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Abstract

Dietary fish oils, rich in (n-3) PUFA, including eicosapentaenoic acid and docosahexaenoic acid, have been shown to have

antiinflammatory properties. Although the antiinflammatory properties of fish oil may be beneficial during a chronic

inflammatory illness, the same antiinflammatory properties can suppress the inflammatory responses necessary to

combat acute viral infection. Given that (n-3) fatty acid-rich fish oil supplementation is on the rise and with the increasing

threat of an influenza pandemic, we tested the effect of fish oil feeding for 2 wk on the immune response to influenza virus

infection. Male C57BL/6 mice fed either a menhaden fish oil/corn oil diet (4 g fish oil:1 g corn oil, wt:wt at 5 g/100 g diet) or

a control corn oil diet were infected with influenza A/PuertoRico/8/34 and analyzed for lung pathology and immune

function. Although fish oil-fed mice had lower lung inflammation compared with controls, fish oil feeding also resulted in a

40% higher mortality rate, a 70% higher lung viral load at d 7 post infection, and a prolonged recovery period following

infection. Although splenic natural killer (NK) cell activity was suppressed in fish oil-fed mice, lung NK activity was not

affected. Additionally, lungs of infected fish oil-fed mice had significantly fewer CD8+ T cells and decreased mRNA

expression of macrophage inflammatory protein-1-a, tumor necrosis factor-a, and interleukin-6. These results suggest

that the antiinflammatory properties of fish oil feeding can alter the immune response to influenza infection, resulting in

increased morbidity and mortality. J. Nutr. 139: 1588–1594, 2009.

Introduction

Dietary long-chain PUFA derived from fish oil have been shown
to have beneficial effects on chronic inflammatory and autoim-
mune disorders (1,2) and long-chain PUFA such as eicosapen-
taenoic acid [20:5(n-3)] and docosahexaenoic acid [22:6(n-3)]
appear to be most beneficial (3,4). A number of studies report
that the immunosuppressive effects of PUFA are a result of
decreased cytokine production and from reductions in T cell
proliferation, activation, and signaling (5–7). Studies of rodents
fed fish oil-enriched diets have shown a reduction in natural
killer (NK)4 cell activity (8), decreased lymphocyte proliferation
(9,10), and decreased antigen presentation functions (9,11–13).
In addition, decreases in ex vivo production of tumor necrosis
factor-a (TNFa), interleukin (IL)-1, IL-2, IL-6, and interferon
(IFN)-g have also been reported (10,14–18).

Whereas the antiinflammatory properties of PUFA may be
beneficial for some chronic inflammatory illnesses, these same

antiinflammatory properties may be detrimental for response to
an infection when an intact immune system is needed to
eradicate an invading pathogen. For example, diets supple-
mented with fish oils have been shown to lower host resistance to
Mycobacterium tuberculosis (19), to reduce the survival of mice
against infection with Listeria monocytogenes (20,21), and to
decrease resistance of mice infected with Salmonella typhimu-
rium (22). Similarly, fish oil feeding can diminish host defense
against influenza virus due to delays in viral clearance (23).

Despite the availability of vaccines and antiviral agents,
influenza virus continues to be a major cause of morbidity and
mortality worldwide (24,25). Influenza virus infects cells of the
respiratory system, resulting in an acute and diffuse inflamma-
tion of the bronchoalveolar tract (26). Following infection, a
coordinated immune response consisting of both innate and
adaptive mechanisms results in an accumulation of immune cells
and secretion of immunomodulatory proteins designed to limit
viral spread. In the mouse model of influenza virus infection, NK
cells, neutrophils, and T lymphocytes increase in the lung
postinfection (p.i.) and contribute to host protection (27). The
secretion of both inflammatory and antiviral cytokines helps to
eliminate the virus and reduce further spread. Whereas this
inflammatory response is necessary for viral clearance, it also
contributes to lung pathology (27). Although there are many
studies documenting the antiinflammatory properties of fish oil,
there are few studies that have examined the effects of fish oil on
viral infection (28).
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Because of the known health benefits, fish oil supplementa-
tion is on the rise. A survey conducted among health care
professionals in the US reported an increase in fish oil supple-
mentation from 24 to 30% in 2006 to 2007 (29). Additionally,
in 2007, 37.4% of the U.S. population reported using fish oil or
fish oil supplements for health reasons (30). With the anticipated
increase of fish consumption and the increase in the usage of fish
oil supplements, there is a growing concern that the beneficial
antiinflammatory properties of (n-3) fatty acids may have
adverse effects when inflammation is necessary to combat
infection (1,28,31). This study was undertaken to investigate
effects of fish oil feeding on the immune response to influenza
virus infection in mice.

Materials and Methods

Animals and diet. Six-week-old male C57BL/6J mice were purchased
from Jackson Laboratories. All mice were housed at the University of

North Carolina Animal Facility, which is fully accredited by the

American Association for Accreditation of Laboratory Animal Care.

Animals were maintained under protocols approved by the Institutional
Animal Care and Use Committee. All mice were housed under a 12-h-

light/-dark schedule with free access to food and water. Mice consumed

ad libitum a control semipurified diet containing 5% corn oil

(D07092502, Research Diets) or a fish oil-corn oil diet at physiological
levels (1% corn oil + 4% fish oil, D07092503, Research Diets) for 2 wk

(Table 1).

Virus and infection. The mouse-adapted strain of influenza A/Puerto
Rico/8/34 (American Type Culture Collection) was propagated in the

allantoic fluid of 10-d-old fertilized hen’s eggs and the viral titer was

determined by hemagglutination assay (32). Following 2 wk of dietary
treatment, mice were anesthetized with an intraperitoneal injection of a

ketamine (0.6 mg/kg)/xylazine (0.35 mg/kg) solution and infected

intranasally with 0.05 mL of 2 hemagglutinating units of A/Puerto

Rico/8/34 virus diluted in PBS. Previous studies from our laboratory
determined that this dose of virus is sufficient to effectively elicit an

immune response with normal mortality in mice (32). Mice were

weighed daily following infection and percent weight loss compared

with starting weight at time of infection was calculated.

Pathology. The left lobe of the lung was removed at d 0 (uninfected

mice) 3, 7, 10, 15, and 21 p.i. and perfused with 4% paraformaldehyde,

paraffin embedded, cut in 6-mm sections, and stained with hematoxylin

and eosin. Pathology grading was performed semiquantitatively accord-

ing to the relative degree of inflammatory infiltration as previously
described (33).

Quantification of lung virus titer. As previously described, lung viral

titers were determined by a modified tissue culture infectious dose 50

(TCID50) using hemagglutination as an endpoint (32). Briefly, supernates
from lung homogenates were serially diluted and used to infect Madin-

Darby canine kidney cells. Virus titers were determined based on the

presence or absence of hemagglutination of human O RBC and TCID50

was determined by the method of Reed and Muench (34).

Enumeration of NK cell populations. Lungs and spleens were

removed at d 0 and 3 p.i. Lungs were incubated in a collagenase

solution (1500 units/lung) for 1 h. Lung and spleen were processed into

single-cell suspensions using a stomacher (Seward) and strained through
a 40-mm nylon filter. Cell numbers between different samples were

equalized to 5 3 105 cells/sample and stained with fluorescein anti-DX5

isothiocyanate (FITC) and anti-CD3 phycoerythrin (PE) (BD Pharmin-

gen). Fluorescence was measured using a FACSCalibur flow cytometer
(Becton Dickinson) equipped with a 488-nm argon laser and a 647-nm

diode laser. The lymphocyte population was gated and NK cells were

identified as CD3–DX5+ within the gate.

Determination of NK cell cytotoxicity. Total lung and spleen cells

were analyzed using a standard chromium-51 release assay in triplicate
following a previously published method (32).

Percent specific lysis was calculated by the following equation:

%specific lysis ¼ cpm ½sample�2 cpm ½spontaneous release�
cpm ½maximum release�2 cpm ½spontaneous release� 3 100

Quantification of immune cells. To obtain bronchoalveolar lavage

fluid whole lungs were lavaged 3 times with PBS at d 3, 7, 10, and 15 p.i.

RBC were lysed using ACK lysis buffer (0.15 mol/L NH4Cl, 1 mmol/L
KHCO3, 0.1 mmol/L Na2EDTA in double-distilled H2O, pH 7.4).

Samples were washed twice in PBS/2% bovine serum and stained with

fluorescent antibody for 30 min on ice, followed by 3 additional washes

in PBS/2% bovine serum. At least 5 3 105 cells were stained with the
following anti-mouse monoclonal antibodies: FITC anti-CD3, APC-

anti-CD4 and peridinin-chlorophyll-protein anti-CD8, PE anti-CD11b

and FITC anti-GR-1 (BD Biosciences). Cell populations were analyzed
using a FACSCalibur flow cytometer (Becton Dickinson). T cells were

identified using the follow antibodies: FITC-anti-CD3, APC-anti-CD4,

and peridinin-chlorophyll-protein-anti-CD8 and neutrophils: PE anti-

CD11b and FITC anti-GR-1(35).

Quantitation of lung mRNA cytokine levels. The right lobe of the

lung was removed at d 0 (uninfected), 3, 7, and 10 p.i. Total RNA was

isolated using the TRIzol method and RT was conducted with a

Superscript II First Strand Synthesis kit (Invitrogen). Following previ-
ously described methods (32), mRNA levels were measured for TNFa,

IL-2, IL-6, IL-12, IFNa and IFNb, regulated upon activation, normal T

cell expressed and secreted, macrophage inflammatory protein-1-a

(MIP-1a), and glyceraldehyde-3-phosphate dehydrogenase using quan-
titative real-time PCR. All data were expressed as fold-change from

uninfected mice fed the same diet. Control and fish oil-fed mice did not

differ in glyceraldehyde-3-phosphate dehydrogenase levels at any time
point. All data were expressed as fold-change from uninfected mice fed

the same diet.

Statistical analysis. Statistical analyses were performed using JMP 7

Statistical software and SAS 9.1 software. Normally distributed data
were analyzed by 2-way ANOVAwith diet and day p.i. as main effects.

Student’s t test was used for post hoc comparison between the dietary

groups and Tukey’s honestly significant differences was used for post hoc
comparisons among the days p.i. Nonparametric data were analyzed

using the Kruskal Wallis test. Counted data were analyzed using logistic

regression analysis (P , 0.05) when Wald CI for odds ratios did not

TABLE 1 Composition of experimental diets1

Control1 Fish oil2

Ingredient g/kg kJ/kg g/kg kJ/kg

Casein 200 3347 200 3347

DL-Methionine 3 50 3 50

Corn starch 219 3665 219 3665

Sucrose 420 7029 420 7029

Cellulose 60 0 60 0

Corn oil 50 2259 10 376

Fish oil 0 0 40 1506

t-BHQ 1.008 0 1 0

Mineral mix S10001 35 0 35 0

Vitamin mix V10001 10 167 10 167

Choline bitartrate 2 0 2 0

d,l-a Tocopheryl acetate2 0 0 0.405 0

1 Formulated and supplied from Research Diets, Inc. AIN-78A rodent diet with

modifications. Control corn oil diet no. D07092502, fish oil diet no. D07092503

containing menhaden oil with 2.1% archidonic acid, 14.2% eicosapentaenoic acid, and

12.2% docosahexaenoic acid.
2 Vitamin E additionally added to the fish oil diet.
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include 1. Survival data were analyzed using the Kaplan-Meier survival

estimates. Significance that compares the survival curve estimates of the

2 diet groups was analyzed by the log rank test. Differences were
considered significant at P , 0.05.

Results

Fish oil-fed mice recover more slowly from influenza virus

infection. In mice, weight loss is a marker for illness severity
following influenza infection and subsequent weight gain is an
indicator for recovery. Both control and fish oil-fed mice lost
considerable amounts of weight during the course of infection.
Control mice began to regain weight after d 10 p.i.; however, fish
oil-fed mice did not begin to regain weight until d 14 p.i.
Between d 11 and 18 p.i., the percent body weight change
remained significantly lower in the fish oil-fed mice compared
with the control mice. By d 20 p.i., the body weights did not
differ between the groups (Fig. 1).

Fish oil feeding results in a higher mortality rate following

influenza infection. Increased severity of infection in the fish
oil-fed mice was also reflected in the mortality rates. Beginning
at d 11 p.i., fish oil-fed mice had a significantly higher mortality
rate compared with control mice. At d 20 p.i., the fish oil-fed
mice had a 51% mortality rate compared with a 10% mortality
rate in control mice (Fig. 2).

Fish oil feeding improves lung pathology post-influenza

virus infection. Influenza virus infection results in an infiltra-
tion of inflammatory cells in the lung. Lung pathology was
examined at various times p.i. Lung pathology was significantly
reduced in influenza-infected fish oil-fed mice at d 7, 10, 15, and
21 p.i. compared with infected controls (Fig. 3).

Fish oil feeding increases virus load in the lung p.i. Because
the fish oil-fed mice had reduced inflammation in the lungs and
the inflammatory response is necessary for viral control, lung viral
titers were measured in the mice. On d 7 p.i., fish oil-fed mice had
a viral load that was 7.1-fold higher that of controls (Fig. 4).

Fish oil feeding affects NK cell cellularity and cytotoxicity.

NK cells represent the first line of defense post-influenza
infection (36). Previous studies have demonstrated reduced
splenic NK activity with fish oil feeding (8). At d 3 p.i., the
splenic NK population was significantly reduced in the fish oil-
fed mice compared with controls (Fig. 5A) and NK (Fig. 5B). In

the lungs at d 3 p.i., the fish oil-fed mice had less than one-half
the total number of NK cells compared with control mice (Fig.
5C); however, lung NK activity did not differ between groups
(Fig. 5D).

Fish oil feeding reduces neutrophils in lung of infected

mice. Recruitment of neutrophils to the site of infection is an
essential early component of the immune response to influenza
infection (37). In the lungs of fish oil-fed uninfected mice (d 0),
the total number of neutrophils was 71% lower than in control
mice (Fig. 6). Following infection, neutrophil numbers in the
lung increased in both groups; however, the total neutrophil
number remained significantly lower in the fish oil-fed mice.

Fish oil feeding reduces CD8+ T cells in the infected lung.

To determine whether fish oil feeding affects T cell numbers in
the lung, total numbers of T lymphocytes (CD3+) as well as
CD4+ and CD8+ populations were identified in bronchoalveolar
lavage fluid following influenza challenge. Although the CD3+ T
cell number peaked at d 10 p.i. in both diet groups, fish oil-fed
mice had significantly fewer CD3+ T cells at d 7 and 10 p.i. (Fig.
7A). This reduction in CD3+ T lymphocytes was due to fewer
CD8+ T cells (Fig. 7B), as the number of CD4+ T cells did not
differ between groups at any time point (data not shown). By
d 15 p.i., CD3+ lymphocyte numbers did not differ between
groups.

FIGURE 1 Percent body weight change in mice fed control or fish

oil diets following influenza infection. Values are means 6 SEM, d 0

n = 61 (control) or d 0 n = 71 (fish oil). *Groups differ at each time, P,
0.05.

FIGURE 2 Percent survival in mice fed control or fish oil diets

following influenza infection. Control, n = 61 (d 0); fish oil, n = 71 (d 0).

Log rank, P , 0.001.

FIGURE 3 Degree of lung pathology in mice fed control or fish oil

diets following influenza infection. Values are means 6 SEM, n = 3-6

per time point except d 10, n = 11 (control and fish oil). *Different

from control, P , 0.05. Pathology score was as follows: 0, no

inflammation; 1+, mild influx of inflammatory cells with cuffing around

vessels; 2+, increased inflammation with ~25–50% of the total lung

involved; 3+, severe inflammation involving 50–75% of the lung; and

4+, almost all lung tissue contained inflammatory infiltrates.
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Fish oil feeding decreases cytokine and chemokine mRNA

expression in lungs of influenza-infected mice. A coordi-
nated production of cytokines and chemokines occurs in the
lungs during an influenza virus infection (27). To determine
whether fish oil feeding could influence production of these
inflammatory mediators, mRNA levels were measured for
various cytokines and chemokines. In infected mice, fish oil
feeding resulted in significantly lower mRNA expression ofMIP-
1a, TNFa, and IL-6 at d 7 p.i. compared with control mice (Fig.
8). Levels of mRNA for IL-2, IL-12, IFNa, IFNb, and regulated
upon activation, normal T-cell expressed and secreted did not
differ between infected diet groups at any time p.i. (data not
presented).

Discussion

The favorable effects of dietary fish oils stem from the potential
of (n-3) fatty acids to reduce excessive inflammation (3,38).
Studies have shown beneficial antiinflammatory properties of
dietary fish oils on chronic diseases such as rheumatoid and
osteoarthritis, inflammatory bowel disease, cardiovascular dis-
ease, type 2 diabetes, and Alzheimer’s disease (39). However,
suppression of the immune system may be deleterious when
inflammation is required to eliminate the invading pathogen,
such as during influenza virus infection (28). Following infection
with influenza, a controlled and coordinated immune response is
essential for resolving the infection. The availability of (n-3)
fatty acid-rich fish oil supplements and the increasing inclusion

of (n-3) fatty acids in prepared foods (40) add to the importance
of understanding how the immunosuppressive properties of fish
oils may impact the host’s ability to respond to influenza virus
infection.

Mice fed a fish oil-rich diet had decreased lung pathology
following influenza infection compared with controls; however,
the fish oil-fed mice also had a prolonged recovery time,
significantly increased viral titer and importantly, a significantly
higher mortality rate. Thus, in the case of influenza virus
infection, reduced lung inflammation was associated with a poor
outcome p.i. To understand the direct effect of fish oil feeding on
the immune response to influenza virus infection, numbers and
phenotypes of cells infiltrating the lung tissue were measured. At
d 3 p.i., fish oil-fed mice had fewer numbers of NK cells
infiltrating their lungs compared with control mice. NK cells
provide an early defense against influenza virus infection and are
important in reducing viral load prior to activation of the
adaptive immune response (36). NK cell trafficking to the site of
infection is dependent on a variety of inflammatory mediators,
including the expression of a cytokine/chemokine gradient,
upregulation of adhesion molecules, and activation of G-
protein–coupled receptors (41–43). Fatty acids of the (n-3)
group have been shown to decrease surface expression of
vascular adhesion molecules and to alter G-protein–coupled
membrane receptors (38,44,45), suggesting that fish oil feeding
may have interfered with the signaling required for NK cell
trafficking into the lungs. However, other possibilities for
reduced NK in the lung include a reduction in general numbers,
resulting in fewer NK cells trafficking to the lung.

Although the NK cell number was reduced in both the spleen
and lungs of fish oil-fed mice, impairment in NK activity was
found only in splenic NK cells. The differences between spleen
and lung NK activity may be due to exposure to cytokines. There
are a number of cytokines that enhance NK cytotoxicity,
including IL-12, IL-18, and IFNa and b (36,42); therefore,
NK activity in the lungs of fish oil-fed mice may have increased
due to exposure to the cytokine milieu at the site of infection.
During influenza virus infection, production of inflammatory
cytokines occurs at the site of infection and therefore the spleen
is not exposed to this localized inflammatory response. Indeed,
Yaqoob et al. (8) demonstrated enhanced NK activity in PUFA-
treated NK cells following exposure to IFNg.

Fish oil feeding also affected numbers of neutrophils in the
lung following infection. During early virus-induced inflamma-
tory responses, neutrophils rapidly traffic into infected airways,
where they play a critical role in limiting virus replication and
activating innate immunity (37,46). Neutrophil migration is

FIGURE 4 Lung influenza viral titers in mice fed control or fish oil

diets during influenza infection. Lung virus titers were determined by

TCID50. Values are means 6 SEM, n = 4-6 per time point except d 7,

n = 10 (control and fish oil). *Different from control, P , 0.05.

FIGURE 5 Effect of influenza infection and fish oil feeding on spleen NK cell number (A), spleen NK cell cytotoxicity (B), lung NK cell number

(C ), and lung NK cell cytotoxicity (D) in mice fed control or fish oil diets on d 3 after infection with influenza. Values are means 6 SEM, n = 6.

*Different from control, P , 0.05.

Fish oil feeding and influenza virus infection 1591



controlled in part by the release of chemokines, cytokines, and
leukotrienes. MIP-1a has been shown to play a critical role in
each aspect of neutrophil trafficking, including rolling, station-
ary adhesion, and tissue recruitment in vivo (47,48). In addition,
studies by Ramos et al. (48) demonstrated that ovalbumin-
induced neutrophil migration in immunized mice was mediated
by MIP-1a via the release of TNFa and leukotriene B4.
Moreover, influenza-infected MIP-1a knockout mice exhibited
reduced lung inflammation and delayed viral clearance com-
pared with infected wild type mice (49). In our study, we showed
that fish oil-fed mice lacked MIP-1a and TNFa mRNA
induction. Together, these data suggest that the failure to
upregulate MIP-1a and TNFa mRNA in fish oil-fed mice may
have resulted in reduced neutrophil trafficking to the lungs
following influenza infection.

On d 7 and 10 p.i., CD8+ T cells were lower than in controls
in the lung of influenza-infected fish oil-fed mice. Influenza-
specific CD8+ T cells kill infected target cells by direct lysis and
also play an essential role in influenza virus clearance and
controlling morbidity (50–52). In mice that lack CD8+ T cells,
infection with influenza A/PR/8/34 led to increased viral
replication and mortality (53). CD4+ T cells, on the other
hand, help to resolve inflammation during influenza infection;
however, they are not essential for viral clearance (54,55). Our
data suggest that reduction in CD8+ T cell numbers p.i. coupled
with reduced numbers of neutrophils likely contributed to the
increase in lung virus titer in the fish oil-fed mice.

The recruitment of T cells is dependent on cytokine-induced
expression of adhesion molecules. For example, TNFa and IL-
1b stimulate endothelial cells to increase expression of adhesion

molecules, selectins, and intergrins (56,57). As expected with an
influenza virus infection, cytokine mRNA expression of TNFa
peaked at d 7 in control mice; however, this induction did not
occur in fish oil-fed mice, suggesting that a lack TNFamay have
contributed to the decrease in CD8+ T cell trafficking to the
lung. Alternatives to trafficking include increased apoptosis and/
or failure to proliferate in response to antigen stimuli (58,59).
However, we examined lung tissue for increased apoptosis by
TUNEL staining and found no differences in apoptosis between
diet groups (data not shown).

The number of CD4+ T cells in the lung, however, was not
affected in fish oil-fed influenza infected mice. Fish oil feeding
may have altered pathways required for CD8+ T cell and not
CD4+ T cell trafficking. For example, although both CD4+ and
CD8+ T cells express CXCR3, administration of anti-CXCR3
antibody reduced CD4+ T cell infiltrate in the brain, whereas
CD8+ trafficking was not affected (60). Similarly, CCR5 is also
expressed on both CD4+ and CD8+ T cells, although only CD4+

T cell trafficking was affected by lack of CCR5 expression in a
mouse model of hepatitis virus (61). Interestingly, mRNA for
MIP-1a, the ligand for CCR5, was underexpressed in the fish
oil-fed mice. Our results suggest that chemokines and perhaps
their receptor expression may play a key role in the immuno-
modulatory effects of fish oil during influenza infection.

TNFa is produced by infected lung epithelial cells, activated
macrophages, dendritic cells, neutrophils, T cells (CD8+ and
CD4+), and NK cells (26,62). During viral infection, TNFa
exerts antiviral activity (63), enhances the recruitment of
leukocytes to the site of infection, and activates innate immune
responses (64,65). IL-6 induction has pleiotropic effects, includ-
ing the activation of NK cells and macrophages and stimulation
of T cell differentiation during influenza infection (64,66). The
potential for (n-3) fatty acids to reduce proinflammatory
cytokines has been shown previously (67). For example, studies
of fish oil-fed mice have demonstrated that injection with
lipopolysaccharide decreased the ex vivo production of TNFa,
IL-1b, and IL-6 by peritoneal macrophages and decreased
TNFa, IL-1b, and IL-6 concentrations in circulation (14,17,68).

Together, these data suggest that the antiinflammatory
properties of fish oil that resulted in reduced neutrophils, NK
cells, and CD8+ T cells in the lung and decreased expression of
mRNA for proinflammatory cytokines likely led to the increased
viral titer and subsequent higher mortality rate in the fish oil-fed
mice. However, the viral titers began to decrease in both fish oil-
fed and control groups at a time when the former were beginning
to die. This may be a case of survivor bias and those mice that
ultimately died may have had a higher viral titer. We also
investigated other possibilities for the high mortality rate of fish
oil-fed mice, including impaired liver and/or kidney function,
spread of virus to the brain, and increased lung cell apoptosis.

FIGURE 6 Effect of fish oil feeding on neutrophil infiltration of the

lung in mice fed control or fish oil diets during influenza infection.

Values are means 6 SEM, n = 5-6 per time point (control and fish oil).

*Different from corresponding d 0, P , 0.05. #Different from

corresponding control, P , 0.05.

FIGURE 7 Total lung cell populations of CD3+

lymphocytes (A) and CD8+ cytotoxic T cells (B) in

the bronchoaveolar lavage fluid in mice at d 7, 10,

and 15 after infection with influenza. Values are

means 6 SEM, n = 5-6 per time point (control and

fish oil). *Different from control, P , 0.05.
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All of these possibilities were negative (data not shown). In the
future, other possibilities to explain the increased death rate of
fish oil-fed mice will include an investigation to determine
whether lung tissue repair mechanisms are impaired (69) or if
fish oil-fed influenza-infected mice have increased and/or longer
fevers potentially leading to brain damage and ultimately death
(70,71).

Further mechanistic studies are needed to determine how
PUFA can influence the immune response to influenza infection.
For example, studies have shown that lipid raft disruptions by
(n-3) fatty acids can affect signaling pathways in T lymphocytes
and disrupt immunological synapse formation needed to acti-
vate T cells (6,72). However, potential adverse effects of these
alterations in vivo during an influenza virus infection have not
been investigated.

In this study, we utilized both a physiologically relevant
concentration of dietary fish oil supplementation and a natural
route of administration of a viral pathogen. Results from our
study suggest that fish oil consumption has the potential to
increase the severity of an influenza virus infection and perhaps
other viral illnesses as well.
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