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a b s t r a c t

In epidemic or pandemic situations, resources for testing the infection status of individuals
may be scarce. Although group testing can help to significantly increase testing capabil-
ities, the (repeated) testing of entire populations can exceed the resources of any country.
We thus propose an extension of the theory of group testing that takes into account the
fact that definitely specifying the infection status of each individual is impossible. Our
theory builds on assigning to each individual an infection status (healthy/infected), as well
as an associated cost function for erroneous assignments. This cost function is versatile,
e.g., it could take into account that false negative assignments are worse than false positive
assignments and that false assignments in critical areas, such as health care workers, are
more severe than in the general population. Based on this model, we study the optimal use
of a limited number of tests to minimize the expected cost. More specifically, we utilize
information-theoretic methods to give a lower bound on the expected cost and describe
simple strategies that can significantly reduce the expected cost over currently known
strategies. A detailed example is provided to illustrate our theory.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
1. Introduction

The current pandemic revitalized research on group testing, a methodology to reduce the number of required tests to
screen a large population for a certain disease. The increased testing efficiency results from jointly testing groups, instead of
subjecting each individual to a test.

Specifically, we consider the scenario of probabilistic group testing as first described by Dorfman (1943), where every
individual has a certain (known) probability to be infected. Probabilistic group testing is in contrast to combinatorial group
testing (Du & Hwang, 2000; Lee et al., 2019) where one assumes a fixed known number of infected individuals. Furthermore,
we assume that while the number of tests is limited, all tests are perfectly accurate. Although the case of imprecise tests also
leads to interesting resource allocation problems (Ely et al., 2020), we will not consider it in this work. Thus, if none of the
individuals in a tested group are infected, the test will yield a negative result with certainty and one test was sufficient to
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obtain a definite result for several individuals. If, however, the test is positive, one cannot say which individuals in the group
are infected and further tests have to be conducted.

Formally, a testing strategy is a deterministic algorithm, describing which groups of individuals are pooled and jointly
subjected to the test. We assume that the choice of the next group can depend on the results of previously conducted tests.
This adaptive group testing, is in contrast to non-adaptive group testing (for a recent survey see Aldridge et al., 2019), where
the testing strategy is fixed and all tests can thus be performed in parallel.

1.1. Previous work

The theoretical work on adaptive, probabilistic group testing started with Dorfman (1943) who considered the simple
strategy of testing groups ofM individuals and subsequently, if the pooled test is positive, testing each individual in the group
separately. Although this strategy is far from optimal, it is easy to implement and can significantly increase the testing ca-
pabilities, compared to testing every sample individually. Further research in this directionwas focused on finding new, more
efficient and practical testing strategies, e.g., nested testing (Sobel & Groll, 1959), binary splitting (Hwang, 1972), and array
testing (Phatarfod & Sudbury, 1994). The binary splitting algorithms by Hwang, (1972) perform close to the theoretic opti-
mum, within a factor of 1.11 of an information-theoretic lower bound, as shown by Aldridge, (2019). However, such a binary
splitting technique requires extensive bookkeeping and many tests need to be performed sequentially, and cannot be con-
ducted in parallel. Simpler, two-stage procedures are investigated by Berger and Levenshtein (2002). The close relation of
adaptive, probabilistic group testing to variable length source coding is well-detailed by Wolf (1985).

Due to the current pandemic, several works rediscover slight variations of these results and argue for the use of group
testing (Eberhardt et al., 2020; Gollier & Gossner, 2020). Also, the practical implementation of group testing has seen a new
surge of research, in particular, questioning the practical use in testing for SARS-CoV-2. Here, however, the focus was on the
classical Dorfman testing strategy (Abdalhamid et al., 2020; Hogan et al., 2020; Yelin et al., 2020) and only few works
considered more elaborate non-adaptive testing strategies (Shental et al., 2020).

Hardly any works go beyond the assumptions of perfect sensitivity and independence of the infection status of tested
individuals. However, Pilcher et al. (2020) takes the dilution effect into account, i.e., reduced sensitivity of tests for large
groups, and Deckert et al. (2020) performed a simulation study that found benefits of group testing if there is positive cor-
relation of infection status between individuals in the same group.

The common ground of all works above is that they focus on identifying exactly, which individuals are infected. This is a
valid strategy and clearly the best outcome. However, there can be situationswhere not sufficientlymany tests are available to
subject all potentially infected individuals to a test. This is particularly the case when many individuals are (potentially)
infected and testing resources are scarce. Here, a strategy needs to be found that uses these limited resources effectively.
When insufficient tests for the entire population are available, it is unavoidable that some healthy individuals will be treated
as infected and/or some infected individuals treated as healthy. For the design of a testing strategy, it is important to note, that
these two events are not equally harmful in general. It might be considerably worse to have an undetected infection (false
negative) present, than to treat one healthy individual as infected (false positive). A suitable balance has to be found and
sensitive questions like “How many false positives are we willing to accept to prevent one false negative?” need to be
answered to do so. Here, assuming that quantitative answers to these questions can be given, we propose a framework for
designing and evaluating group testing strategies. Mathematically, the resulting problem is one of rate-distortion theory, a
branch of information theory, established in the 1950s in a seminal paper by Shannon (1959). This connection allows us to
formulate bounds on the performance of any group testing strategy. Although the problem of (combinatorial) group testing
was extensively explored by information-theorists (e.g., in Ch. 24e29 in Aydinian et al. (2013) and by Aldridge et al. (2019)),
this rate-distortion viewpoint has apparently not been considered so far. Thus, fundamental bounds are missing even for
elementary scenarios.

Only recently, researchers suggested that “the scarcity of tests obviously means that it is better to use a test to detect the
virus in another untested group than to try to discoverwho is infected in a positive group” (Gollier&Gossner, 2020) which is a
first step into the direction of the rigorous theory developed here. Finally, the scenario discussed in (Jonnerby et al., 2020) is
closest to our ideas but considers only a single fixed testing strategy. We will use it in our theory for comparison and as a
starting point for some more evolved testing strategies.

1.2. Contributions

We present a rigorous mathematical framework for evaluating the cost incurred by false positive and false negative as-
signments under a given group testing strategy. An ultimate lower bound on the expected cost that cannot be surpassed by
any testing strategy is derived and compared to existing and novel testing strategies. We consider two basic scenarios in more
detail: First, a toy examplewhere all individuals are equally likely to be infected andwherewrong assignments incur the same
cost for each individual; and, subsequently, a division of the population into subpopulations that have different probabilities
of being infected (e.g., individuals showing symptoms aremore likely to be infected than individuals without symptoms) and/
or different costs associated to false assignments (e.g., misclassified health care workers result in a higher cost).

Our work is focused on a simple model that requires as few parameters as possible. Thus, it does not capture several
aspects that might be relevant in practical scenarios, such as dependence of the infection status between individuals,
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compliance of individuals with their assigned health status, or imperfect test results, nor does it incorporate testing strategies
into a larger disease model. Nevertheless, basic questions that were so far answered by “common sense,” can be discussed on
a sound mathematical basis. For example, optimal testing priorities can be shown to depend heavily on the specific scenario
and subjecting only symptomatic individuals to a test is often a suboptimal decision.

The rest of this article is organized as follows. In Section 2, we formulate the problem, give a mathematical definition of
testing strategies, and introduce the expected cost associated with a testing strategy, as well as the minimal expected cost.
Our main theoretical results are presented in Section 3. We establish fundamental lower bounds on the minimal expected
cost and calculate the expected cost of various simple testing strategies. A first simple example is given to illustrate the bound
and the strategies. Section 4 showcases a more complicated example. It illustrates how to allocate limited testing resources to
obtain significant improvements using simple testing strategies. In Section 6, we discuss our results and their limitations.
Finally, in Section 5, we provide the information-theoretic statements that underlie our main results. Detailed proofs are
relegated to a technical appendix.

2. Problem formulation

We assume that we have a sequence of individuals and the infection status of the n-th individual is given by a binary
random variable Xn on Ud{0, 1}, where Xn ¼ 1 corresponds to being infected and Xn ¼ 0 to being healthy. All Xn are assumed
to be independent but not necessarily identically distributed. Thus, each Xn is a Bernoulli(pn) random variable with possibly
different probability Pr[Xn ¼ 1]¼ pn 2 (0, 1). The second ingredient we need is a cost function rn(xn, yn) that models the cost of
wrong assignments, i.e., assigning an estimated infection status yn to the n-th individual with actual infection status xn. In
contrast to communication scenarios where 0 and 1 are usually interchangeable, the cost rn(0, 1) of false positive assignment
(i.e., a healthy individual is wrongly assigned an infected status) is not necessarily the same as the cost rn(1, 0) of a false
negative assignment (i.e., an infected individual is wrongly assigned a healthy status). Thus, we define

rnð0;1Þ ¼ bn and rnð1;0Þ ¼ cn; (1)

where bn, cn > 0. The cost of correct assignments is set to zero, i.e., rn(0, 0) ¼ rn(1, 1) ¼ 0 and the total cost r : UN � UN/ R is
given by summation ðx;yÞ1rðx;yÞ ¼PN

n¼1rnðxn;ynÞ.
We now turn to the mathematical description of testing strategies. A testing strategy for N individuals consists of a test

procedure and a decision procedure. An (N, K)-test procedure is given by h ¼ (h1, h2, …, hK) where h12Pðf1;2;…;NgÞ and for
k > 1, hk : U

k�1/Pðf1;2;…;NgÞ, where Pðf1;2;…;NgÞ denotes the collection of all subsets of {1, 2, …, N}. Here, the set h1
indicates the group used for the first test and the set-valued function hk indicates the group used for the k-th test, given the
results of the previous k� 1 tests. The corresponding test function w:UN/UK is given by w1(x)¼max{xn:n2 h1} and for k > 1,
we have wkðxÞ ¼maxfxn : n2hkðw1ðxÞ;w2ðxÞ;…;wk�1ðxÞÞ g. Thus, the k-th component wk corresponds to the result of the k-th
test.

A (K, N)-decision procedure is a mapping k: UK / UN that assigns, based on the outcome of K tests, a status (infected/
healthy) to all N individuals.

The concatenation of w and k maps the true status Xd(X1, …, XN) of all N individuals to an estimated status ðY1;…;YNÞ ¼
kðwðX1;…;XNÞÞ of these individuals using K group tests. In total, this corresponds to R¼ K/N tests per individual (TpI) which is
referred to as the rate of the testing strategy. If R < 1, which is the regime we are interested in, there is a positive probability
that the tests will not enable a perfect identification of all infected individuals. Note that such an estimate (0: not infected, 1:
infected) has to be given for all N individuals. We do not allow for individuals to be “skipped,” which would correspond to a
ternary output alphabet.

To assess the average cost of the wrong assignments for given test and decision procedures, we use the expected cost per
individual, defined as the expected value

DðX;rÞ
test ðw; kÞ ¼ E

"
1
N

XN
n¼1

rnðXn;YnÞ
#

(2)
Because there are only finitely many possible choices for w and k, we can define the minimum

DðX;rÞðKÞ ¼ min
w;k

DðX;rÞ
test ðw; kÞ; (3)

where w and k range over all (N, K)-test and (K, N)-decision procedures, respectively. The quantity D(X,r)(K) specifies the
minimal cost, measured by r, that can be achieved by using K tests for the N individuals with random infection status X.

3. Results

Calculating D(X,r)(K) directly from Eq. (3) is computationally infeasible, unless N and K are very small. Nevertheless, we can
use information-theoretic ideas to provide bounds. These bounds are based on the idea of keeping the rate R ¼ K/N fixed,
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while letting N approach infinity. Our first result is a lower bound, that holds if all individuals share the same parameters.
Here, and in the remainder of the paper, we use the symbol H2(p) ¼ �p log p � (1 � p) log(1 � p) for the binary entropy
function, log(,) denotes the logarithm to base 2, and we adopt the convention that “0 , log 0¼ 0.” The proofs of the results in
this section are presented in Section 5 and in the appendices.

The following theorem presents a lower bound on D(X,r)(K) for the case when infection is equally likely and independent
across the entire population. It follows immediately from the more general Theorem 3.6, which will be stated later in this
section.

Theorem 3.1. Let Xd(X1, …, XN) be N independent and identically distributed Bernoulli(p) random variables describing the
infection status of a given population. The cost of wrong assignments is given by Eq. (1)with bn¼ b and cn¼ c for all n. Furthermore,
set adc/b > 0. For v 2 [0, v0) define

D
̄
ðp; a; vÞ ¼ p

�
v

1� v
� ava

1� va

�
þ a
1� va

� aþ vaþ1

1� vaþ1 (4)

R
̄
ðp; a; vÞ ¼ D

̄
ðp; a; vÞlog vþ H2ðpÞ � log

�
1� vaþ1

1� va

�
þ plog

�
1� v

1� va

�
(5)

and for v � v0, define D
̄
ðp; a; vÞ ¼ minf1� p; apg and R

̄
ðp;a; vÞ ¼ 0. Here, v0 is the smallest solution v > 0 of the equation

ðpvaþ1 þ1� p� vÞðpv�a�1 þ1� p� v�1Þ ¼ 0: (6)

Then there cannot exist a testing strategy that uses fewer than R
̄
ðp; a; vÞ TpI (i.e., R

̄
ðp; a; vÞN tests in total) and achieves an

expected cost less than bD
̄
ðp;a; vÞ, i.e., DðX;rÞðKÞ � bD

̄
ðp; a; vÞ for all K � R

̄
ðp;a; vÞN.

We emphasize that, in contrast to similar results in classical information theory, the lower bound in Theorem 3.1 cannot
always be achieved arbitrarily closely for increasing N. For example, for p ¼ 1

2 ð3�
ffiffiffi
5

p
Þz0:381 and v¼ 0, we obtain D

̄
ðp; a; vÞ ¼

0 and R
̄
ðp; a; vÞ ¼ H2ðpÞz0:959, although it is known (Ungar, 1960) that only individual testing (i.e., R ¼ 1) can achieve

D(X,r)(K) ¼ 0 in this setting.
Even though the lower bound in Theorem 3.1 is somewhat cumbersome and difficult to grasp intuitively, it can easily be

calculated for a given scenario. We will compare it to proposed testing strategies in Fig. 1 to illustrate its applicability.
We next calculate the necessary number of tests and the resulting cost for some simple testing strategies. We first consider

the strategy, proposed by Jonnerby et al. (2020), to separate the population into equally sized and disjoint groups, test each
group, and assign an infected status to each member of a positive group without conducting further tests. We refer to this
strategy as one stage group testing (1SG) and designate the size of the group in parenthesis, e.g., 1SG(50) for a group size of 50
individuals. We restate the following simple result from Section 2.3.1 in (Jonnerby et al., 2020), which is a special case of the
more general Lemma 3.4 below.

Lemma 3.2. The 1SG(u) testing strategy has a rate of 1/u TpI and an expected cost of D1SGðuÞ ¼ b
�
1� p� ð1� pÞu�.

Note that the exact rate and expected cost can be achieved only for a population N that is an integer multiple of the group
size u. However, the overhead is atmost 1 additional test for a final group of smaller size, resulting in an additional 1/N TpI and
a negligible decrease of the expected cost. Since we are usually concerned with large N, we ignore these terms in this and the
following testing strategies.

Of course, 1SG(u1) can be further extended by testing those individuals again, that belong to a positively tested group of
size u1. Specifically, we can separate the group into disjoint subgroups of smaller size u2 and subject these subgroups again to
a group test. This two stage group testing (2SG) strategy is a generalization of Dorfman testing (Dorfman, 1943) which cor-
responds to the case u2¼1, i.e., each individual in a positive group is tested separately. The decision strategy remains the same
as in 1SG: Those individuals that belong to a positively tested subgroup (of size u2) are declared infected. We again designate
the group sizes in parenthesis, e.g., 2SG(50, 10) for a group size of 50 individuals that is divided into five subgroups of 10
individuals each, if the first group test is positive. Again, we can calculate the rate and expected cost in closed form.

Lemma3.3. The 2SG(u1, u2) testing strategy has an expected rate of R2SGðu1 ;u2Þ ¼ 1
u1
þ 1�ð1�pÞu1

u2
and an expected cost per individual

of D2SGðu1;u2Þ ¼ bð1 � p � ð1� pÞu2 Þ.
Evidently, more than 2 stages could be used, but even more bookkeeping is then required and, typically, very large group

sizes are needed to obtain a benefit. Thus, this extension may not be practically useful anymore. For the sake of completeness,
we nevertheless provide the rate and expected cost of k stage group testing, abbreviated as kSG(u1, …, uk), where u[ denotes
the group size at stage [. Here, positive groups of size u[ are separated into smaller subgroups of size u[þ1 for [¼ 1,…, k� 1 and
individuals that belong to a positive subgroup at stage k are declared infected, while all others are declared healthy. A proof of
the result is given in Appendix C.

Lemma 3.4. The kSG(u1, …, uk) testing strategy has an expected rate of
1012



Fig. 1. Testing of a population with probability of infection p ¼ 0.01 and cost parameters b ¼ 1 and c ¼ 50. The lower bound from Theorem 3.1 is compared to the
binary splitting algorithm, and our strategies 1SG and 2SG as well as the significantly worse individual testing. Markers with associated numbers indicate the
testing strategy used to achieve the given point, e.g., (32) indicates the use of 1SG(32) and (66, 22) indicates the use of 2SG(66, 22).
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RkSGðu1;…;ukÞ ¼
1
u1

þ
Xk�1

[¼1

1� ð1� pÞu[

u[þ1
(7)

and an expected cost per individual of
DkSGðu1 ;…;ukÞ ¼ bð1� p�ð1� pÞukÞ: (8)
Example 3.5. We consider the setting p ¼ 0.01, b ¼ 1, and c ¼ a ¼ 50, i.e., we assume that we have a prevalence of 1% and a
false negative is fifty times worse than a false positive assignment. We beginwith some trivial observations. First, if we do not
have any tests available, the best strategy is to assign everyone to be healthy. This is because the expected cost of declaring an
individual healthy is E½rðXn;0Þ� ¼ p,aþ ð1 � pÞ,0 ¼ 0:5, while the expected cost for declaring someone infected is E½rðXn;1Þ
� ¼ p,0þ ð1 � pÞ,1 ¼ 0:99. On the other extreme is the case of zero cost, i.e., to determine exactly which individuals are
infected. Here, clearly individual testing at a rate of 1 TpI could be applied, but Theorem 2 in Aldridge (2019) shows that it is
also possible using a binary splitting algorithm at a rate of 0.0855 TpI. Any rate-cost tradeoff between these extreme points
can be achieved by applying the available tests to as many individuals as possible, while declaring all others as healthy by
default. Unfortunately, using approaches like a binary splitting algorithm do not come without problems: There is a signif-
icant amount of bookkeeping required and individuals usually have to be tested many times in a row delaying the notification
about the result. Shifting to the strategies 1SG and 2SG that do not aim at identifying the status of each individual but to
minimize the overall expected cost can lead to simpler procedures and better performance at the same time. Our lower bound
in Theorem 3.1, the binary splitting algorithm, and the strategies 1SG and 2SG, as well as individual testing, for comparison,
are illustrated in Fig. 1. Note, that for all strategies, one can always subject only part of the individuals to a test and simply
declare the rest healthy. In particular, we see that the optimal 2SG strategy when tests are scarce (less than 0.037 TpI) is to use
the testing strategy 2SG(66, 22) for as many individuals as possible, outperforming the binary splitting approach.
1013
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The example above illustrates that the proposed strategies, although very simple, can outperform the best known testing
strategies if there are not sufficient tests available to test all individuals. This is because previous strategies always aimed at
exactly identifying the infection status and did not consider the possibility to declare an infection status based on imperfect
information. However, there are also many situations where the simple strategies we discussed above are useless. In
particular, if the relative cost a is small, then it is hardly ever useful to declare an individual infected if one is not very sure
about the infection status.

We now turn to the more general setting of a heterogeneous population, i.e., individuals may have different prevalence pn
and also different costs bn and cn. One simple example of this situation is to distinguish between individuals with symptoms
(that have a higher prevalence pn) and individuals without symptoms. Additionally, different costs may occur for individuals
in critical areas, e.g., health care. There, a higher risk of infecting vulnerable individuals may increase the cost cn of false
negatives, and additionally, a higher false positive cost bn might be incurred due to the importance of the work being per-
formed by these individuals. Wewill discuss a specific scenario in Section 4 but first present the lower bound, an extension of
Theorem 3.1. The proof of the following theoremwill be presented at the end of Section 5, as it requires several results from
rate-distortion theory which are introduced there.

Theorem 3.6. Let Xd(X1, …, XN) be N independent Bernoulli random variables describing the infection status of a given pop-
ulation. Assume further that the total population is separated into I subpopulations, of sizes N(1),…,N(I), and that all N(i) individuals
in the i-th subpopulation have the same probability p(i) of infection and are measured using the same cost function with parameters
b(i), c(i) as in Eq. (1). Define a(i) ¼ c(i)/b(i) > 0 and for v 2 [0, 1], let

DðvÞ ¼ 1
N

XI
i¼1

NðiÞbðiÞD
̄ �
pðiÞ; aðiÞ; vb

ðiÞ�
; RðvÞ ¼ 1

N

XI
i¼1

NðiÞR
̄ �
pðiÞ; aðiÞ; vb

ðiÞ�
; (9)

where D
̄
ðp; a; vÞ and R

̄
ðp; a; vÞ are defined in Theorem 3.1. Then there cannot exist a testing strategy that uses fewer than R(v)

TpI (i.e., R(v)N tests in total) and achieves an expected cost less than D(v), i.e., D(X,r)(K) � D(v) for all K � R(v)N.
4. Historic example case

We consider the SARS-CoV2 pandemic situation in Austria in mid November 2020. On average there were N ¼ 8 916 845
individuals living in Austria in 2020 (STATISTIK AUSTRIA, 2021a). During the three days from 12th of November 2020 until
14th of November 2020 a total of Nt ¼ 103 621 individuals were subjected to a PCR-test for SARS-CoV2 (AGES, 2021). Of these
Nt individuals, 20 349 tested positive (AGES, 2021). This corresponds to a prevalence of pt¼ 0.196 in this tested subpopulation.
We will refer to this subpopulation as the high prevalence subpopulation. At the same time, a prevalence study found that
approximately 3.1% of the total population were infected (STATISTIK AUSTRIA, 2021b). Thus, in the untested population of
Nu ¼ 8 813 224 the prevalence was about pu ¼ 0.029. We will refer to this subpopulation as the low prevalence subpopulation.

To illustrate the full potential of our model, we further consider individuals working in health care separately and will
assign a higher cost for wrong assignments within this subpopulation. The most recent count of health care professionals
working in hospitals and health care centers in Austria was Nh ¼ 121567 at the end of 2019 (STATISTIK AUSTRIA, 2021c). Note
that a finer separation into subpopulations is of course possible but avoided for the sake of simplicity.

It is difficult to argue for the choice of specific costs of wrong assignments. However, in mid November 2020, a lockdown
was issued in Austria,1 which we interpret as the turning point where considering all (untested) individuals as infected is less
costly than considering these individuals as healthy. This implies (1 � p)b z pc, thus, at a prevalence of p ¼ 0.029 in the
untested, general population, we obtain cz 33b. We normalize b ¼ 1 and choose c ¼ 33. Since health-care facilities were not
closed during this time, we assume that individuals working in health care have a different trade-off between b and c.
Specifically, we assume that a false positive assignment for this subpopulation is significantly more expensive and we set
b ¼ 6 for these individuals. Although also a different c value could be argued, we assume that the professional training
counters the higher risk due to closer contact with susceptible individuals and we keep c the same.

Since there is no data available on the prevalence within the health care system, we assume that it is the same as in the
general population. In particular, also the split into the high prevalence and low prevalence subpopulations is assumed to be
the same. We thus end up with the following four subpopulations.

C The first subpopulation consists of individuals working in health care that belong to the high prevalence subpopulation
with p(1) ¼ 0.196 and costs b(1) ¼ 6, c(1) ¼ 33. We assume that N(1) ¼ 1413 belong to this subpopulation.

C The second subpopulation consists of individuals working in health care that belong to the low prevalence subpop-
ulation with p(2) ¼ 0.029 and costs b(2) ¼ 6, c(2) ¼ 33. We assume that N(2) ¼ 120 154 belong to this subpopulation.

C The third subpopulation consists of individuals not working in health care that belong to the high prevalence sub-
population with p(3) ¼ 0.196 and costs b(3) ¼ 1, c(3) ¼ 33. We assume that N(3) ¼ 102 208 belong to this subpopulation.
1 https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2020_II_479/BGBLA_2020_II_479.pdfsig (in German).
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C The fourth subpopulation consists of individuals not working in health care that belong to the low prevalence sub-
populationwith p(4) ¼ 0.029 and costs b(4) ¼ 1, c(4) ¼ 33.We assume that N(4) ¼ 8 693 070 belong to this subpopulation.

Our lower bound and the performance of the optimal combinations of 1SG and 2SG strategies for these specific parameters
are illustrated in Fig. 2 in comparison to optimized binary splitting algorithms and individual testing. More specifically, the
depicted curves correspond to the optimal use of the available tests under the given strategy. For individual testing and the
binary splitting algorithms, this means that depending on the number of tests, a certain amount of people can be tested and
correctly informed about their status, while many untested individuals remain and are assigned a status without being tested
resulting in the depicted cost.

For the 103 621 tests used during the discussed period, which correspond to 0.0116 TpI, the optimized strategy is to subject
as many individuals from the fourth subpopulation as possible to a test using a 1SG(33) testing strategy. By this approach, the
expected cost is 0.816. Individual testing could only reduce the expected cost to 0.944, hardly any improvement over not
testing at all at an expected cost of 0.956. Note that in all subpopulations and strategies we assume that an optimal decision
for untested individuals is used, namely, that a healthy status is assigned to untested individuals in subpopulations two and
four and an infected status to untested individuals in subpopulations one and three.

To illustrate the implications of this kind of strategy, we calculate the expected number of individuals that are considered
infected. First, this number includes all individuals in the subpopulations one and three. Furthermore, each 1SG(33) test in
subpopulation four has a probability of 1 � (1e0.029)33 z 0.621 to result in a positive outcome. Thus, an additional expected
number of 2 124 712 individuals would be considered infected in this subpopulation. In total, an expected number of
2 228 333 individuals would be considered infected.

We see that the decrease in expected cost is very limited with such a low number of tests, even if an optimized strategy is
used. In particular, our lower bound shows that no strategy can reduce the expected cost below 0.609 using the assumed
103 621 tests. However, our theory can also be used to estimate howmany tests are required to achieve a certain reduction in
expected cost. For example, we can find the number of tests necessary to obtain half the expected cost than without testing,
i.e., 0.478. Our lower bound shows that at least 0.0226 TpI (201256 tests in total) are necessary, while our optimized strategies
Fig. 2. Testing of the Austrian population grouped into 4 different sub-populations in mid November 2020. The lower bound from Theorem 3.6 is compared to the
binary splitting algorithm, and an optimal combination of strategies 1SG and 2SG as well as the significantly worse individual testing. Markers with associated
numbers indicate the four testing strategies used to achieve the given point, where ∞ indicates that the given subpopulation is not tested, e.g., (2)(∞)(∞)(30, 10)
indicates that subpopulations 2 and 3 are not tested, subpopulation 1 is tested using 1SG(2), and subpopulation 4 is tested using 2SG(30, 10).
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show that 0.0419 TpI (373 636 tests in total) are sufficient. Our optimized strategies suggest to use a 1SG(4) strategy to test all
individuals in subpopulation one and a mix of 1SG(24) and 1SG(23) strategies to test all individuals in subpopulation four. We
alsowant to point out that an astonishing number of 0.499 TpI (4 447461 tests in total) would be required to achieve the same
goal with individual testing; and even the previously best known binary splitting testing strategies require 0.102 TpI (909 637
tests in total).

A second example case is presented in Appendix A, analyzing the situation in Austria during the SARS-CoV-2 pandemic in
early April 2020. The two examples showcase how our theory can be used to explore possible strategies for a given set of
parameters and a given number of tests. Furthermore, they already illustrate that the specific scenario can affect all parts of
the optimal testing strategy, e.g., there is no general rule that the testing of individuals with highest prevalence has priority.
Maybe surprisingly, the examples also illustrate that there are situations where our approach can result in substantial gains
using very simple testing strategies. Any other parameter choices can be explored using the Jupyter notebook and Python
code, available at https://github.com/g-pichler/group-testing. This software was created using a Jupyter Notebook (Perez &
Granger, 2007), as well as SciPy (Virtanen et al., 2020), NumPy (Harris et al., 2020), and Matplotlib (Hunter, 2007).

Finally, we want to emphasize, that the historic example cases discussed here certainly do not completely reflect the
reality of testing in Austria in 2020. In addition to the somewhat arbitrary choices of values b, c, our analysis suffers from the
shortcomings that are to be discussed in Section 6. E.g., considering the first example case (Fig. 2), a 1SG(33) test is positive
with probability around 0.621, while the chance of infection is less than 0.03. One would not expect this strategy to be viable,
as compliance will be low.
5. Information theoretic details

Readers familiar with information theory will see the obvious analogues between our problem formulation and classical
rate-distortion theory (Gray, 1990). Indeed, an (N, K)-test function can be seen as a specific encoder of a binary sequence,
whereas the corresponding (K, N)-decision procedure is a specific decoder. Thus, D(X,r)(K) defined in Eq. (3) is the minimal
expected distortion of a restricted class of source codes of rate R ¼ K/N for the vector X.

A fundamental information-theoretic result provides a lower bound on the minimal expected distortion of an arbitrary
source code of rate R, the so-called information distortion-rate function.

Definition 5.1. Let X be a random variable on UN and r : UN � UN/Rþ a distortion function. The information distortion-rate
function of (X, r) is given by

DðX;rÞ
I ðRÞ ¼ min

pYjX :IðX;YÞ�NR
EpXpYjX

	
1
N
rðX;YÞ



; (10)

where I(,; ,) denotes mutual information in bits [Gray, 1990, Sec. 2.6].
BecauseDðX;rÞ

I ðRÞ is a lower bound on theminimal expected distortion of an arbitrary source code of rate R, it can be used to
obtain a lower bound on D(X,r)(K). The following lemma is a direct consequence of Theorem 3.2.1 in (Gray, 1990) and a Proof is
thus omitted.

Lemma 5.2. The minimal cost D(X,r)(K), as defined in Eq. (3), is lower-bounded by the information distortion-rate function
DðX;rÞ
I ðRÞ, i.e., for all R� 0,DðX;rÞðKÞ � DðX;rÞ

I ðRÞ,when K� RN. In particular, no testing strategy can achieve an expected cost strictly
less than DðX;rÞ

I ðRÞ if only R TpI are available.

To prove our main results, it remains to characterize the information distortion-rate function DðX;rÞ
I ðRÞ. We first focus on

the case N ¼ 1 and will subsequently extend our setting to prove Theorem 3.6. The following result is based in the variational
description of the information distortion-rate function (see Section 2.4 in (Gray, 1990)) and a detailed Proof is provided in
Appendix B.1.

Theorem 5.3. Let X2U be a Bernoulli(p) random variable and r:U2/ [0,∞) a distortion function satisfying r(0, 0)¼ r(1,1)¼ 0,
r(0, 1) ¼ 1, and r(1, 0) ¼ a. Then the entire information distortion-rate function is parameterized as DðX;rÞ

I

�
R
̄
ðp; a; vÞ

�
¼ D

̄
ðp; a; vÞ

with v 2 [0, 1]. Here, D
̄
ðp; a; vÞ and R

̄
ðp; a; vÞ are defined in Theorem 3.1.

Remark 5.4. For later use, we note that under the assumptions of Theorem 5.3, 1/(log v) is the slope of the information
distortion-rate function [Gray, 1990, p. 86] for v 2 [0, v0], i.e., _D

ðX;rÞ
I ðRðp; a; vÞÞ ¼ ðlog vÞ�1. Furthermore, note that

�
R
̄
ðp; a; v0Þ

;D
̄
ðp; a; v0Þ

�
is the point (0,min{ap, 1 � p}) on the distortion-rate curve. Thus, in particular, _D

ðX;rÞ
I ð0Þ ¼ ðlog v0Þ�1.

We can now state the central characterization result of the information distortion-rate function in the setting of Theorem
3.6. A detailed Proof of the result is provided in Appendix B.2.

Theorem 5.5. Let X be as in Theorem 3.6. Then DðX;rÞ
I ðRðvÞÞ ¼ DðvÞ for every v2 [0, 1], where D(v) and R(v) are given in Eq. (9).

Combining the previous results, we can now prove Theorems 3.1 and 3.6.
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Proof of Theorems 3.1 and 3.6. By Lemma 5.2, we have for all R � 0, that DðX;rÞðKÞ � DðX;rÞ
I ðRÞ if K � NR. Using the char-

acterization of the information distortion-rate function in Theorem 5.5, this yields D(X,r)(K) � D(v) whenever K � NR(v),
concluding the proof of Theorem 3.6.

Theorem 3.1 is merely a special case of Theorem 3.6 with I ¼ 1. ,
Finally, wewant to point out that many information theoretic questions about the problem remain open. In particular, the

characterization of a “group testing distortion-rate function” that can be defined as the infimum of all expected distortions
that are achievable at a given rate as the population size N goes to infinity is a challenging new problem that can also be
formulated as a problem in classical rate-distortion theory with significant restrictions on the encoder. Here, non-adaptive
group testing may be easier to analyze because the encoder is essentially restricted to the max(,) function. Another direc-
tion for future work is to incorporate testing errors, resulting in a joint source-channel coding scenario. It is not clear whether
the sourceechannel separation theorem holds in this case. Nevertheless, we expect that a lower bound similar to the one
presented here can be obtained, by adding the additional bits (i.e., tests) necessary for error-free communication over a binary
(most likely asymmetric) channel.
6. Discussion

We introduced a rigorous mathematical formulation of optimal testing strategies for a given number of available group
tests. The problem is formulated as a one-time testing procedure in the sense that we assume that the infection status of the
population does not change during the testing procedure and we do not consider any time evolution. This enables us to use
only very few parameters that describe a current pandemic situation andwe do not require any detailed personal information
such as contact maps between individuals. However, even these few parameters can be difficult to estimate and may also
result in ethical challenges. The prevalence p is the easiest and most obvious parameter and can be estimated using a
negligible number of tests for a pilot study and the estimate can be improved as the testing strategy is applied. The costs b and
c of wrong assignments are more difficult to choose. They can be adapted to the infectiousness of the disease, the cost and
effectiveness of quarantine, non-pharmaceutical interventions that reduce the risk of infection, and most likely many more
variables. How to exactly choose these costs is beyond the scope of our work and very specific for a given situation. It may also
include political decisions by weighing health factors (e.g., minimize the number of infections by quarantining many in-
dividuals) against economic factors (e.g., minimize the number of quarantined individuals). Note however that at least
implicitly these costs are used in political decisions: A society-wide lockdown can be interpreted as the assertion, that
assigning all (untested) individuals an infected status is less costly than considering them to be healthy. Thus, at a prevalence
p, this implies (1 � p)b � pc.

Once the parameters are fixed for a given scenario, our theory on the one hand gives ultimate bounds on how large a cost
reduction can be achieved by group testing, and on the other hand suggests optimal allocation of resources for simple
(suboptimal) testing strategies.

The present work is only a first step towards establishing a mathematical theory of group testing. Thus, we do not consider
the most general scenario and focus on basic scenarios that are simplified in many aspects. In particular, the scope of our
results is limited by the following assumptions:

C We assume that tests are perfect, i.e., a group test of u individuals is negative if and only if all u individuals are healthy.
However, we expect that a small error probability will not significantly influence the results and simple simulations
incorporating these errors can be used to check the robustness in a specific scenario. A rigorous theoretical treatment
on the other hand should not only consider a fixed error probability for a group test, but the error probability should
rather depend on the group size and the number of infected individuals within the group (cf. (Pilcher et al., 2020)).
Thus, an extension of our work in this directionwould imply a more quantitative approach of testing outcomes and not
merely the binary options we consider here.

C In this work, no upper bound on the group size is assumed a priori. The information theoretic lower bounds would not
be affected by such a limitation, but certain points of the kSG strategy will become infeasible, requiring minor mod-
ifications to the published code. However, a more thorough analysis would not impose a hard limit on the group size,
but consider the trade-off between test accuracy and group size, as mentioned in the previous point.

C We assume that the infection status of different individuals is independent.
C We assume that the choice of testing strategy does not alter the cost of wrong assignment. This assumption may be

violated in reality, as e.g., individuals that are assigned an “infected” will likely show different levels of compliance,
depending on whether they were tested individually, in a group, or not at all. Going beyond this assumption could be
achieved by changing the infection status from a binary decision to a probability assignment and using a suitably
adapted cost function.

C The cost function is fixed and applied independently to each individual. E.g., we cannot express the fact, that quar-
antining a small number of individuals working in critical areas is hardly problematic but once a critical threshold is
passed the cost of quarantining further individuals becomesmore costly than the linear increase assumed in ourmodel.

C We do not consider the collection of samples from individuals as a limiting factor, but merely the number of tests is
limited.
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C The testing strategies presented in this work are not at all optimal but merely illustrate the potential of our approach.
For example, we do not consider testing individuals in several groups at the first stage (as, e.g., in the array testing
approach by Phatarfod & Sudbury, 1994), nor mixing individuals from different subpopulations within a group.
Nevertheless, our suggested strategies are surprisingly simple and can outperform even the best (significantly more
complicated) strategies currently known.

C We consider testing as a stand-alone task and do not incorporate it into a larger diseasemodel, as is done, e.g., in Berger
et al. (2020). In particular, the probabilities of infection and the cost functions are assumed to be fixed and do not
change over time.

From a theoretical viewpoint, our analysis reveals several surprising insights that are in contrast to long established
fundamental statements in group testing theory. First, an established statement is that group testing is beneficial exactly in
the regime p< 1

2 ð3�
ffiffiffi
5

p
Þz0:381 (Ungar, 1960), i.e., in this regime, group testing cannot outperform individual testing.

However, this result was proven under the assumption that perfect identification of the infection status of each individual is
required. Maybe surprisingly, this statement does not extend to our setting. Indeed, for the specific case of p ¼ 1

2 ð3 �
ffiffiffi
5

p
Þ,

b ¼ 1, and c ¼ 10, using the testing strategy 1SG(2) has a strictly lower expected cost than individually testing every second
individual (both have rate 1/2 TpI). Similarly, in the non-adaptive regime (i.e., all tests are performed in parallel) an estab-
lished result is that individual testing is optimal if all individuals are independent and have a fixed prevalence p (Aldridge,
2018). Again, this result only holds if perfect identification of the infection status of each individual is required. In our
setting, the simple 1SG testing strategy is a non-adaptive strategy and is clearly superior to individual testing (see Fig. 1).
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Appendix A
A Second example case

As a second example with significantly different prevalences, we consider the SARS-CoV2 pandemic situation in Austria in
early April 2020. More specifically, another prevalence study was conducted from 1st of April until 6th of April 2020. Here, a
prevalence of approximately p ¼ 0.0033 was found [Ogris & Oberhuber, 2020, Section 3.2]. Since most of the samples were
collected on the 4th of April, we consider a timeframe from 3rd of April until 5th of April. On these three days a total of
Nt ¼ 16 226 tests were conducted (AGES, 2021). Of those, 778 did yield a positive result (AGES, 202). Thus, the prevalence in
this high prevalence subpopulation was pt ¼ 0.048. The resulting untested population is Nu ¼ 8 900 619 with a prevalence of
pu ¼ 0.0032. We consider the same separation into subpopulations as before as well as the same costs.

C The first subpopulation consists of individuals working in health care that belong to the high prevalence subpopulation
with p(1) ¼ 0.048 and costs b(1) ¼ 6, c(1) ¼ 33. We assume that N(1) ¼ 221 belong to this subpopulation.

C The second subpopulation consists of individuals working in health care that belong to the low prevalence subpop-
ulation with p(2) ¼ 0.0032 and costs b(2) ¼ 6, c(2) ¼ 33. We assume that N(2) ¼ 121 346 belong to this subpopulation.

C The third subpopulation consists of individuals not working in health care that belong to the high prevalence sub-
population with p(3) ¼ 0.048 and costs b(3) ¼ 1, c(3) ¼ 33. We assume that N(3) ¼ 16 005 belong to this subpopulation.

C The fourth subpopulation consists of individuals not working in health care that belong to the low prevalence sub-
population with p(4) ¼ 0.0032 and costs b(4) ¼ 1, c(4) ¼ 33. We assume that N(4) ¼ 8 779 273 belong to this
subpopulation.
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Fig. A.3. Testing of the Austrian population grouped into 4 different sub-populations in early April 2020. The lower bound from Theorem 3.6 is compared to the
binary splitting algorithm, and an optimal combination of strategies 1SG and 2SG as well as the significantly worse individual testing. Markers with associated
numbers indicate the four testing strategies used to achieve the given point, where∞ indicates that the given subpopulation is not tested, e.g., (8, 2)(∞)(18, 6)(72,
12) indicates that subpopulation 2 is not tested and subpopulations 1, 3, and 4 are tested using 2SG(8, 2), 2SG(18, 6), and 2SG(72, 12), respectively.

Our lower bound and the performance of the optimal combinations of 1SG and 2SG strategies for these specific parameters
are illustrated in Fig. A.3. For the 16 226 tests used during the discussed period, which correspond to 0.0018 TpI, the optimized
strategy is to subject all individuals in subpopulation one to a test using a 2SG(8, 2) testing strategy, all individuals in sub-
population three using a 2SG(18, 6) testing strategy, and as many individuals from the fourth subpopulation as possible using
a 2SG(72, 12) testing strategy. Using this approach yields an expected cost of 0.1023. Individual testing could only reduce the
expected cost to 0.1054, while not testing at all results in an expected cost of 0.1072.

B Proofs of information theoretic results

In this appendix, we provide detailed proofs of the twomain information theoretic results in themainmanuscript, namely
Theorem 5.3 and Theorem 5.5.

B.1 Proof of Theorem 5.3
The following variational description of the information distortion-rate function is a particularization of Corollary 4.2.1 in

Gray (1990) to our setting of binary random variables with an asymmetric distortion function, substituting v ¼ 2s.

Corollary B.1. Let X be a Bernoulli(p) random variable and r:U2/ [0,∞) a distortion function satisfying r(0, 0)¼ r(1,1)¼ 0, r(0,
1) ¼ 1, and r(1, 0) ¼ a. Then for every v 2 [0, 1] a point (Rv, Dv) on the graph of the information distortion-rate function, i.e.,
DðX;rÞ
I ðRvÞ ¼ Dv, is given as

Rv ¼ Dvlog vþ min
q2½0;1�

ð � plogðqþ ð1� qÞvaÞ � ð1� pÞlogðqvþ ð1� qÞÞ Þ (B.1)

and

Dv ¼ apð1� q*Þðq*vþ ð1� q*ÞÞva þ q*ð1� pÞðq* þ ð1� q*ÞvaÞv
ðq* þ ð1� q*ÞvaÞðq*vþ ð1� q*ÞÞ (B.2)

where q* solves the minimization in Eq. (B.1).
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The minimization in Eq. (B.1) can easily be done exactly. Although one could use existing results, e.g., Theorem 4.2.3 in
Gray (1990), it is easier to derive the optimization directly than to particularize these general results.

Lemma B.2. For v, p 2 (0, 1) and a > 0, the function 4 : ½0;1�/R defined by

4ðqÞ ¼ �plogðqþ ð1� qÞvaÞ � ð1�pÞlogðqvþ ð1� qÞÞ (B.3)

is convex and
arg min
q2½0;1�

4ðqÞ ¼
8<
:

qv ifqv2ð0; 1Þ
0 ifqv � 0
1 ifqv � 1;

(B.4)

where
qvd
ð1� pÞvaþ1 þ p� va

ð1� vÞð1� vaÞ : (B.5)
Proof. The derivative of 4 is given as

40ðqÞ ¼ �p
1� va

qþ ð1� qÞva � ð1� pÞ v� 1
qvþ ð1� qÞ: (B.6)

Thus, 40(q) ¼ 0 if and only if

0 ¼ �pðqðv�1Þþ1Þð1� vaÞ � ð1� pÞðqð1� vaÞþ vaÞðv�1Þ (B.7)

which is equivalent to

pð1� vaÞ þ ð1� pÞvaðv�1Þ ¼ qð1� vÞð1� vaÞ (B.8)

and in turn to q ¼ qv. The second derivative is given as

4
00 ðqÞ ¼ p

ð1� vaÞ2
ðqþ ð1� qÞvaÞ2

þ ð1� pÞ ðv� 1Þ2
ðqvþ ð1� qÞÞ2

(B.9)

which is positive and thus 4 is convex. Thus, if the critical value qv is in (0, 1) then it is the global minimum. Otherwise, qv � 1
implies 40(q) < 0 on (0, 1) and thus the global minimum is at 1, and qv � 0 implies 40(q) > 0 on (0, 1) and thus the global
minimum is at 0. ,

To prove Theorem 5.3, it remains to combine Corollary B.1 and Lemma B.2 and to note that, by [Gray, 1990, Theorem
4.2.1b], the entire distortion-rate curve is parameterized by v.

We first show that qv2 (0,1) (i.e., the first case in Eq. (B.4)) if and only if v2 (0, v0). By the definition of qv in Eq. (B.5), qv> 0
is equivalent to

ð1�pÞvaþ1 þ p� va >0 (B.10)

and qv < 1 is equivalent to
ð1�pÞvaþ1 þ p� va < ð1� vÞð1� vaÞ: (B.11)

These equations are, in turn, easily seen to be equivalent to
pv�ðaþ1Þ þ ð1�pÞ � v�1 >0 (B.12)

and
pvaþ1 þ ð1�pÞ � v>0: (B.13)

The function f(u)dpuaþ1 þ (1 � p) � u has derivatives f0(u) ¼ (a þ 1)pua � 1 and f00(u) ¼ (a þ 1)aua�1 and is thus convex for

u > 0. Furthermore, f(1) ¼ 0, f(0) ¼ 1 � p > 0, and limu/∞f(u) ¼ ∞ and hence the function has either one more zero or is
nonnegative everywhere. In either case, Eqs. (B.12) and (B.13) are satisfied if and only if v 2 (0, v0). Thus, the assumptions of
Theorem 5.3 imply that the minimum in Eq. (B.1) is qv and we can insert it into Dv and Rv in Corollary B.1. To this end, we first
derive 1 � qv as
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1� qv ¼ pvaþ1 þ ð1� pÞ � v

ð1� vÞð1� vaÞ : (B.14)
Next, we note that

qv þ ð1� qvÞva ¼ pð1� vaþ1Þ
1� v

(B.15)
and

qvvþ ð1� qvÞ ¼ ð1� pÞð1� vaþ1Þ
1� va

: (B.16)
Inserting these relations into Dv in Eq. (B.2), simple algebraic manipulations yield Dv ¼ D
̄
ðp;a; vÞ.

Similarly, inserting the relations into Eq. (B.1), we obtain Rv ¼ R
̄
ðp;a; vÞ.

On the other hand, consider the case v 2 [v0, 1). Assuming f(v0) ¼ 0, we must have f0(1) � 0, which is equivalent to
1 � p � ap. Furthermore, v lies between two zeros of a convex function and is thus nonpositive, i.e., Eq. (B.13) is not satisfied.
Thus, qv � 1, which in turn yields Rv ¼ 0 ¼ R

̄
ðp; a; vÞ and Dv ¼ 1� p ¼ D

̄
ðp;a;vÞ. The case f ðv�1

0 Þ ¼ 0, i.e. ap � 1 � p, similarly
yields Rv ¼ 0 ¼ R

̄
ðp; a; vÞ and Dv ¼ ap ¼ D

̄
ðp;a; vÞ.

Finally, observing that the case v 2{0, 1} follows by continuity concludes the proof of Theorem 5.3.

B.2 Proof of Theorem 5.5
We first establish a general result for the joint information distortion rate function of several independent sources

particularized to the setting of Theorem 5.5.Wewill use the shorthandDn
I ¼ DðXn;rnÞ

I for the n-th individual andDðiÞ
I ¼DðXðiÞ;rðiÞÞ

I ,
where X(i), r(i) are the random infection status and the cost function of an arbitrary individual in the i-th subpopulation.

Lemma B.3. The information distortion-rate function DðX;rÞ
I ðRÞ can be decomposed as

DðX;rÞ
I ðRÞ ¼ min

x2½0;1�N :
P

n
xn¼1

1
N

XN
n¼1

Dn
I ðxnNRÞ (B.17)

1X ðiÞ ðiÞ ðiÞ
¼ min
x2½0;1�I :

P
i
x
ðiÞNðiÞ¼1N i2I

N DI ðx NRÞ: (B.18)
Proof. In Eq. (10), the right-hand side can be rewritten as

min
pYjX :IðX;YÞ�NR

EpXpYjX

	
1
N
rðX;YÞ




¼ min
pYjX :IðX;YÞ�NR

EpXpYjX

"
1
N

XN
n¼1

rnðXn;YnÞ
#

¼ min
pYjX :IðX;YÞ�NR

1
N

XN
n¼1

EpXpYjX ½rnðXn;YnÞ�

¼ min
pYjX:IðX;YÞ�NR

1
N

XN
n¼1

EpXn pYn jXn ½rnðXn;YnÞ�

(B.19)
Furthermore, we can expand the mutual information as

IðX;YÞ ¼ HðXÞ � HðX jYÞ ¼
XN
n¼1

HðXnÞ � HðXn jY;X1;…;Xn�1Þ �
XN
n¼1

HðXnÞ � HðXn j YnÞ ¼
XN
n¼1

IðXn;YnÞ (B.20)

with equality if pYjXðyjxÞ ¼QnpYnjXn
ðynjxnÞ. We can thus restrict the minimization in Eq. (B.19) to pYjXðyjxÞ ¼

Q
npYn jXn

ðynjxnÞ
and obtain
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DðX;rÞ
I ðRÞ ¼ 1

N
min

pYjX :
P
n

IðXn;YnÞ�NR

XN
n¼1

EpXn pYn jXn ½rnðXn;YnÞ� (B.21)

¼ 1
N

min
x2½0;1�N :kvk1¼1

min
pYn jXn :IðXn;YnÞ�xnNR

XN
n¼1

EpXn pYn jXn ½rnðXn;YnÞ�; (B.22)

which immediately yields Eq. (B.17).
Note that the only difference between Eqs. (B.17) and (B.18) is that all xn for Xn belonging to the same subpopulation are

chosen to be equal, i.e., xn ¼ x(i). To justify this choice, we have to show that this indeed minimizes the sum, i.e.,

NðiÞDðiÞ
I ðxðiÞNRÞ �

XNðiÞ

n¼1

DðiÞ
I ðxnNRÞ (B.23)

for
PNðiÞ

n¼1xn ¼ NðiÞxðiÞ. The convexity of the information distortion-rate function [Gray, 1990, Sec. 4.1] implies that

DðiÞ
I

0
@XNðiÞ

n¼1

1
NðiÞRn

1
A �

XNðiÞ

n¼1

1
NðiÞD

ðiÞ
I ðRnÞ (B.24)

which is precisely Eq. (B.23) for Rn ¼ xnNR. ,
Theorem 5.5 now follows by solving the minimization in Eq. (B.18). More specifically, we can write the optimization

problem in Eq. (B.18) as an unconstrained optimization problem using a Lagrangian formalism [Boyd & Vandenberghe, 2004,
Sec. 5.5.3]

Lðx; l;mÞ ¼ 1
N

X
i2I

NðiÞDðiÞ
I ðxðiÞNRÞ þ l

 
1�

X
i

xðiÞNðiÞ
!
�
X
i

mðiÞxðiÞ (B.25)
and obtain the associated Karush-Kuhn-Tucker (KKT) conditions for l2R and m2RI ,

RNðiÞ _D
ðiÞ
I ðxðiÞNRÞ � lNðiÞ � mðiÞ ¼ 0 for i2I (B.26)

1�
X

xðiÞNðiÞ ¼ 0 (B.27)

i

xðiÞ � 0; mðiÞ � 0; xðiÞmðiÞ ¼ 0 for i2I : (B.28)
By the convexity of DðiÞ
I [Gray, 1990, Sec. 4.1], the minimization problem Eq. (B.18) is convex and the KKT conditions

therefore necessary and sufficient.
Recall that we actually want to solve the minimization problem for a given v at the fixed R

RðvÞ ¼ 1
N

X
i

NðiÞR
̄
ðpðiÞ; aðiÞ; vbðiÞ Þ: (B.29)
Choosing xðiÞ ¼ R
̄
ðpðiÞ;aðiÞ;vb

ðiÞ Þ
NR now obviously satisfies Eq. (B.27). To check Eq. (B.26) and Eq. (B.28) for all i2I , we consider two

cases. If vb
ðiÞ
< v

ðiÞ
0 , where v

ðiÞ
0 is defined as v0 in Theorem 3.1, then Remark 5.4 implies that _D

ðiÞ
I

�
R
̄
ðpðiÞ; aðiÞ; vbðiÞ Þ

�
¼ bðiÞ

log vb
ðiÞ .

Hence, setting m(i) ¼ 0, Eq. (B.28) is satisfied and Eq. (B.26) reduces to choosing l ¼ R
log v

, such that Eq. (B.26) is satisfied for all i
with vb

ðiÞ
< v

ðiÞ
0 .

If vb
ðiÞ � v

ðiÞ
0 , we obtain from the definition of R

̄
ðpðiÞ; aðiÞ; vbðiÞ Þ that x(i) ¼ 0. According to Remark 5.4, the derivative _D

ðiÞ
I ð0Þ ¼

bðiÞ

log v
ðiÞ
0

and Eq. (B.26) becomes mðiÞ ¼ RNðiÞ bðiÞ

log v
ðiÞ
0

� RNðiÞ 1
log v

which is nonnegative due to vb
ðiÞ � v

ðiÞ
0 and thus Eq. (B.28) is satisfied.

Thus, the choices xðiÞ ¼ R
̄
ðpðiÞ;aðiÞ;vb

ðiÞ Þ
NR , l ¼ R

log v
, and mðiÞ ¼ RNðiÞ bðiÞ

log v
ðiÞ
0

� RNðiÞ 1
log v

for vb
ðiÞ � v

ðiÞ
0 and m(i) ¼ 0 otherwise, satisfy the

KKT conditions. The equations Eq. (9) then follow by inserting xðiÞNR ¼ R
̄
ðpðiÞ; aðiÞ; vbðiÞ Þ into DðiÞ

I ðxðiÞNRÞ and noting that, by
Theorem 5.3, we have DðiÞ

I ðR
̄
ðpðiÞ;aðiÞ; vbðiÞ ÞÞ ¼ bðiÞD

̄
ðpðiÞ;aðiÞ; vbðiÞ Þ.
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C Evaluation of k stage group testing

To calculate the expected rate, we denote by T[ the TpI used in the [-th stage of the testing procedure. Then

RkSGðu1;…;ukÞ ¼ E

"Xk
[¼1

T[

#
¼
Xk
[¼1

E½T[�: (C.1)
Since in the first stage all individuals are tested in groups of size u1, the expectation is simply E½T1� ¼ 1
u1
: In the ([ þ 1)-th

stage for [ � 1 only those individuals that belong to groups of size u[ including at least one positive individual are tested. We
can thus condition the expectation on the event that the group of size u[ the individual belongs to is negative, which has
probability ð1� pÞu[ , or positive, which has probability 1� ð1� pÞu[ . Hence, the expectation expands to

E½T[þ1� ¼
�
1� ð1� pÞu[

� 1
u[þ1

þ ð1� pÞu[,0 (C.2)

concluding the Proof of Eq. (7).
To prove Eq. (8), first note that kSG(u1, …, uk) never declares an infected individual as healthy. Indeed, the only cases of

wrong assignment can happen in groups that are positive at the k-th stage. Here, all individuals in the group are declared
infected, although there may be several healthy individuals in the group. Thus, the expected cost of a single individual is the
probability of itself being negative times the probability that at least one of uk � 1 other individuals is infected times the false
positive cost b, i.e.,

DkSGðu1;…;ukÞ ¼ bð1� pÞ
�
1� ð1� pÞuk�1

�
¼ b

�
1� p� ð1� pÞuk

�
: (C.3)
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