance metrics:

• Mean Squared Error (MSE);
• Correlation coefficient (r2);
• Percentage error (Ep%).

The topology of each network was encoded as (m:n:p), where m represents the number
of neurons in the input layer; n represents the number of neurons in the hidden layer(s);
and p represents the number of neurons in the output layer.

The most critical phase in the modeling process was validation, where the model’s
responses were evaluated using data that were not included in the training set, in order to
assess the network’s generalization ability.

The performance of the neural network models was evaluated by calculating the Mean
Squared Error (MSE), Normalized Mean Squared Error (NMSE), correlation coefficient (r2),
and percentage error (Ep). The closer the MSE was to zero and the r2 value was to 1, the
better the model’s performance.

2.2. Statistical Analysis

The database was created in the EXCEL program and was statistically processed
with the SPSS 18.0 program. The ANOVA (analysis of variance) test, Student’s t test, χ2

test, Kruskal–Wallis test, non-parametric test comparing 3 or more groups, the correlation
between different phenomena performed using the “r” (Pearson) correlation coefficient,
the receiver operating characteristic (ROC) curve highlighting the specificity/sensitivity
balance as a prognostic factor, and logistic regression (multivariate analysis) were used as
analytical tests

3. Results
3.1. Statistical Analysis Results

Prior to modeling with artificial neural networks (ANNs), statistical processing of the
dataset was conducted using SPSS version 18.0.
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The study group consisted of 234 patients, divided into three subgroups based on the
management of intraocular hypertension (IOHT) and glaucoma risk, as follows:

Group I—75 patients with untreated IOHT;
Group II—70 patients with treated IOHT;
Group III—89 patients with treated primary open-angle glaucoma (POAG)—control group.
Sex distribution showed a higher proportion of female patients (77.8%), with no

statistically significant differences between the study groups (p = 0.505).
Age distribution:
The patients’ ages ranged from 50 to 86 years, with an overall mean age of

59.38 ± 11.66 years. Across the three study groups, age distribution was statistically homo-
geneous (p = 0.353), although the mean age was slightly higher in the treated IOH group
(61.07 years) compared to the untreated IOH group (58.61 years) and the treated POAG
group (58.71 years) (Figure 2).

Figure 2. Mean age values across the study groups.

The age group distribution revealed the following statistically significant findings
(p = 0.004):

The highest frequency of patients with untreated intraocular hypertension (IOH) was
observed in the 50–59 age group (40%) and the 60–69 age group (36%).

Among the patients with treated IOH, the peak frequency was in the 60–69 age group
(42.9%).

For patients with treated primary open-angle glaucoma (POAG), the highest frequency
was also in the 60–69 age group (51.7%).

Systolic blood pressure ranged from 93.33 to 171 mmHg, with a significantly higher
mean value recorded in the treated IOH group (132.10 mmHg, p = 0.011).

Diastolic blood pressure ranged from 93.33 to 110 mmHg, with a slightly higher
average observed in the untreated IOH group (84.43 mmHg), though this difference was
not statistically significant (p = 0.622).

Central corneal thickness (pachymetry) showed no significant differences in mean
values between the three groups (p = 0.375).

The mean intraocular pressure was significantly lower in the treated POAG group (see
Table 1).

The mean Pattern Standard Deviation (PSD) was significantly lower in patients with
treated IOH (p = 0.003).

The 5-year risk of conversion from intraocular hypertension (IOHT) to glaucoma was
significantly higher in untreated IOHT patients (16.83%) compared to those with treated
IOHT (12.21%) and treated POAG (control group) (11.24%), with a statistically significant
difference (p = 0.001) (Table 2).
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Table 1. Statistical indicators of intraocular pressure (IOP, mmHg) compared across study groups.

Study Group N Mean Standard
Deviation

Standard
Error

Confidence Interval 95%
Min Max FANOVA p

Test−95%CI +95%CI
IOP maximum
Group I 75 22.89 4.23 0.49 21.92 23.87 15 34

0.001
Group II 70 20.70 6.19 0.74 19.22 22.18 10 48
Group III 89 19.71 3.48 0.37 18.97 20.44 10 33
Total 234 21.03 4.84 0.32 20.40 21.65 10 48
IOP minimum
Group I 75 17.32 3.46 0.40 16.52 18.12 10 28

0.002
Group II 70 17.17 5.01 0.60 15.98 18.37 11 38
Group III 89 15.39 3.24 0.34 14.71 16.08 9 30
Total 234 16.54 4.00 0.26 16.03 17.06 9 38

Table 2. Statistical indicators of the 5-year risk of conversion from intraocular hypertension (IOHT)
to glaucoma, compared across study groups.

Study Group N Mean
Standard
Deviation

Standard
Error

Confidence Interval 95%
Min Max

Test
FANOVA p−95%CI +95%CI

Whole
Group 234 13.66 8.57 0.56 12.55 14.76 3 33 -

Group I 75 16.83 9.80 1.04 14.77 18.89 4 33
0.001Group II 70 12.21 7.86 0.94 10.34 14.09 4 33

Group III 89 11.24 6.29 0.73 9.79 12.69 3 33

The conversion risk from untreated intraocular hypertension (IOH) to glaucoma was
found to be nearly twice as high as in treated patients (RR = 1.98; 95% CI: 1.05–3.15;
p = 0.002). These results demonstrate that the 5-year risk of glaucoma development doubles
in the absence of treatment, and after 7 years, the risk becomes approximately three times
higher (see Figure 3).

Figure 3. Five-year risk of conversion from intraocular hypertension (IOHT) to glaucoma.

Linear regression model 7 showed that in 59% of cases, individual values of blood
pressure, central corneal thickness, intraocular pressure, pattern deviation, and the cup-to-
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disc ratio were significant predictors of an increased risk score for glaucoma progression
(p = 0.001) (Table 3).

Table 3. Linear regression model.

Model R R
Square

Adjusted
R Square

Std. Error of
the Estimate Change Statistics

R Square
Change

F
Change df1 df2 Sig. F

Change

1 0.106 (a) 0.011 0.007 8.542 0.011 2.637 1 232 0.106
2 0.309 (b) 0.096 0.088 8.187 0.084 21.537 1 231 0.001
3 0.313 (c) 0.098 0.086 8.193 0.003 0.675 1 230 0.412
4 0.314 (d) 0.099 0.083 8.208 0.001 0.169 1 229 0.681
5 0.492 (e) 0.242 0.225 7.544 0.143 43.055 1 228 0.001
6 0.492 (f) 0.242 0.222 7.561 0.000 0.012 1 227 0.914
7 0.614 (g) 0.377 0.358 6.868 0.135 49.073 1 226 0.001
8 0.768 (h) 0.590 0.575 5.585 0.213 116.768 1 225 0.001

a. Predictors: (Constant), Sex; b. Predictors: (Constant), Sex, age; c. Predictors: (Constant), Sex, age, systolic
blood pressure; d. Predictors: (Constant), Sex, age, systolic blood pressure, diastolic blood pressure; e. Predictors:
(Constant), Sex, age, systolic blood pressure (SBP), diastolic blood pressure (DBP), CCP (corneal central thickness);
f. Predictors: (Constant), Sex, age, systolic blood pressure (SBP), diastolic blood pressure (DBP), CCP (corneal
central thickness), IOP max; g. Predictors: (Constant), Sex, age, systolic blood pressure (SBP), diastolic blood
pressure (DBP), CCP (corneal central thickness), IOP max, PSD; h. Predictors: (Constant), Sex, age, systolic blood
pressure (SBP), diastolic blood pressure (DBP), CCP (corneal central thickness), IOP max, PSD, CD.

3.2. Neural Network Modeling Result

Before making the prediction with neural networks, we analyzed the database. Based
on the analysis of the database, where we identified statistically significant correlations,
we included input and output parameters in this study. Another important landmark
was linear regression model 7, which showed that in 59% of cases, individual values of
blood pressure, central corneal thickness, intraocular pressure, pattern deviation, and
the cup-to-disc ratio were significant predictors of an increased risk score for glaucoma
progression (p = 0.001). The 5-year risk of conversion from intraocular hypertension (IOHT)
to glaucoma was significantly higher in untreated IOHT patients compared to those with
treated IOHT.

Thus, a total of nine input parameters were considered: age, sex, months, diagnosis
group (DG), systolic blood pressure, diastolic blood pressure, pachymetry, maximum
intraocular pressure (IOP max), and minimum intraocular pressure (IOP min). The three
output parameters were as follows: Pattern Standard Deviation (PSD), risk score (RISC),
and cup-to-disc ratio (C/D). These parameters were used in all three groups.

Thus, we tried to obtain the best networks for each group that would make the best
predictions about treated IOP in glaucoma versus untreated IOP. The presence of intraocular
hypertension treatment may positively influence the delay of intraocular hypertension
progression in glaucoma.

3.2.1. The First Dataset Consisted of 75 Entries, Which Were Randomly Divided into
63 Entries for the Training Stage and 12 for the Testing Stage

To randomly select the data used for the training and testing stages, the database
was processed as follows: each data series was assigned a random number using the
Excel function INT(row)·number of data + 1, then the data series were sorted in ascending
order based on the assigned number. Various types of transfer functions and training
algorithms were tested. The best results were found using the Tanh Axon transfer function
and the Momentum training algorithm. The Momentum training algorithm was used with
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a learning rate (α) of 0.01 and a Momentum coefficient (β) of 0.9. As shown in Figure 4, the
optimal number of training iterations was 80,000.

Figure 4. Variation in MSE with increasing number of training epochs for patient group 1.

A total of nine input parameters were considered: age, sex, months, diagnosis group
(DG), systolic blood pressure, diastolic blood pressure, pachymetry, maximum intraocular
pressure (IOP max), and minimum intraocular pressure (IOP min). The three output
parameters were as follows: Pattern Standard Deviation (PSD), risk score (RISC), and
cup-to-disc ratio (C/D).

The Kruskal–Wallis one-way analysis of variance on ranks revealed statistically signif-
icant differences in the median values among the treatment groups (H = 849.848, degrees
of freedom = 11, p < 0.001), indicating that the observed differences were unlikely to have
occurred by chance. To compare the datasets, we performed the Student–Newman–Keuls
(SNK) test, which was chosen to identify the specific differences between groups following
the significant Kruskal–Wallis test. The pairwise comparisons for the experimental data
resulted in statistically significant differences (p < 0.05). This confirmed the presence of
substantial differences between all evaluated groups, consistent with the non-parametric
nature of the data.

Table 4 shows the topologies of the Multilayer Perceptron (MLP) neural networks
constructed for the first dataset, along with their performance metrics, including Mean
Squared Error (MSE), Normalized Mean Squared Error (NMSE), correlation coefficient (r2),
and percentage error (Ep).

MSE =

P
∑

j=1

N
∑

i=1
(dij − yij)

2

N · P
(1)
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where p represents the number of output variables (in this case, p = 1), N is the number of
data points, is the output value for element i after processing element j, and is the desired
(target) output for element i after processing element j;

NMSE =

(
Yexp − Ynet

)2

Yexp · Ynet
(2)

r2 =
∑
(
Yexpi

− Yexp
)
·
(
Yneti − Ynet

)√
∑
(
Yexpi

− Yexp
)2 ·

(
Yneti − Ynet

)2
(3)

Ep =
Yexp − Ynet

Yexp
· 100 (4)

where Y represents the output data values, with exp and net denoting the experimental
values and those retrieved from the neural network models, respectively. The correlation
coefficient (r2) was calculated using Equation (3). This coefficient can range from −1 to +1,
where a value of 0 shows no correlation, +1 indicates a perfect positive correlation, and −1
shows a perfect negative correlation.

Table 4. Different MLP topologies tested for the first dataset.

No. Network
Topology MSE NMSE r2 Ep (%) Training Phase

Length (Minutes)

1. MLP(9:9:3) 0.008268 0.047467 0.974388 12.58 2.57

2. MLP (9:11:3) 0.003215 0.018456 0.988966 8.39 4.36

3. MLP (9:13:3) 0.001481 0.008502 0.994451 5.14 4.37

4. MLP (9:15:3) 0.001156 0.006640 0.996061 4.87 4.36

5. MLP (9:17:3) 0.000183 0.001048 0.999359 1.94 5.12

6. MLP (9:18:3) 0.000175 0.001002 0.999431 1.87 4.23

7. MLP (9:27:3) 0.000048 0.000273 0.999818 0.73 5.12

8. MLP (9:18:9:3) 0.000031 0.000176 0.999981 0.59 4.38

9. MLP (9:27:9:3) 0.000035 0.000185 0.999890 0.62 7.58

The network topology was encoded as MLP (m:n:p), where m represents the number
of neurons in the input layer, n is the number of neurons in the hidden layer, and p is the
number of neurons in the output layer (as shown in Table 4).

According to the results shown in Table 4, the best performance is achieved by the
MLP (9:18:9:3) model. For this model, Figures 5 and 6 compare the experimental values
with those predicted by the model during the training and validation phases.

In the training phase, very good correlation coefficients, with values close to 1, were
observed, confirming that the neural model accurately correlated the output parameters
with the input parameters. According to the results shown in Figure 6, the neural model had
a 75% probability of producing correct responses during the validation phase (specifically,
9 responses close to the experimental values out of a possible 12).
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(a) 

 
(b) 

(c) 

Figure 5. Performance evaluation of the MLP (9:18:9:3) model during the training stage: (a) PSD,
(b) risk, (c) C/D.
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Testing of the best-performing neural model for this group of patients with untreated
ocular hypertension was performed by predicting PSD, RISK, and C/D for a set of five
patients (Figure 7). After obtaining these predictions, PSD, RISK, and C/D were evaluated
in these patients, and it was found that in only two out of five cases (40%) were there
significant differences between experimental values and neural model predictions for PSD
and C/D, and in one out of five cases (20%) for RISK.

Figure 6. Cont.
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Figure 6. Performance evaluation of the MLP (9:18:9:3) model during the validation stage, (a) PSD
(b) risk, (c) C/D.

Figure 7. Cont.
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Figure 7. Performance evaluation of the MLP (9:18:9:3) model during the testing stage: (a) PSD,
(b) risk, (c) C/D.

3.2.2. The Second Dataset of Patients with Treated Ocular Hypertension Comprises
70 Datasets

Of these, 58 were randomly selected for use in the training stage, while the remaining
data were reserved for the validation stage. To evaluate the differences between the inputs
and outputs of the database, we first performed the Shapiro–Wilk test for normality, which
indicated a failure to meet the normality assumption (p < 0.05). As a result, we proceeded
with the non-parametric Kruskal–Wallis one-way analysis of variance on ranks, which
revealed statistically significant differences in the median values among the treatment
groups (H = 865.380, degrees of freedom = 12, p < 0.001). This suggested that the observed
differences were unlikely to be due to chance. Additionally, to compare the datasets, we
also performed the Student–Newman–Keuls (SNK) test for this database. Statistically
significant differences were obtained (p < 0.05), indicating substantial differences between
all evaluated groups, consistent with the non-parametric nature of the data.
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Several Multilayer Perceptron (MLP) neural network models with feedforward error
propagation were constructed for this dataset, with their performances shown in Table 5.
According to the results shown in Figure 8, the optimal number of training epochs deter-
mined for this dataset was 60,000. The neural models’ performances shown in Table 5
correspond to this number of training epochs.

Table 5. Different MLP topologies tested for the second database.

No. Network Topology MSE NMSE r2 Ep(%) Training Phase
Length (Minutes)

1. MLP(10:10:3) 0.001849 0.009333 0.994498 5.26 2.23

2. MLP (10:12:3) 0.000620 0.003130 0.998483 2.22 2.12

3. MLP (10:14:3) 0.000309 0.001560 0.999258 1.77 1.77

4. MLP (10:16:3) 0.000080 0.000405 0.999851 1.01 3.16

5. MLP (10:18:3) 0.000009 0.000045 0.999977 0.21 3.19

6. MLP (10:20:3) 0.000085 0.000428 0.999821 0.56 3.16

7. MLP (10:20:10:3) 0.000008 0.000040 0.999984 0.20 5.02

8. MLP (10:30:10:3) 0.000014 0.000069 0.999974 0.21 4.52

Figure 8. Variation in MSE with increasing number of training epochs for patient group 2.

Figure 9 presents a comparative view of the experimental values and those predicted
by the best-performing MLP model (10:20:10:3). Correlation coefficients of 1 were obtained
for RISK and C/D, and 0.9999 for PSD.
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Figure 9. Performance evaluation of the MLP (10:20:10:3) model during the training stage: (a) PSD,
(b) RISC and (c) C/D.
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The results shown in Figure 10 indicate the probability of obtaining correct responses
from this neural model during the validation stage. This probability was 67% (8 responses
close to experimental values out of 12) for PSD, 83% (10 responses close to experimental
values out of 12) for RISK, and 75% (9 responses close to experimental values out of 12)
for C/D.

Figure 10. Cont.
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Figure 10. Performance evaluation of the MLP (10:20:10:3) model during the validation stage: (a) PSD;
(b) RISC; (c) C/D.

3.2.3. The Third Database (Control Group) Contains 89 Datasets Randomly Divided into 77
for Training and 12 for Validation

Applying the non-parametric one-way Kruskal–Wallis analysis of variance on ranks
to this dataset, we found statistically significant differences in the median values among
the treatment groups (H = 1103.741, degrees of freedom = 12, p < 0.001). Furthermore, the
Student–Newman–Keuls (SNK) test indicated statistically significant differences (p < 0.05)
between all evaluated groups, consistent with the non-parametric nature of the data.

The performances of the neural models developed for this database are shown in
Table 6, corresponding to an optimal number of training epochs of 80,000, as indicated by
the results shown in Figure 11.

Table 6. Different MLP topologies tested for the third database.

No. Network Topology MSE NMSE r2 Ep (%) Training Phase
Length (Minutes)

1. MLP(10:10:3) 0.005721 0.023217 0.986456 8.62 4.10

2. MLP (10:12:3) 0.001885 0.007649 0.995992 5.54 4.04

3. MLP (10:14:3) 0.000563 0.002283 0.998824 2.80 5.24

4. MLP (10:16:3) 0.000406 0.001649 0.999310 2.22 3.98

5. MLP (10:18:3) 0.000111 0.000452 0.999795 1.24 5.18

6. MLP (10:20:3) 0.000105 0.000424 0.999821 1.03 5.38

7. MLP (10:30:3) 0.000010 0.000041 0.999981 0.31 5.07

8. MLP (10:30:20:3) 0.000001 0.000004 0.999999 0.06 5.30

9. MLP (10:30:10:3) 0.000007 0.000029 0.999985 0.22 5.20
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Figure 11. Variation in MSE as a function of the increasing number of training epochs for patient
group 3.

In Figure 12, the findings during the training stage for the MLP (10:30:20:3) model are
shown compared to the experimental data. Very high correlation coefficients (r2 = 1) were
observed for all three output parameters considered.

(a) 

Figure 12. Cont.
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(b) 

(c) 

Figure 12. Performance evaluation of the MLP (10:30:20:3) model during the training stage: (a) PSD
MLP (10:30:20:3) and MLP experimental; (b) RISC MLP (10:30:20:3) and RISC experimental; (c) C/D
MLP (10:30:20:3) and C/D experimental.

During the validation stage, the neural model constructed for the third patient group
received the 12 input data series reserved for this phase. The predictions from the con-
structed models were compared with the experimental data. The best results for the three
output parameters were obtained with the MLP (10:30:20:3) model.

The excellent results obtained during the training stage for the highest performing
MLP (10:30:20:3) model were confirmed during the validation stage.

According to the results shown in Figure 13, the probability of obtaining correct
responses during validation was 67% (8 out of 12 predictions close to experimental values)
for PSD, 83% (10 out of 12 predictions close to experimental values) for RISK, and 100% (12
out of 12 predictions close to experimental values) for C/D.
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Figure 13. Cont.
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Figure 13. Performance evaluation of the MLP (10:30:20:3) model during the validation stage; (a) PSD;
(b) RISC; (c) C/D.

4. Discussions
Glaucoma is a challenging disease to understand, presenting difficulties in providing

accurate and timely diagnosis and prognosis. Currently, no algorithm guarantees the set
up of an optimal network, as optimizing the network architecture must fulfill multiple
objectives. The “perfect” network must provide reliable predictions, avoid overtraining,
ensure rapid convergence, minimize training time, offer better insights into the data-
generating process (facilitating rule extraction), and reduce the time and cost involved in
data collection and transformation. An optimal network should be large enough to learn
the underlying function and sufficiently small to generalize effectively.

In this study, the obtained results demonstrated the potential of using these models to
predict the progression of ocular hypertension (OHT) to glaucoma. The best performance
for the group with untreated OHT was achieved using the MLP model (9:18:9:3). This
neural model had a probability of providing correct responses during the validation phase
of 75% (i.e., 9 responses close to the experimental values out of a possible 12) for the three
output parameters: PSD, RISK, and C/D. For the group of patients with treated OHT,
the most performant model was MLP (10:20:10:3). During the training phase, this model
achieved correlation coefficients of 1 for RISK and C/D, and 0.9999 for PSD. The probability
of generating correct responses during the validation phase with this model was 67% (8
out of 12) for PSD, 83% (10 out of 12) for RISK, and 75% (9 out of 12) for C/D. In the
case of the control group, the best results were obtained with the MLP model (10:30:20:3).
The correlation coefficient during training was 1 for all three output parameters. The
probability of providing correct responses during the validation phase was 67% (8 out of
12) for PSD, 83% (10 out of 12) for RISK, and 100% (12 out of 12) for C/D. These results
are similar to those reported in the literature. Therefore, the objective of this study is
fulfilled through its ability to use these tools in predicting the progression of intraocular
hypertension to glaucoma.

Various studies in the literature also demonstrate the successful use of these artificial
intelligence tools in ophthalmology: for the assessment of the visual field, the optic nerve,
and the retinal nerve fiber layer, thus providing greater accuracy in identifying glaucoma
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progression and retinal changes in diabetes [25–30]. The most recent reviews offer an
analysis of all the studies in the literature that have employed artificial intelligence in
ophthalmology—specifically in glaucoma—for predicting the progression of early changes
that may occur in this disease, as well as in other conditions such as diabetic retinopathy,
retinopathy of prematurity, and age-related macular degeneration [22,31].

In glaucoma screening, a key role is currently played by intraocular pressure measure-
ment and fundus photography. Fundus photography is the fastest and simplest examina-
tion method to detect optic nerve damage caused by glaucoma. A recent study suggested
that improving artificial intelligence (AI) programs could make glaucoma screening easier
by analyzing color fundus photographs in a cost-effective manner. A study based on a large,
labeled dataset of fundus photographs for glaucoma screening, which used AI, also showed
that some specific features of glaucoma can be recognized and captured by AI [22,32]. Some
recent studies have used deep learning models to estimate global and local visual field (VF)
damage from raw OCT scans and quantified thickness measurements [33]. Another recent
study employed additional AI tools, such as deep learning, with PyTorch. The PyTorch
ANN models provided very good results in predicting visual field parameters (VFI, MD,
and PSD) based on previous visit investigations [34]. In the literature, similar research
highlighted the potential to predict 24-2 visual field defects up to 5.5 years into the future.
This approach was complex, involving a large number of parameters and being based on
deep learning neural networks that analyzed specific points in visual field images. Indeed,
relatively small prediction errors were achieved; however, in our approach, the predicted
visual field parameter values were lower than those reported by Wen et al. Moreover, this
methodology involves using data from the patient’s medical record through a simpler
method [35]. A study conducted by Thakur et al., 2023, discussed the application of deep
learning models to predict the onset of glaucoma from fundus photographs, directly related
to the task of predicting ocular hypertension that leads to glaucoma [36]. More recently, in
2023, Huang et al. described the GRAPE dataset, which includes multi-modal data such
as longitudinal visual field (VF) measurements, fundus images, and clinical information.
This dataset is crucial for training AI models to effectively predict the progression of ocular
hypertension to glaucoma—similar to our study. In general, the GRAPE dataset could be
used for prognostic prediction in glaucoma management and VF estimation, supporting
the exploration of the structure–function relationship and advancing computer-assisted
telemedicine in glaucoma care. The study advocated for the use of the GRAPE dataset
to develop AI models for prognosis evaluation and VF estimation [37]. All these studies
highlight the importance and usefulness of artificial intelligence tools in the diagnosis and
prediction of glaucoma progression. By using diagnostic data as in our study, AI can help
generate neural models that are applicable to large databases for predictive purposes.

4.1. Limitations and Challenges

This retrospective study involved a relatively small dataset. Obtaining patient consent
for using AI models is critical. Moreover, applying AI to a particular ethnic group can be
challenging if the AI algorithm is trained or tested on datasets with limited ethnic repre-
sentation. Ethically, integrating AI into complex healthcare systems could disadvantage
patients with multiple comorbidities by inadvertently reducing their priority.

4.2. Future Directions

Deep learning in retinal image analysis achieves excellent accuracy in the differential
detection of retinal fluid types in the most common exudative macular diseases. Using OCT
devices to monitor fluid volume evolution could allow for the optimization of anti-VEGF
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treatment. A deep learning network correctly indicates the need for intravitreal injections
in 95% of cases [25,26].

Telemedicine—daily self-imaging conducted with home OCT at home for neovascular
AMD [27]. Weekly image acquisition conducted using NVHO (Notal Vision Home OCT)
over a 3-month period. The scans were uploaded to the cloud, analyzed using the Notal
OCT Analyzer (NOA), assessed by human experts for the presence of fluid, and compared
with in-office OCT scans. NVHO scans were analyzed with NOA and in-office OCT scans
were assessed by human experts who agreed on fluid status in 96% of cases [27].

5. Conclusions
Glaucoma remains a complex disease to diagnose and monitor, and the use of ar-

tificial neural networks (ANNs) presents a promising alternative to traditional meth-
ods, especially in predicting progression from ocular hypertension (OHT) to glaucoma.
The models developed in this study—particularly the Multilayer Perceptron (MLP)
architectures—demonstrated good predictive capabilities across different patient sub-
groups, with validation phase accuracies ranging from 67% to 100% for key ophthalmologic
parameters (PSD, RISK, and C/D). The main advantages of using these techniques in
medical diagnostics include the ability to process large volumes of data, a low probability
of overlooking relevant information, and a reduced time required to establish a diagnosis.

The robustness of these results was reinforced by rigorous statistical analyses. Specif-
ically, the absence of missing data eliminated the need for imputation, thus avoiding
potential bias. Given that the Shapiro–Wilk test indicated a non-normal distribution of
the variables, a non-parametric Kruskal–Wallis one-way analysis of variance on ranks
was applied. This revealed statistically significant differences in the median values
across treatment groups: (H = 849.848, degrees of freedom = 11, p < 0.001)—Group I,
(H = 865.380 degrees of freedom = 12, p < 0.001)—Group II, and (H = 1103.741, degrees of
freedom = 12, p < 0.001)—Group III. Further, the Student–Newman–Keuls (SNK) test con-
firmed significant pairwise differences (p < 0.05), supporting the heterogeneity of the dataset
and justifying the use of neural models capable of capturing complex, non-linear patterns.

The convergence behavior and predictive performance of the networks suggest that
the high number of training epochs did not lead to overfitting, as monitored through
MSE analysis and confirmed by consistent validation results. Moreover, the statistical
heterogeneity of the dataset further justified extended training in order to generalize across
diverse patient profiles.
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