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1  | INTRODUC TION

For centuries, ecologists have been trying to uncover the processes 
underlying geographical gradients of biodiversity, such as the strik-
ing increase in richness from the poles to the tropics. Diversity 
gradients are known to result from multiple factors operating 
non-independently and at different scales (Belmaker & Jetz, 2015; 
Mittelbach et  al.,  2007; Rangel et  al.,  2018). Current environmen-
tal factors, especially those related to climate (temperature and 

precipitation) and primary productivity, are among the strongest 
predictors of richness for terrestrial and aquatic organisms across 
multiple regions and spatial scales (Field et  al.,  2009; Hawkins 
et al., 2003). However, studies rarely consider how climate and pro-
ductivity are interrelated and that their relative importance to diver-
sity patterns potentially varies across geographical space (Gouveia 
et  al.,  2013; Hawkins et  al.,  2003). Here, we use a geographically 
weighted path analysis to revisit hypotheses on how climate and 
productivity relate to species richness of terrestrial tetrapods 
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Abstract
Aim: We aimed to dissect the spatial variation of the direct and indirect effects of 
climate and productivity on global species richness of terrestrial tetrapods.
Location: Global.
Time period: Present.
Major taxa studied: Terrestrial tetrapods.
Methods: We used a geographically weighted path analysis to estimate and map the 
direct and indirect effects of temperature, precipitation and primary productivity on 
species richness of terrestrial tetrapods across the globe.
Results: We found that all relationships shift in magnitude, and even in direction, 
among taxonomic groups, geographical regions and connecting paths. Direct effects 
of temperature and precipitation are generally stronger than both indirect effects 
mediated by productivity and direct effects of productivity.
Main conclusions: Richness gradients seem to be driven primarily by effects of cli-
mate on organismal physiological limits and metabolic rates rather than by the amount 
of productive energy. Reptiles have the most distinct relationships across tetrapods, 
with a clear latitudinal pattern in the importance of temperature versus water.
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globally by allowing direct and indirect effects to vary geographi-
cally. We assess these relationships for the four terrestrial tetrapod 
groups (amphibians, birds, mammals and reptiles), which are likely to 
differ in their environment–richness relationships because of their 
differences in physiology (ecto- and endotherms), rate of niche evo-
lution, and dispersal ability (Buckley et al., 2012; Qian, 2010; Rolland 
et al., 2018; Stevens et al., 2014).

Several hypotheses have been proposed to explain why species 
richness tends to be greater in more productive, warmer and wet-
ter environments (Clarke & Gaston, 2006; Currie et al., 2004; Field 
et al., 2009). The “more individuals hypothesis” proposes that species 
richness increases with productivity because more individuals can 
be supported if there is a greater amount of energy present in a food 
web, thus increasing the number of viable populations and reducing 
extinction rates (Brown, 1981; Hutchinson, 1959; Storch et al., 2018; 
Wright, 1983). Increasing productive energy is also proposed to in-
crease richness by providing greater diversity of niches, thus facili-
tating the coexistence of more species in this increased niche space 
(i.e., “niche diversity hypothesis”; Chase & Leibold,  2002; Evans, 
Warren, et al., 2005; Hurlbert & Jetz, 2010). Climate variables such 
as temperature and precipitation are expected to influence species 
richness through the thermal tolerances and physiological require-
ments of organisms (i.e., “physiological tolerance hypothesis”; Currie 
et al., 2004). In particular, ectotherms are more dependent on climate 
than endotherms, given their need for external sources of heat to 
regulate body temperature and, in the case of amphibians, water to 
maintain metabolism and reproduction (Buckley et al., 2012). Another 
group of theories, known as the “metabolic theory” and the “evo-
lutionary speed hypothesis”, propose that a positive temperature–
richness relationship arises for all groups because higher thermal and 
kinetic energy is linked to faster metabolic, mutation and speciation 
rates (Allen et al., 2006; Brown et al., 2004; Rohde, 1992).

Disentangling the different mechanisms behind the species–
climate and species–productivity relationships is difficult because 
they do not act in isolation and are therefore not mutually exclu-
sive (Clarke & Gaston,  2006; Currie et  al.,  2004; Evans, Warren, 
et al., 2005), because productivity is strongly dependent on climate 
(Šímová & Storch, 2017). Given that productive energy does not in-
crease monotonically with temperature and precipitation (Šímová & 
Storch, 2017), positive climate–richness relationships might not be 
observed when indirect effects of climate, through productivity, are 
considered. Although these two pathways (Figure 1) are usually ac-
knowledged, indirect paths are generally ignored in statistical anal-
ysis (Allen et al., 2012; Hawkins et al., 2003). Thus, it is unclear to 
what extent the effects of precipitation and temperature on richness 
act directly via physiological controls and constraints of organisms 
and metabolic rates and to what extent they act indirectly, mediated 
by productivity (i.e., mediation effect; Grace, 2006).

Additional complexity is added to the study of climate– and 
productivity–richness relationships because they vary among tax-
onomic groups and geographical regions (Hawkins et  al.,  2003; 
Qian, 2010; Whittaker et al., 2007). In the warm tropics, where tem-
perature is not usually a physiological limitation, water availability 

should be a stronger limiting factor of species richness. In contrast, 
the lower input of thermal energy in temperate to arctic regions 
should lead to temperature and productivity being the primary 
limiting factors of species richness. This latitudinal variation in the 
relative importance of water versus energy on species richness is 
termed the “water–energy hypothesis” (Hawkins et al., 2003). The 
spatial variation in the relative importance of predictors might ex-
plain, in part, why support for hypotheses varies across studies and 
regions (Cassemiro et al., 2007).

Here, we tackle the spatial non-stationarity of direct and indi-
rect pathways connecting climate and productivity with global spe-
cies richness using a geographically weighted path analysis. We use 
a distance-weighted moving window (Fotheringham et  al.,  2002) 
to calibrate the regression models locally and estimate path coef-
ficients (i.e., standardized partial slope coefficient of a multiple re-
gression) along continuous global gradients, removing the need to 
split the data arbitrarily into geographical subregions or latitudinal 
bands. This approach allows us to test hypotheses on environmental 
richness relationships comprehensively at broad spatial scales and to 
map the relative strength of the effect of each environmental con-
dition on diversity across the globe, potentially identifying new pat-
terns that could be revealed only because of the exploratory nature 
of the analysis.

We expect to find the well-known positive direct effects of 
all predictors on species richness (Currie et  al., 2004; Qian, 2010; 
Whittaker et  al., 2007), with the strength of the relationships fol-
lowing a spatial pattern inverse to that of the predictor itself (e.g., 
species–temperature relationships becoming stronger with de-
creasing temperatures). Given the strong limiting effect imposed 
by climate on organismal physiological tolerances and metabolic 
rates, we hypothesize that direct effects will generally be stron-
ger than the indirect ones, but indirect ones should also influence 
species richness patterns. The strong physiological dependence 
of ectotherms on climatic conditions (Buckley et al., 2012) should 
lead to reptiles being influenced more strongly by the direct effect 
of temperature (Coops et al., 2018; Powney et al., 2010; Whittaker 

F I G U R E  1   Path model depicting the analysed directional 
relationships and the underlying hypotheses linking different 
energy measures to species richness [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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et  al.,  2007) and amphibians by the direct effect of precipitation 
(Buckley & Jetz, 2007) across most of the globe. In contrast, endo-
therms are hypothesized to be constrained mostly by the amount of 
productive energy (Buckley et al., 2012; Pough, 1980; Qian, 2010). 
Overall, across the four taxonomic groups, when considering direct 
and indirect pathways to diversity, we expect stronger effects of 
precipitation on richness in the tropics and temperature in regions 
poleward of the tropics, as proposed by the water–energy hypoth-
esis (Hawkins et al., 2003). This latitudinal pattern is expected to be 
stronger for amphibians and reptiles (ectotherms) than for mammals 
and birds (endotherms) (Qian, 2010; Whittaker et al., 2007).

2  | METHODS

2.1 | Datasets

We used range maps of the global distribution of each of the four 
terrestrial tetrapod groups from publicly available databases (BirdLife 
International & Natureserve, 2015; IUCN, 2017; Roll et al., 2017), to-
talling 10,425 species of birds, 5,408 mammals, 6,515 amphibians and 
10,066 reptiles after the exclusion of introduced species. We overlaid 
range maps with a grid composed of squared cells of 110 km × 110 km 
at the Equator using the Behrman equal-area projection and calcu-
lated the number of species whose range overlapped with each cell 
to derive richness maps for each taxonomic group.

We selected mean annual precipitation as a measure of water 
availability, mean annual temperature as a measure of thermal en-
ergy, and mean annual net primary production (NPP) and fraction 
of photosynthetically active radiation (fPAR) as measures of pro-
ductive energy. We obtained data on temperature and precipitation 
from CHELSA (Karger et al., 2017) at 0.008° × 0.008° resolution and 
aggregated it at 1° × 1° resolution. The NPP estimates the amount of 
biomass produced per unity area and time, whereas the fPAR mea-
sures the fraction of the incident photosynthetically active radiation 
(PAR) that is absorbed by plants (Šímová & Storch, 2017). At large 
spatial scales, NPP can be estimated using different approaches that 
yield fairly similar results (Šímová & Storch, 2017). We summarized 
mean annual NPP and fPAR over the years of 2003 to 2015 obtained 
from remotely sensed imagery of the MODIS sensor onboard the 
NASA TERRA satelite (MOD17A2 product). We gathered fPAR data 
from the Dynamic Habitat Indices (Hobi et  al.,  2017) and divided 
the annual cumulative fPAR over the 46 measures taken within 
each year. We computed the mean annual value of each environ-
mental variable for each cell in our grid using the “raster” package 
(Hijmans, 2016) in the R statistical environment.

2.2 | Analysis

Path analysis is useful for exploring the complex web that con-
nects environmental drivers and biodiversity by partitioning the 
total association between predictors and response variables (i.e., 

total effects) into direct and indirect effects. We designed a path 
model based on the proposed hypotheses of how different meas-
ures of energy might be related directly and indirectly with species 
richness (Figure 1). Given that it is unrealistic to assume that these 
relationships are the same across the geographical space (Gouveia 
et  al.,  2013; Hawkins et  al.,  2003), we relaxed the assumption of 
spatial stationarity by using a geographically weighted path analysis 
(GWPath; code available in Supporting Information Appendix  S1). 
Under the GWPath framework, path coefficients can vary region-
ally because of a distance-based Gaussian weighting function that 
assigns greater weights to nearby cells, similar to a geographically 
weighted regression (GWR; Fotheringham et al., 2002). We imple-
mented GWPath using the “gwr” function of the “spgwr” R Package 
(Bivand & Yu, 2017).

Deciding on the radius of the spatial kernel function (bandwidth) 
for GWPath is non-trivial, and the radius should be chosen based 
on biological and statistical reasons (Farber & Páez, 2007). Previous 
global-scale studies suggest that radii of c. 1,000 km capture pat-
terns in coefficient variation of environmental drivers of biodiver-
sity (Davies et al., 2011; Ficetola et al., 2017). Therefore, we used 
this value as a guide to explore visually a series of radii ranging 
from 700 to 2,000 km at 100 km intervals. If a radius is too large, 
the analysis converges back to the spatial stationarity assump-
tion, and if it is too narrow, the model overfits residual variations 
(Fotheringham et al., 2002). Overfitting leads to large shifts in the 
coefficients among nearby cells, causing the formation of coefficient 
islands (Fotheringham et al., 2002). Consistent with previous work, 
we found that a bandwidth of 1,000 km best captured large-scale 
patterns in coefficient variation, because it yielded results similar to 
those from coarser bandwidths while avoiding overfitting.

Our path model is composed of two multiple regressions with 
species richness and productivity as endogenous/response vari-
ables: (1) species richness ~ productivity + precipitation + tempera-
ture and (2) productivity ~  precipitation + temperature (Figure  1). 
To compare coefficients among taxonomic groups, geographical 
regions and connecting paths, we fitted the same path model to 
each vertebrate group across the entire geographical space using 
standardized response and predictor variables (z-scores). We ran all 
analyses twice, once using NPP as the measure of productive energy 
and once using fPAR. Given that the results were qualitatively and 
quantitatively similar (see Supporting Information Figures S1–S20), 
we chose to display and discuss the results from the model with NPP 
in the main text. We ln-transformed all variables because of the po-
tential non-linearity of species–energy relationships, which led to an 
increase in the coefficient of determination (R²) in most focal cells for 
all taxonomic groups apart from mammals (Supporting Information 
Figure S1). We assessed multicollinearity among predictors by cal-
culating variance inflation factors (VIFs) and condition numbers 
(CNs) for each focal cell. Both measures indicated that multicol-
linearity was not a problem in our analysis, because VIF scores were 
lower than eight (mean ± SD: 1.56 ± 1.06; Supporting Information 
Figure S2) and CNs were < 40 (mean ± SD: 10.80 ± 7.87; Supporting 
Information Figure S3) (Dormann et al., 2013).
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3  | RESULTS

3.1 | Direct effects

As predicted, the geographically weighted path analysis revealed 
that direct effects of productivity, temperature and precipitation 
were mainly positive, but it also uncovered unexpected exceptions 
(Figures 2 and 3). For all taxonomic groups, our analysis revealed a 
latitudinal gradient in the strength of the relationship between pro-
ductivity and species richness, with stronger coefficients at higher 
latitudes (Figure 3a–d). Global or near global positive productivity–
richness relationships were confirmed for birds, mammals and am-
phibians (Figure 3a–c), whereas productivity was negatively related 
to richness of reptiles, mainly poleward of the Tropic of Cancer 
(Figure 3d).

Temperature was directly associated with increases in species 
richness of reptiles globally, with stronger coefficients outside the 
tropics (Figure  3h). However, temperature was negatively associ-
ated with richness of birds, mammals and amphibians in much of 
the tropics, especially in Africa and Asia (Figures 3e–g; Supporting 
Information Figures S4–S6), and in South America and Australia 
for birds (Supporting Information Figure S4). Precipitation showed 
a positive relationship everywhere only for amphibian richness 
(Figure 3k). In contrast, we found negative effects of precipitation on 
species richness of birds and mammals in North America (Figure 3i,j) 
and of reptiles at high latitudes and in parts of Australia (Figure 3l; 
Supporting Information Figures S4, S5 and S7).

3.2 | Indirect effects

Temperature and precipitation were also related to species rich-
ness indirectly via productivity; however, indirect effects were 
often weaker than direct ones (maps in Figure 3 cf. maps in Figure 4; 
Supporting Information Figure  S8). Indirectly, the effect of tem-
perature on richness was weakly positive above the Tropic of 
Cancer and negative or zero beneath it for all groups (Figure 4a–d 
and Supporting Information Figures S4–S7). In general, a negative 

temperature–richness relationship was more common in the indirect 
(via productivity) than direct paths (Figure 3e–h cf. Figure 4a–d).

As with temperature, the direct and indirect (via productivity) 
effects of precipitation on species richness showed differing spa-
tial patterns for different groups of tetrapods. Indirect effects of 
precipitation on richness were consistently positive for all groups 
except for reptiles, where the relationship was mostly negative at 
high latitudes and nearly zero elsewhere (Figure 4e–h; Supporting 
Information Figures S4–S7). In general, the direct and indirect ef-
fects of precipitation on reptile richness were weaker than in the 
other groups (Figure  3i–l cf. Figure  4e–h). The consistent indirect 
positive effects of precipitation on the richness of birds, mammals 
and amphibians arise from the mainly positive effect of precipita-
tion on productivity, which in turn, is associated with an increase in 
species richness of these taxonomic groups (Supporting Information 
Figures S1–S6).

3.3 | Relative importance of climate and 
productivity

The relative strength of the effects of productivity, temperature 
and precipitation on species richness was not constant across the 
globe and differed among the four taxonomic groups (Figures 2–4; 
Supporting Information Figure  S9). As expected, when comparing 
the total effects (i.e., sum of direct and indirect paths) of the three 
environmental conditions across taxonomic groups, precipitation 
was a stronger predictor of amphibian richness (shades of pink in 
Figure 5c) and temperature of reptile richness (shades of yellow in 
Figure  5d). For reptiles, we found a clearer latitudinal pattern of 
precipitation being more important in much of the tropics, whereas 
temperature was important outside of the tropics (Figure 5d), a pat-
tern that emerged only when the indirect effects were considered 
(Supporting Information Figure  S9). For mammals and birds, our 
model showed that temperature and productivity were relatively 
more predictive above the Tropic of Cancer, whereas temperature 
and precipitation were more predictive below the Tropic of Cancer 
(Figures 5a,b; Supporting Information Figures S4 and S5).

F I G U R E  2   Path model depicting the 
mean ± SD of the path coefficients (i.e., 
standardized beta coefficients) over the 
globe. The direct effects of temperature, 
productivity and precipitation on 
the species richness of each of the 
terrestrial tetrapod groups are ordered 
as represented by their silhouettes: 
birds, mammals, amphibians and reptiles. 
Silhouette images were taken from www.
freep​ik.com

http://www.freepik.com
http://www.freepik.com
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4  | DISCUSSION

The relationship between climate and species richness is one of 
the most ubiquitous in ecology (Evans, Warren, et  al.,  2005; Field 
et al., 2009), yet it remains uncertain how much of the climatic ef-
fects on diversity act directly or indirectly via productivity and the 
extent to which these relationships are spatially stationary. Using a 
new approach, we mapped a path analysis that explicitly evaluates 
the importance of temperature, precipitation and productivity for 
explaining species richness of terrestrial tetrapods. Overall, climate 
and productivity–richness relationships varied considerably in mag-
nitude, and sometimes even in direction, across the globe, depend-
ing on the variable and the pathways connecting it to richness (i.e., 
direct and indirect) and taxonomic group. We found that nearly eve-
rywhere climate was a stronger driver of richness than productivity 
(Figure 5). In addition, direct effects of climate were often stronger 
than their indirect effects, suggesting that the influence of tempera-
ture and precipitation on species richness is attributable mostly to 

metabolic and physiological processes rather than to niche diversity 
and the number of individuals supported by the environment. Also, 
we detected a clear latitudinal gradient in the relative importance 
of water only versus temperature, in support of the water–energy 
hypothesis, among reptiles and only when we considered both di-
rect and indirect pathways. Taken together, our results suggest that 
when dissecting the environment–diversity relationships, the global 
pattern of constraints on biodiversity is much more complex than 
previously anticipated.

The direct effects of temperature, precipitation and productiv-
ity on species richness were mainly positive, in agreement with the 
metabolic theory and the physiological tolerance, the more individ-
uals and the niche diversity hypotheses (Currie et al., 2004; Evans, 
Warren, et al., 2005). Nevertheless, by allowing relationships to vary 
geographically, without splitting data arbitrarily into geographical 
subregions, our analysis revealed spatially structured exceptions 
to the well-known positive relationships, consistent with a previ-
ous finding for tetrapods in Australia (Powney et al., 2010) and for 

F I G U R E  3   Direct coefficient strengths between species richness of terrestrial tetrapods and productivity (Prod.; a–d), temperature 
(Temp.; e–h) and precipitation (Prec.; i–l), according to the geographically weighted path model. Path coefficients are standardized and are 
mapped using the same colour scale, allowing direct comparison of their magnitudes. Silhouettes indicate the organism group for which the 
result is mapped. The full set of coefficient maps for all four taxonomic groups is available in the Supporting Information (Figures S4–S7). 
The line plot next to each map summarizes the path coefficient across latitude, plotted with the mean (black line) and the standard deviation 
(grey area). Dotted lines indicate the Tropic of Cancer, the Equator and the Tropic of Capricorn, respectively, from top to bottom. Silhouette 
images were taken from www.freep​ik.com [Colour figure can be viewed at wileyonlinelibrary.com]
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http://www.freepik.com
www.wileyonlinelibrary.com
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mammals globally (Barreto et al., 2019; Davies et al., 2011). A negative 
productivity–richness relationship was found only for reptiles around 
the Tropic of Cancer, offering insights into the lower richness of this 
group relative to other tetrapods in this region (Roll et al., 2017). In 
the light of the more individuals hypothesis, this negative relation-
ship could be explained by the evidence that reptile abundance also 
scales negatively with productivity (Santini et  al., 2018), thus lead-
ing to increased extinction rates (Wright, 1983), and consequently, 
lower species richness with increasing productivity. Additionally, 
the negative relationship between productivity–richness and 

productivity–abundance in reptiles might be related to their com-
petition with endothermic groups, which would have an advantage 
in more climatically challenging environments (Grady et  al.,  2019). 
Our results provide insight into the potential causes of the re-
ported idiosyncratic productivity–richness relationship among lizard 
clades; areas where we uncovered positive relationships (red areas 
in Figure 3d) are occupied mostly by lizard clades whose richness is 
known to respond positively to productivity (Skeels et al., 2019).

The balance between temperature and water appears to result 
in negative relationships in parts of the globe for some taxonomic 

F I G U R E  4   Indirect coefficient strengths between species richness of terrestrial tetrapods and temperature (Temp.; a–d) and 
precipitation (Prec.; e–h), according to the geographically weighted path model. Path coefficients are standardized and are mapped using the 
same colour scale, allowing direct comparison of their magnitudes. Silhouettes indicate the organism group for which the result is mapped. 
The full set of coefficient maps for all four taxonomic groups is available in the Supporting Information (Figures S4–S7). The line plot next to 
each map summarizes the path coefficient across latitude, plotted with the mean (black line) and the standard deviation (grey area). Dotted 
lines indicate the Tropic of Cancer, the Equator and the Tropic of Capricorn, respectively, from top to bottom. Silhouette images were taken 
from www.freep​ik.com [Colour figure can be viewed at wileyonlinelibrary.com]
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groups. For instance, the direct effect of temperature on the rich-
ness of birds, mammals and amphibians was negative in parts of 
the tropical region, where temperatures are highest, suggesting 
that the tropics might be too warm for these groups. In these re-
gions, temperature and precipitation might interact in their effect 
on diversity, such that with increasing temperatures, species rich-
ness increases only if there is sufficient moisture available (Francis 
& Currie, 2003; Hawkins et al., 2003; O’Brien, 1998). This is also 
likely to hold true for the negative relationship between precipita-
tion and the richness of reptiles, birds and mammals in temperate 
regions, especially in North America. Precipitation does not pro-
mote an increase in species richness in these areas if it is not warm 
enough; a similar pattern has been found for angiosperms (Francis 
& Currie, 2003).

The balance between thermal energy and water availability 
seems to be less ubiquitous for ectotherms, because almost every-
where reptile and amphibian species richness was related positively 
to temperature and precipitation, respectively. The positive relation-
ship between reptile richness and temperature, even when statis-
tically holding precipitation constant, is consistent with the strong 
dependence of this group on external thermal energy for meta-
bolic maintenance and reproduction (Adolph & Porter, 1993; Coops 
et al., 2018; Powney et al., 2010). Also, reptiles have strongly con-
served thermal niches, which are likely to constrain the number of 
species capable of surviving and diversifying in colder environments 

(Pie et  al.,  2017; Rolland et  al.,  2018). In contrast, amphibians are 
more strongly constrained by water availability because of their 
high vulnerability to desiccation and, for many species, depen-
dence on water for reproduction (Buckley & Jetz, 2007; Gouveia & 
Correia, 2016).

Our geographically weighted path analysis confirmed that 
temperature and precipitation influence species richness not only 
directly (Brown et  al.,  2004; Currie et  al.,  2004), but also indi-
rectly, mediated by the effect of climate on productivity (Hawkins 
et  al.,  2003). Spatial patterns of indirect effects are complex, be-
cause productivity results from an interaction among multiple cli-
matic factors and does not increase monotonically with temperature 
and precipitation, especially not in the tropics (Clark et  al.,  2001; 
Šímová & Storch, 2017). Across large spatial scales, temperature and 
precipitation are often found to be stronger drivers than produc-
tivity of richness patterns (Šímová & Storch,  2017 and references 
therein). The importance of climate could emerge because of both 
its direct and indirect influences on species richness. However, we 
found this not to be the case, because direct effects of climate alone 
were often stronger than the direct effect of productivity, espe-
cially among ectotherms, and stronger than their indirect effects via 
productivity. These results suggest that species richness is driven 
more strongly by the physiological tolerance of organisms to climatic 
conditions and to climatic factors influencing metabolic rates and, 
ultimately, speciation rates (Brown et al., 2004; Currie et al., 2004) 

F I G U R E  5   Relative importance of productivity, temperature and precipitation to the species richness of terrestrial tetrapods when 
considering both direct and indirect effects of temperature and precipitation through productivity. Colours indicate how much, as a 
percentage, a measure of energy is important to explain species richness based on the magnitude of the summed, standardized path 
coefficients. Shades of green indicate productivity, yellow temperature and pink precipitation as relatively more important. The black 
silhouette indicates the organismal group to which the result belongs. Silhouette images were taken from www.freep​ik.com [Colour figure 
can be viewed at wileyonlinelibrary.com]
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than by the diversity of niches and/or the amount of energy flowing 
through the food webs (Evans, Warren, et al., 2005; Wright, 1983).

The need to consider the two pathways of effects and their 
complex spatial patterns explain the lack of consensus among tests 
for the relative importance of climate versus productive energy 
for explaining species richness (i.e., the water–energy hypothesis; 
Hawkins et al., 2003). Previous tests of this hypothesis were often 
conducted in different regions of the world by using predefined 
spatial unities (e.g., latitudinal band, biogeographical realms) and 
accounting for only direct effects (Davies et al., 2011; Qian, 2010; 
Whittaker et  al.,  2007). We found that only reptiles have a clear 
latitudinal pattern of water–richness relationships, with greater 
importance of water in the tropics and thermal energy elsewhere; 
a pattern that emerges only once the productivity-mediated indi-
rect effects are considered. This finding contrasts with previous 
assessments, which did not uncover a latitudinal trend for reptiles 
(Hawkins et  al.,  2003; Whittaker et  al.,  2007) or found reptiles to 
be the group of tetrapods with the weakest sign of a latitudinal gra-
dient (Qian, 2010). Regarding the other tetrapod groups, we found 
amphibians to be constrained by water across most of the globe, es-
pecially in the Palaearctic region, whereas birds and mammals were 
more constrained by temperature and productivity above the Tropic 
of Cancer; below it, temperature and precipitation became more im-
portant for these groups.

Variation in the strength and direction of species–energy rela-
tionships across the globe (i.e., spatial non-stationarity) might be 
associated with several factors other than the spatial variance of 
the energy variable itself. For example, non-stationarity could be 
associated with historical factors of each region (Davies et al., 2011; 
Ficetola et al., 2017; Gouveia et al., 2013; Hortal et al., 2011) or with 
the proportion of ecological groups within a region, because differ-
ent groups might respond differently to energy conditions, such as 
specialists versus generalists (Evans, Greenwood, et al., 2005) or 
thermoregulators versus thermoconformers (Buckley et  al.,  2015; 
Sunday et al., 2014). Spatial variation in species–energy relationships 
can also emerge if different processes prevail in different regions 
(Davies et al., 2011). For instance, at high latitudes the effect of tem-
perature might be related more strongly to thermal tolerances and to 
overcoming tropical niche conservatism (Smith et al., 2012), whereas 
at mid latitudes it may be associated more strongly with diversifi-
cation rates (Machac & Graham, 2017). Expanding our spatial path 
model to incorporate other variables, such as diversification rates, 
abundance and elevation (Belmaker & Jetz, 2015; Chu et al., 2019; 
Marin et al., 2018), is a promising way forward to explore the spatial 
variations of different underlying processes in future studies.
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