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Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in
response to various stimuli. These adaptations are due in part to the function of muscle-
resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated
by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by
signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as
well as a variety of non-cellular niche components. Sufficient dietary protein consumption is
critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal
muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses
to exercise in healthy populations and skeletal muscle disease states requires more
research. The present review provides an overview of this emerging field and suggestions
for future directions. The current literature suggests that in response to resistance exercise,
protein supplementation has been shown to increase MuSC content and the MuSC
response to acute exercise. Similarly, protein supplementation augments the increase in
MuSC content following resistance training. Endurance exercise, conversely, is an area of
research that is sparse with respect to the interaction of protein supplementation and
exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein
supplementation augments the early myogenic response to acute endurance exercise
but does not enhance the MuSC response to endurance training. Resistance training
increases the number of proliferating FAPs with no additional effect of protein
supplementation. Future research should continue to focus on the nutritional regulation
of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of
exercise on a variety of human populations.
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INTRODUCTION

Skeletal muscle is a remarkably plastic tissue that has a high capacity to adapt in response to different
stimuli (Baldwin and Haddad, 2002). In response to resistance exercise, skeletal muscle undergoes
hypertrophy and results in an increased muscle mass (Haun et al., 2019). Conversely, muscle disuse
and catabolic conditions can cause muscle wasting and degeneration resulting in atrophy (Fanzani
et al., 2012). Atrophy can be the result of malnutrition, inactivity, aging, and skeletal muscle disease
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(Fanzani et al., 2012; Rudrappa et al., 2016). Skeletal muscle mass
accounts for roughly 30% of body weight in females and
approximately 38% in males (Janssen et al., 2000), and it has
an important role in nutrient storage and regulation of
metabolism (Wolfe, 2006). Indeed, skeletal muscle contributes
significantly to post-prandial glucose disposal, lipid oxidation,
resting metabolic rate, and whole-body protein metabolism
(Wolfe, 2006; Morton et al., 2015). Further, the role of skeletal
muscle as an endocrine organ regulating multiple body systems is
emerging (Severinsen and Pedersen, 2020). Therefore, the
maintenance and regeneration of muscle mass is critical to
ensure health across the lifespan.

Skeletal muscle regeneration is facilitated by the activation and
expansion of myogenic muscle stem cells (MuSCs), also known as
satellite cells (Wang and Rudnicki, 2011; Wang et al., 2014).
MuSCs reside in skeletal muscle, adjacent to myofibers and
beneath the basal lamina, in a state of quiescence (Katz, 1961;
Mauro, 1961). Muscle damage and signals from cells in their
niche, including fibro-adipogenic progenitors (FAPs), cause
MuSCs to exit quiescence, proliferate, and differentiate to
facilitate muscle repair and adaptation (Feige et al., 2018). To
form a mature muscle fibre, MuSCs undergo multiple rounds of
proliferation to generate sufficient myonuclei (Bischoff, 1990).
Muscle regeneration occurs with several rounds of myoblast
fusion and muscle fibre maturation (Knudsen and Horwitz,
1977). Additionally, while the majority of MuSCs go through
proliferation and differentiation for skeletal muscle regeneration,
a sub-group of MuSCs will undergo cell division to maintain the
MuSC pool for future injuries (Collins et al., 2005; Sacco et al.,
2008; Dumont et al., 2015). FAPs are muscle resident multipotent
stromal cells that are directly involved in muscle adaptation
through their promotion of MuSC proliferation and
differentiation (Joe et al., 2010; Uezumi et al., 2010; Mozzetta
et al., 2013; Uezumi et al., 2021). FAPs have adipogenic,
fibrogenic, and osteogenic differentiation potential in vivo
(Contreras et al., 2021) and are phenotypically identified
primarily by their expression of PDGFRα and/or CD90 in
humans (Uezumi et al., 2014a; Farup et al., 2021) as well as
several recent markers that may distinguish FAP subpopulations
(Contreras et al., 2021). FAPs are critical during muscle
regeneration to sustain MuSC differentiation and to maintain
the MuSC pool during normal development (Wosczyna et al.,
2019) and aging (Lukjanenko et al., 2019). However, FAPs have a
physiological dichotomy such that in pathological conditions
FAP expansion results in an overproduction of fibro/fatty
infiltration which leads to impaired myogenesis (Joe et al.,
2010; Uezumi et al., 2010; Mozzetta et al., 2013; Contreras
et al., 2016; Dong et al., 2017; Gonzalez et al., 2017; Madaro
et al., 2018; Stumm et al., 2018).

Adequate dietary protein consumption throughout the
lifespan is critical for maintaining optimal skeletal muscle
health. Protein consumption plays a substantial role in the
attenuation of many skeletal muscle disorders, including those
caused by diabetes and age-related loss of muscle mass quantity
and function, termed sarcopenia (Beaudry and Devries, 2019).
Dietary protein consumption and dietary-derived amino acids
have proven to be an effective approach to slow muscle protein

catabolism in older adults (Paddon-Jones et al., 2004; Paddon-
Jones, 2006). Additionally, protein consumption from a wide
variety of sources such as whey supplementation (Park et al.,
2019), yogurt (Bridge et al., 2019), whole egg (Van Vliet et al.,
2017), and amino acids (Rieu et al., 2006), has a beneficial effect
on muscle growth and strength. While a large body of literature
and several excellent reviews (Atherton and Smith, 2012; Phillips,
2016; Burd et al., 2019) have described the interaction between
dietary protein consumption, exercise, and muscle protein
synthesis, the role of dietary protein consumption on MuSC
and FAP responses to exercise have been largely unexplored.
Therefore, the purpose of the current review is to highlight recent
studies examining the role of dietary protein in altering MuSC
and FAP responses to exercise, particularly hypertrophy-
inducing resistance exercise in healthy populations and skeletal
muscle disease states.

Role of Protein on Skeletal Muscle Mass
and the MuSC Niche
Muscle mass is determined, in part, by the relative rates of both
muscle protein synthesis (MPS) and muscle protein breakdown
(MPB). In the fasted state, rates ofMPB exceedMPS which results
in a negative protein balance (Biolo et al., 1995). In response to
protein consumption and an increase in plasma amino acid
availability there will be a subsequent increase in MPS and
decrease in MPB which will result in a net positive protein
balance (Biolo et al., 1995; Glynn et al., 2010). Exercise also
acts synergistically to the effects of protein consumption and
augments the muscle protein synthetic response (McLeod et al.,
2016; Burd and De Lisio, 2017). This response has been
demonstrated following both resistance exercise (Burd et al.,
2010; Burd et al., 2011; Reitelseder et al., 2011; Agergaard
et al., 2017) and endurance exercise (Pikosky et al., 2006;
Harber et al., 2010; Di Donato et al., 2014; Churchward-
Venne et al., 2020). This increase anabolic response following
exercise is thought to be due to an increased muscle sensitivity to
hyperaminoacidemia, resulting in a greater muscle protein
synthetic response to lower concentrations of protein intake
(Churchward-Venne et al., 2012). In contrast, catabolic
conditions such as physical inactivity shifts net protein balance
to favour degradation, which, if sustained for an extended period
can result in muscle atrophy (Vainshtein and Sandri, 2020). The
fine-tune balance between protein synthesis and degradation in
skeletal muscle is related to physical activity and nutritional status
and can positively or negatively impact the cells of the muscle
niche (Atherton and Smith, 2012; Shamim et al., 2018).

Dietary protein consumption is critical for providing the
substrates responsible for facilitating skeletal muscle repair and
regeneration (Shamim et al., 2018). Amino acids from dietary
protein consumption have previously been demonstrated to
promote myotube formation in vitro and increased Myod and
Myogenin expression in rat skeletal muscle (Dai et al., 2015).
Similarly, the leucine metabolite β-hydroxy-β-methyl butyrate
(HMB) has been demonstrated to enhance proliferation,
differentiation, and accelerate fusion in primary myoblasts
(Kornasio et al., 2009) and increase MuSC proliferation in
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neonatal pigs (Kao et al., 2016). These effects may be due to
leucine’s role in stimulating mammalian target of rapamycin
(mTOR) activity (Sancak et al., 2008). mTOR has long been
known for its key role in diverse cellular processes including cell
growth, differentiation, and protein synthesis (Laplante and
Sabatini, 2012). As such, mTOR is essential for MuSC
function and skeletal muscle regeneration through its role in
regulating the expression of myogenic genes (Zhang et al., 2015).
Rodgers et al. (2014) have previously demonstrated that
mTORC1 activity is necessary for MuSCs to transition during
quiescence to an alert phase to enhance their regenerative
capacity. Additionally, leucine can promote myoblast proliferation
and differentiation in vitro through anmTORC1-MyoD cascade (Dai
et al., 2015). Other essential amino acids (EAA’s) such as methionine
has also been identified as a regulator of cell proliferation (Walvekar
et al., 2018). Similarly, glutamine is the second most consumed
nutrient apart from glucose during the proliferation phase of
C2C12 myoblasts (Hosios et al., 2016), suggesting an important
role in cell proliferation and its deprivation can lead to an incomplete
cell cycle (Gaglio et al., 2009). Thus, in vitro and preclinical evidence
suggests that dietary amino acids may play a direct role in regulating
MuSC fate.

The Effects of Resistance Exercise and
Training With Dietary Protein Manipulation
on MuSCs
Responses to Acute Resistance Exercise
A large body of evidence has detailed the response of MuSCs after
acute resistance exercise in untrained adults. These studies have
been excellently reviewed elsewhere (Kadi et al., 2005; Snijders
et al., 2015; Murach et al., 2021; Roman and Muñoz-Cánoves,
2022). Resistance exercise is the primary mode of exercise used to
elicit positive changes in muscle mass (Schoenfeld et al., 2015)
and is composed of contracting the muscles against an external
resistance. In general, a single-bout of resistance exercise induces
MuSC activation as early as 4-h post-exercise (McKay et al.,
2009), with peak activation occurring at 72-h (Bellamy et al.,
2014). This has been confirmed in both young and older adults in
which increases in MuSC activation were observed between 6 and
24-h post-exercise (Walker et al., 2012; Luk et al., 2019), although
the MuSC response in older adults is delayed (Snijders et al.,
2014b).

A few recent studies have examined the synergistic effects of
protein consumption and acute resistance exercise on MuSC
content and activation (Hulmi et al., 2008; Roberts et al., 2010;
Farup et al., 2014a; Snijders et al., 2014a; Reidy PT. et al., 2017).
Gene expression of the myogenic regulatory factors, Pax7 and
MyoD, was similar in whole muscle homogenates between whey
protein and placebo groups between 1–6 h after a single bout of
resistance exercise in both young (Roberts et al., 2010) and older
(Hulmi et al., 2008) adults, suggesting no added benefit of whey
protein intake. However, with respect to MuSC content, whey
protein intake significantly increased MuSC content in type II
fibres 48-h post-unilateral knee extension exercises (Farup et al.,
2014a). Type II fibres are commonly referred to as “fast twitch”
fibre types and are characterized as having lower oxidative

capacity, greater glycolytic capacity, and greater force
producing capacity compared to “slow-twitch” type I fibres
(Henriksson and Reitman, 1976). Basal concentrations of
MuSC’s have been shown to vary between muscle fibre types
in healthy and diseased populations (Verdijk et al., 2007; Verney
et al., 2008; Verdijk et al., 2009; Snijders et al., 2011; McKay et al.,
2012; Suetta et al., 2012; Verdijk et al., 2012; Bankolé et al., 2013;
Snijders et al., 2014b) and respond differentially following
exercise depending on the type of fibre on which the MuSC is
located (McKay et al., 2012; Cermak et al., 2013; Joanisse et al.,
2013; Snijders et al., 2014b; Fry et al., 2014). In older adults,
ingestion of an EAA supplement resulted in a trend for more
Pax7+MuSCs 24-h after acute resistance exercise compared to the
placebo condition, indicating that there was a trend for an
increase in MuSC content (Reidy PT. et al., 2017). Further,
MyoD+MuSCs and Ki67+MuSCs were also significantly
increased in the group receiving EAAs versus placebo at 24-h,
both indicating that there was an increase in proliferative cells
(Reidy PT. et al., 2017). Together, these data suggest that protein
supplementation in the form of whey or EAAs augments the
MuSC response to acute resistance exercise in both young and
older males.

To examine the effects of reduced protein consumption on the
MuSC response to acute resistance exercise, Snijders et al. (2014a)
restricted dietary protein to 0.1 g/kg/d, which is below the
recommended daily allowance (RDA) (0.8 g/kg/d), for 4-days
prior to an acute bout of resistance exercise in young males.
Interestingly, no differences in MuSC content following
resistance exercise were observed in the protein restricted
group compared to the group that consumed adequate
amounts of protein (1.2 g/kg/d) (Snijders et al., 2014a).
However, the proportion of MuSCs expressing myostatin, an
inhibitor of myogenesis (Langley et al., 2002), remained low in the
protein restricted group compared to the normal protein group.
A prolonged reduction in Myostatin+MuSCs may predict a
prolonged MuSC response to training when protein is
restricted; however, later time points were not examined in
this study.

The general findings of the acute exercise studies suggest that
protein intake in the form of whey or EAA augments the MuSC
response to resistance exercise in both young and older males.
Conversely, protein restriction does not impair the MuSC
response to training and may prolong the response; however,
future studies with longer protein restriction and later post-
exercise timepoints are necessary to confirm this speculation.

Response to Resistance Training
Most studies suggest that resistance training increases MuSC
content, primarily in type II fibres. Verdijk et al. (2014), found
that 12-weeks of lower-body resistance training significantly
increased type II fibre CD56+MuSC content in older adults.
Similarly, a 12-weeks lower-body training program found that
NCAM+MuSC content increased robustly following resistance
training in extreme responders (Petrella et al., 2008). In addition,
16-weeks of lower-body resistance training in males and females
aged 20–35 years increased NCAM+MuSC content (Petrella et al.,
2006). Similarly, another 16-week study demonstrated
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Pax7+MuSC content was significantly increased in both type I
and II fibres in young males (Bellamy et al., 2014). The consensus
is that chronic resistance training increases MuSC content in
adults of all ages.

Several resistance training studies have examined the effects of
whey protein on Pax7+MuSC content. Some studies have shown
that protein supplementation during a resistance exercise
intervention did not increase MuSC content from what was
seen with exercise alone (Farup et al., 2014b; Reidy P. T. et al.,
2017; Snijders et al., 2018). However, Mobley et al. (2017)
observed an increase in MuSC number with protein
supplementation compared to placebo post-training. These
inconsistent findings could be explained by the amount of
protein consumed by participants in the different studies.
Participants in the study detecting differences in MuSC
content (Mobley et al., 2017) consumed higher (~1.8–2.0 g/kg/
d) amounts of protein compared to placebo (~1.3 g/kg/d).
However, in all studies, the placebo groups were consuming
adequate amounts of protein to support muscle hypertrophy
~1.3 g/kg/d of protein.

A particularly novel study examined the role of protein
supplementation on markers of muscle regeneration during
bedrest and recovery (Brooks et al., 2010). Participants were
confined to bedrest for 28-days followed by 14-days of active
recovery and were randomized to receive 15 g of EAA without
resistance training, EAA 3-h after resistance training or 5 min
before resistance training (Brooks et al., 2010). During the 14-
days of active recovery, all participants completed mild
endurance training, while the participants originally assigned to
the resistance training group during bedrest continued their
resistance training program. Only the participants that consumed
the EAA supplement 3-h after resistance exercise significantly
increased myonuclei per fibre, while a significant reduction in
myonuclei per fibre was detected in both the group that received
EAAs and remained sedentary, and the group that received EAAs 5-
min before exercise compared to baseline (Brooks et al., 2010). These
results suggest that the timing of amino acid delivery around exercise
may be a relevant factor in the MuSC and myonuclei response.

In summary, it appears as though protein supplementation
augments the increase in MuSC content following resistance
exercise training compared to control diets. The limited studies
in this area appear to indicate the effect of protein supplementation is
dependent on dose with higher amounts (>2xRDA) and protein
restriction below the RDA both potentially augmenting the MuSC
response. Interestingly, the single study examining the timing of
protein supplementation suggests that consuming protein a few
hours after resistance exercise may provide the optimal response, at
least in the context of skeletal muscle recovery following bedrest.

The Effects of Endurance Exercise and
Training With Dietary Protein Manipulation
on MuSCs
Endurance exercise is the most commonly prescribed type of
exercise and traditionally involves exercising at 65–70% of
VO₂ peak for durations of 30–60 min (Potteiger et al., 2003).
Endurance exercise has historically been considered to be

non- or minimally hypertrophic (Konopka and Harber,
2014). As a result, the role of MuSCs in facilitating
adaptations to endurance exercise was ignored for several
years. However, recently it has become appreciated that
MuSCs adapt to endurance exercise by increasing their
function and potentially content and play a role in non-
hypertrophic muscle adaptation to endurance exercise
(Joanisse et al., 2013; Nederveen et al., 2015; Abreu et al.,
2017; Joanisse et al., 2018). The synergistic effects of endurance
exercise paired with protein consumption are not well studied
in general, and even less so in the context of MuSCs.

With respect to acute endurance exercise, Rowlands et al.
(2016), examined the acute effects of different doses of protein
and leucine compared to placebo on myogenic transcripts
following intense endurance exercise composed of 100-min of
cycling at 70–90% Wmax. In the protein/leucine supplemented
condition the regenerative transcriptome was significantly
upregulated compared to placebo with no difference between
protein/leucine doses (Rowlands et al., 2016). With respect to
endurance training, (McKenzie et al., 2016) did not find any
additional beneficial effects of protein supplementation
compared to placebo on MuSC content following an
intervention that included 3-h of cycling for 20-days.
Together, initial evidence suggests that protein
supplementation augments the early myogenic response to a
novel endurance exercise stimulus but does not enhance the
MuSC response to endurance training.

The Effects of Dietary Protein Manipulation
and Muscle Disuse on MuSCs
Skeletal muscle atrophy can occur following a period of muscle
disuse, as a consequence of disease, or in conjunction with aging
(McKenna and Fry, 2017). Perturbations in MuSC activity and
quantity can exacerbate skeletal muscle atrophy in various
conditions (McKenna and Fry, 2017), which may be improved
by protein consumption. Muyskens and colleagues (2019)
demonstrated that in patients undergoing total knee arthroplasty,
those who consumed 20 g of EAAs twice-daily for 7-days prior and
6 weeks following surgery had higher MuSC content on the day of
surgery compared with a group consuming a placebo. Further, the
group that consumed EAAs had higher Myogenin expression, a
marker of later stage myogenesis at 1-week post-surgery, while the
placebo group had higher Myod expression, a marker of early
myogenic commitment (Ganassi et al., 2020), suggesting EAA
supplementation may accelerate myogenesis (Muyskens et al.,
2019). When resistance training was combined with whey protein
supplementation in patients on dialysis, Molsted et al. (2015) found
that the fibre-type specific increase in MuSC content was not
augmented by protein supplementation compared to placebo.
Lastly, in the context of aging, HMB supplementation has been
shown to improvemuscle recovery in rats with sarcopenia, in part by
increasing MuSC proliferation (Alway et al., 2013). While in a
human study, Dirks and colleagues (2017) found no additional
benefits of protein supplementation compared to placebo in
increasing MuSC content following resistance training in frail
elderly adults. As such, protein supplementation does not appear
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to provide added benefits to resistance exercise in the limited
research using clinical populations; however, EAAs may enhance
the myogenic response following surgery.

The Effects of Resistance Exercise and
Training With Dietary Protein Manipulation
on FAPs
MuSC’s contribution to muscle development, maintenance, and
regeneration is regulated by a variety of cells that reside in the
muscle niche. Among these cells, FAPs are an essential component
of the MuSC niche, providing trophic factors that modulate MuSC
activation and differentiation (Joe et al., 2010; Uezumi et al., 2010;
Lukjanenko et al., 2019; Wosczyna et al., 2019). FAPs are identified
by different transmembranemarkers such as platelet-derived growth
factor receptor alpha (PDGFRα), stem cell antigen-1 (Sca-1) in mice
and PDGFRα, cluster of differentiation 90 (CD90) in humans, along
with CD201, CD166, CD105, CD73 and CD15 (Joe et al., 2010;
Uezumi et al., 2014a; Uezumi et al., 2014b; Arrighi et al., 2015;
Uezumi et al., 2016; Kasai et al., 2017; Farup et al., 2020; Goloviznina
et al., 2020; Contreras et al., 2021; Farup et al., 2021). These skeletal
muscle-resident progenitors reside in the interstitial space between
myofibers and sense mechanical/contractile forces (De Lisio et al.,

2014). FAPs play an essential role in skeletal muscle maintenance
and regeneration (Wosczyna et al., 2019; Uezumi et al., 2021);
however, during aging FAPs enhance fibrotic differentiation at
the expense of adipogenic differentiation (Lukjanenko et al.,
2019) and many muscle diseases are characterized by enhance
fibrotic differentiation of FAPs (Contreras et al., 2021; Giuliani
et al., 2021). This dual role observed in FAPs during health and
disease is highly determined by themuscle niche (Theret et al., 2021),
of which amino acids are a crucial component, as well as their
metabolism (Nguyen et al., 2019; Collao et al., 2020).

The mechanisms responsible for how exercise and protein
consumption regulate FAP function is an area that warrants
further investigation. In this context, Farup et al. (2015),
demonstrated that 12 weeks of resistance training in humans
increased of the number of proliferating PDGFRα+ and CD90+
FAPs, with no additional effect of whey protein supplementation.
Interestingly, an acute muscle-damaging eccentric contraction
protocol in humans showed a decrease in pericyte number, only
in the protein supplemented group (De Lisio et al., 2015).
Pericytes are perivascular cells in the muscle interstitium that
envelop and form connections with adjacent capillary endothelial
cells and line the skeletal muscle vasculature (Bergers and Song,
2005). They have some phenotypic and functional overlap with

FIGURE 1 | The effects of resistance and endurance exercise plus protein consumption (PRO) on muscle stem cells (MuSC) and fibro-adipogenic progenitors
(FAPs). In response to skeletal muscle damage and signals from cells in their niche including FAPs, MuSCs exit from quiescence, proliferate, and differentiate to facilitate
muscle repair and adaptation. Generally, findings of both acute and chronic resistance exercise suggest that protein intake augments the MuSC response in both young
and older adults. Endurance exercise however is less understood. Acute exercise combined with protein consumption appears to upregulate myogenic transcripts
with no effects found in chronic endurance exercise. The effects of exercise, both resistance and endurance, with protein consumption on FAP function is poorly
understood and requires further investigation. Figure created with BioRender.com.
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FAPs in their role in muscle regeneration and MuSC regulation
(Joe et al., 2010, Birbrair et al., 2013). A recent paper by Liu et al.
(2022) demonstrated transcriptomic changes occur after
exercise training in old mice. Their single-cell RNA
sequencing analysis indicated an increase in Igf (the gene for
insulin growth factor) expression in FAPs from aged and
exercise trained mice. IGF signalling is known to stimulate
mTOR-Akt signalling to mediate skeletal muscle hypertrophy
by promoting myogenesis and protein synthesis (Yoon, 2017,
Bodine et al., 2001). These results provide a potential
mechanism whereby paracrine factors, produced by FAPs
could act synergistically with dietary protein to promote
MPS and MuSC activation. The relationship between
exercise, protein supplementation and FAP function, and the
mechanisms responsible for exercise induced FAP regulation
and how changes in circulating amino acid availability could
impact the crosstalk between all the cells in the muscle niche, is
still poorly understood.

Perspectives and Future Directions
While a large body of literature has been dedicated to delineating the
effects of protein supplementation on myofiber adaptations and the
protein synthetic response to increased/decreased use and disease;
the effects of protein and exercise on skeletal muscle cell populations,
including MuSCs and FAPs have been relatively understudied. The
few recent studies in this field have provided initial evidence to
suggest that protein supplementation enhances the MuSC response
to exercise training and that this effect may be dependent upon
protein dose and timing of protein consumption relative to exercise
(Figure 1). Conversely, in the context of disease, protein
supplementation does not appear to provide any additional
benefit to the resistance exercise induced MuSC response;
however, there is a paucity of work in this area. Further, protein
does not appear to enhance the FAP response to training. Given the
paucity of work, the occasionally equivocal findings, and the
potential for clinical application, more work is needed in this
area. As with most studies in exercise physiology and
skeletal muscle biology, sex-based differences should
receive increased attention as most studies have
exclusively or predominantly included only male
participants. Further, standardized controls that are
isocaloric when examining the effects of protein, or
isocaloric and isonitrogenous when examining the effects
of different protein sources/timing of protein ingestion
should be included. The apparent discrepant response

observed with respect to protein dose, with augmentation
of the satellite cell response at high and low doses of protein,
but no effect of moderate protein doses, requires further
attention. It is interesting to speculate that interactions
between protein synthesis and MuSC-mediated responses
to exercise may be regulated to a certain extent by amino acid
availability with sufficient amino acid availability required to
maximize the protein synthetic response, while excess amino
acids used to enhance the MuSC response and limited amino
acids requiring an augmented MuSC response to compensate
for incomplete activation of protein synthesis. Lastly, at the
molecular level, determining the extent to which amino acids
are directly sensed and taken up by MuSCs and other skeletal
muscle cell populations via amino acid transporters could
provide valuable mechanistic insights into the regulation of
muscle stem/progenitor cell fate by amino acids. The field of
nutritional regulation of skeletal muscle stem/progenitor cell
fate is emerging alongside studies examining the effects of
exercise on these same populations. Continued work
examining the interaction of both diet and exercise on
muscle stem/progenitor cell content and fate is expected
to allow for novel and optimized therapeutic interventions
for augmenting muscle function and maintaining muscle
health in disease.
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