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Abstract

Background

Non-union affects up to 10% of fractures and is associated with substantial morbidity. There

is currently no single effective therapy for the treatment or prevention of non-union. Potential

treatments are currently selected for clinical trials based on results from limited animal stud-

ies, with no attempt to compare results between therapies to determine which have the

greatest potential to treat non-union.

Aim

The aim of this systematic review was to define the range of therapies under investigation

at the preclinical stage for the prevention or treatment of fracture non-union. Additionally,

through meta-analysis, it aimed to identify the most promising therapies for progression to

clinical investigation.

Methods

MEDLINE and Embase were searched from 1St January 2004 to 10th April 2017 for con-

trolled trials evaluating an intervention to prevent or treat fracture non-union. Data regarding

the model used, study intervention and outcome measures were extracted, and risk of bias

assessed.

Results

Of 5,171 records identified, 197 papers describing 204 therapies were included. Of these,

the majority were only evaluated once (179/204, 88%), with chitosan tested most commonly

(6/204, 3%). Substantial variation existed in model design, length of survival and duration of

treatment, with results poorly reported. These factors, as well as a lack of consistently used

objective outcome measures, precluded meta-analysis.
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Conclusion

This review highlights the variability and poor methodological reporting of current non-union

research. The authors call for a consensus on the standardisation of animal models investi-

gating non-union, and suggest journals apply stringent criteria when considering animal

work for publication.

Introduction

Fracture non-union can be defined as occurring when the normal healing processes of bone

cease to the extent that solid healing cannot occur without further intervention[1]. The condi-

tion is estimated to affect 5–10% of fractures[2, 3], with wide variation depending on anatomi-

cal location[4]. The negative effect on quality of life associated with non-union has been

demonstrated as being greater than that of diabetes mellitus, stroke and acquired immunodefi-

ciency syndrome[5], with substantial financial consequences[6].

The failure of a fracture to unite is multifactorial and the result of both predisposing and

contributing factors[1, 7]. There is no consensus or accepted guidelines for the treatment of

non-union, but most current management strategies involve hospital admission and revision

surgery, frequently using bone graft or synthetic substitutes, with varied and unpredictable

results. In order to either primarily prevent non-union, increase the likelihood of success of

revision surgery, or potentially offer an alternative to surgery, researchers continue to evalua-

tion novel therapies in this field.

Preclinical studies are defined as those using animals to determine if a treatment is likely to

be effective, before progression to testing in humans [8].

It is currently not clear on what basis researchers select potential therapies for translation

into clinical studies. It is likely that positive results from a single, or a small number, of animal

studies are used to justify progression to clinical trial. However, it is problematic to rely on the

positive effects of a therapy in a single animal study to justify direct translation to clinical test-

ing due to the likely existence of bias and methodological weakness. There is no evidence that

researchers in this field have compared different preclinical studies in an attempt to determine

which therapies are the most promising and therefore should be prioritised for translation into

clinical studies.

Systematic reviews summarise the literature for a defined research question; when com-

bined with a meta-analysis of results they are considered to represent the highest level in the

hierarchy of evidence[9]. Despite this, meta-analyses are reliant upon the quality of data in

the original studies included, and can risk propagating any errors included in the original

research. The methodology for systematic reviews of preclinical research is still evolving, but

it is recognised that the technique has the potential to clarify the existing evidence base and

potentially increase the precision of effect estimates through meta-analysis[10, 11]. To date

there has not been a systematic review or meta-analysis of preclinical studies aiming to prevent

or treat fracture non-union.

The aim of this systematic review was firstly to establish the range of therapies under inves-

tigation at the preclinical stage for the prevention or treatment of fracture non-union. Sec-

ondly, by conducting a meta-analysis of results of methodologically similar studies, it aimed to

systematically and objectively identify the most promising therapies for progression to clinical

investigation.

Preclinical therapies for fracture non-union
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Materials and methods

Search strategy and inclusion criteria

Full methodological details can be found in the previously published protocol[12]. The proto-

col was registered with Collaborative Approach to Meta-Analysis and Review of Animal Data

from Experimental Studies (CAMARADES)[13]. A summary of the methods is reported

below. Reporting of the full systematic review was in accordance with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines[14], (S1 Table).

MEDLINE and Embase were searched via Ovid from 1st January 2004 to 10th April 2017

(see S2 Table for full search strategy). The citation lists of included studies were searched for

additional studies. In a deviation from the methodology published in the study protocol, due

to the large volume of studies retrieved from the primary searches, no further additional

sources were searched.

Two reviewers (PMB/SKS) independently screened titles and abstracts. Where eligibility

for inclusion could not be determined from the abstract the full manuscript was obtained and

reviewed for clarification. Any disagreements were resolved through discussion with a third

reviewer (JPB). Controlled trials evaluating an intervention to prevent or treat non-union and

measuring bone formation were eligible for inclusion; the focus of this review was to examine

preclinical therapies with clinical potential and so treatments which had already been evalu-

ated in a clinical study were excluded. Full inclusion and exclusion criteria were listed in the

previously published protocol and are summarised in Table 1. Relevant preclinical studies

evaluating therapies that had subsequently progressed to clinical trial were excluded, unless

the therapy was combined with a novel therapy.

After duplicates were removed, 5,171 records were identified in the literature search as

shown in the PRISMA flow diagram (Fig 1). After inclusion/exclusion criteria were applied

197 studies were included in the systematic review. The commonest single reason for study

exclusion (1,073 studies, 21%) was that the article described a therapy that had already pro-

gressed to clinical trial.

Table 1. Summary of study inclusion and exclusion criteria.

Inclusion Criteria

Types of studies Controlled trials

Unpublished and published works

Types of participants Mammalian model testing an intervention to treat or prevent fracture non-union

Induced co-morbidities

Intervention Interventions aim to:

• Prevent non-union

• Treat non-union

• Promote or accelerate healing of a bony defect

• Treat or ameliorate delayed union

Administered after formation of a bony defect

Established interventions in a novel vehicle

Comparator Control group described receiving:

• No treatment

• Current standard of care

• Alternative treatment

Outcome measures Quantifiable measure of bone formation through radiological and/or histological means

Exclusion Criteria

Types of studies Review articles

Types of participants Clinical trials

Intervention Any intervention that has subsequently progressed to clinical trial

https://doi.org/10.1371/journal.pone.0201077.t001
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Data extraction and risk of bias assessment

Data relating to the model, defect location and method of creation, length of survival, number

of animals included, outcome measures (radiological or histological) were extracted from

manuscripts.

Where incomplete data was provided in the manuscript authors were contacted for clarifi-

cation: of the 64 authors contacted, only 9 replied with the required information (14%).

Fig 1. PRISMA flow diagram for study inclusion/exclusion. Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA)

flow diagram detailing numbers of studies excluded and reasons at each stage of the review process.

https://doi.org/10.1371/journal.pone.0201077.g001
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Numerical data extraction from papers presenting results in graphical format only was per-

formed using ImageJ v.2.0 software (National Institute of Health, Bethesda, MD) using a stan-

dardised method[15, 16].

The Systematic Review Centre for Laboratory Animal Experimentation’s (SYRCLE) risk of

bias tool was used to assess risk of bias across all studies[17]. The SYRCLE tool assesses ten

domains across six types of bias: selection bias (sequence generation, baseline characteristics,

allocation concealment), performance bias (random housing, blinding), detection bias (ran-

dom outcome assessment, blinding), attrition bias (incomplete outcome data), reporting bias

(selecting outcome reporting) and other sources of bias. Risk of bias assessment was performed

by one author (PMB or SKS). Each domain was given a rating of high risk, low risk or unclear

where information was incomplete or not reported. These ratings were based on the signalling

questions designed to assist judgement, as detailed in the SYRCLE tool[17].

Analysis

Where studies reported sufficient data (numbers in intervention and control group, mean and

standard deviation), results for the most consistently reported measures (bone formation (%),

bone volume (mm3) or bone density (mg/cm3)) were represented in forest plots for illustrative

purposes. Results for the remaining studies were tabulated. Where several time-points were

reported, only the longest follow-up was considered.

Therapies were grouped into the following nine categories:

• Animal derivatives

• Plant extracts

• Minerals/elements/chemicals

• Pharmaceuticals

• Cells/tissues

• Vibration/motion

• Light/lasers

• Gases

• Human proteins/hormones

If a therapy related to more than one category, it was included in both it pertained to (e.g.

mesenchymal stem cells with insulin-like growth factor-1 was recorded in both the ‘cells/tis-

sues’ and ‘human proteins/hormones’ categories.) Combination therapies using both an estab-

lished therapy already in clinical trial with a novel preclinical therapy were again recorded in

both categories to which they pertained.

Results

The spectrum of potential treatments

The 197 included studies evaluated a total of 204 different interventions (Table 2). The objec-

tive of approximately half of all studies was to promote or accelerate healing of a bony defect

(103/197, 52%) or treat non-union (93/103, 47%), with further information available in S3

Table. The majority of therapies (179/204 (88%)) were only evaluated once, while five inter-

ventions (chitosan [18–23], adipose stromal cells [24–27], erythropoietin [28–31], vascular

endothelial growth factor [32–35] and SDF-1 [36–38]) were investigated by multiple studies
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(Table 3). Chitosan as a single therapy was evaluated by six studies: four of these found signifi-

cantly greater bone formation in the intervention group compared to control [18, 20–22], with

further detail in Table 3.

Risk of bias

Details necessary to assess risk of bias were vastly underreported, particularly with regard to

random housing, random outcome assessment (randomisation), sequence generation,

Table 2. Number of evaluations under investigation by category�.

Group Number of evaluations included in tables Number of evaluations included in forest plots Total

Animal derivatives 27 5 32

Plant extracts 23 13 36

Minerals / elements / chemicals 25 7 32

Pharmaceuticals 16 13 29

Cells / tissues 32 18 50

Vibration / motion 2 5 7

Light / lasers 3 0 3

Gases 3 5 8

Human proteins / hormones 59 41 100

Total 190 107 297

�Combination therapies are duplicated in all groups they pertain to, e.g. mesenchymal stem cells + vascular endothelial growth factor will be counted in “cells / tissues”

and “human proteins / hormones”.

Single therapies tested in multiple concentrations are counted more than once, e.g. Ngueguim 2012 evaluates two plant based therapies: both therapies are evaluated at

three different concentrations, thereby contributing 6 evaluations.

A total of 197 studies were included, investigating a total of 204 distinct therapies.

Total number of studies included in tables = 136, total number of studies included in forest plots = 61.

https://doi.org/10.1371/journal.pone.0201077.t002

Table 3. Most frequently evaluated therapies across all studies (n = 197).

Therapy Number of studies

evaluating therapy

Direction of effect

Chitosan 6 Four studies [18, 20–22] favoured intervention over

control.

One study [19] favoured control over intervention.

One study [23] showed no difference between

intervention and control.

Adipose stromal cells 4 Two studies [25, 27] favoured intervention over

control.

Two studies [24,26] showed no difference between

intervention and control.

Erythropoietin 4 Four studies [28–31] showed no difference between

intervention and control

Vascular endothelial

growth factor

4 Two studies [32, 35] favoured intervention over

control.

Two studies [33, 34] showed no difference between

intervention and control.

SDF-1 3 Two studies [36, 38] favoured intervention over

control.

One study [37] showed no difference between

intervention and control.

Therapies tested twice 40

Therapies tested once 179

https://doi.org/10.1371/journal.pone.0201077.t003
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blinding of outcome assessment and selective outcome reporting (Fig 2). Between 4 and 23%

of studies were judged to be at high risk of bias for a given criterion. No study reported details

for all ten domains of the SYRCLE tool.

The most consistently reported outcome measure was percentage bone formation in the

category of human proteins and hormones (Fig 3 [25, 28, 32, 36, 39–58]). Study findings across

all categories for bone formation, bone volume and bone density are shown in Fig 4, [23, 47,

51, 53, 54, 57, 59–77], Fig 5 [29, 37, 38, 78–86] and Fig 6 [87–91]). Table 4 ([92–105]) shows

the findings for the pharmaceutical therapies that could not be represented in forest plots, with

findings for the remaining categories available as supporting information (S4, S5, S6, S7, S8,

S9, S10 and S11 Tables).

In total 53 human protein and hormone therapy evaluations (30 in forest plots, 23 in tables,

53/100, 53%) reported statistically significant improvements in bone healing compared to the

control groups. Statistically significant improvements for the other categories were 50% animal

derivatives (16/32), 53% plant extracts (19/36), 55% minerals/elements/chemicals (18/33), 38%

pharmaceuticals (11/29), 54% cells/tissues (26/48), 30% vibration/motion (3/10), 100% light/

lasers (3/3) and 75% gases (6/8). In total, 135 separate therapy evaluations (135/204, 66%)

showed a significantly greater effect on healing of fracture non-union when compared to the

control. Only a minority of interventions (9/204, 4%) resulted in significantly less effect on

bone union than the comparator arm.

Meta-analysis

Substantial heterogeneity across studies in terms of type and site of defect, method of defect

creation, species, length of follow-up and method of outcome reporting precluded meta-

analysis.

Fig 2. Risk of bias analysis. Bias assessed as per the Systematic Review Centre for Laboratory Animal Experimentation’s (SYRCLE) tool for all

197 studies included.

https://doi.org/10.1371/journal.pone.0201077.g002
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Rats were the most common animal model, used in 105 studies (105/197, 53%), with the

calvarium being the commonest site of bony defect (71/197, 36%). Pigs, dogs, goats, rabbits

and mice were also used. Further detail on animal and defect location is given in Table 5. It

was not possible to determine the total number of animals used in 28 studies (28/197, 14%)

with further detail in S2 Table. Studies used both radiological and histological outcome mea-

sures, with follow-up times ranging from 1–30 weeks (Fig 7).

Regarding the defect, the majority of studies (75/197, 38%) did not report how the defect

was created. A bur was used in 51 studies (51/197, 26%), with other methods including drills

(14%), saws (12%), three-point bending (5%), drop weights or pendulums (3%), and being cut

with scissors (3%). The defect was explicitly stated as being critical in 75 studies (75/197, 38%)

Fig 3. Bone formation data for studies looking at interventions of human proteins and hormones or cells and tissues. Forest plot

illustrating mean difference in percentage of bone formation as measured by different histological or radiological measures. Abbreviations:

ASCs, adipose tissue stem cells; BMSCs, bone marrow stromal cells; CI, confidence interval; HS, heparan sulphate; LV-Wnt10b, lentivirus vector

encoding Wnt10b gene; MSCs, mesenchymal stem cells; OGP, osteogenic growth peptide; PRP, platelet rich plasma; PTH, parathyroid

hormone; SDF-1, stromal cell derived factor 1; VEGF, vascular endothelial growth factor; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0201077.g003
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and non-critical in 2 (2/197, 1%), with the remainder of studies (155/197, 79%) not providing

this detail. Ten studies (6%) cauterised or stripped the periosteum surrounding the osteotomy.

Only one third of studies (61/197, 31%) included sufficient data to permit illustration in for-

est plots (without quantitative pooling), due to insufficient reporting of outcome data, or use

of less commonly used outcome metrics.

Discussion

Fracture non-union is a common complication of a common condition [1–3]. This systematic

review highlights not only the range of research activity in this field but the poor quality of

contemporary animal research investigating this condition. Meta-analysis was not possible

due to the diverse and non-standardised nature of the preclinical research, range of outcome

measures and poor reporting of results. Despite there being a large amount of data– 204

Fig 4. Bone formation data for studies looking at interventions of vibration and motion, gases, minerals, elements and chemicals,

pharmaceuticals, animal derivatives or plant extracts. Forest plot illustrating mean difference in percentage of bone formation as measured by

different histological or radiological measures. Abbreviations: BMSCs, bone marrow stromal cells; CI, confidence interval; PRP, platelet rich

plasma; PTH, parathyroid hormone; VACC, vanadium absorbed by Coprinus comatus; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0201077.g004
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evaluations across 197 studies—it has not been possible to make a valid comparison between

any two studies nor draw firm conclusions regarding relative efficacies from different inter-

ventions and therefore identify those therapies that should be prioritised in translational

research.

When developing preclinical models of fracture non-union various factors need to be con-

sidered. Fundamentally these include the species of animal to be used and the anatomical loca-

tion of the fracture. Additionally, the type of fracture (transverse or segmental), whether it is

subsequently stabilised or not and whether or not the periosteum is stripped are all variables

that will affect the union rates of the fracture model. Finally, the delivery method of the therapy

under investigation, including the use of scaffolds and carriers, must also be considered. The

greater the number of differences that exist between model designs, the less reliably any differ-

ences in union rates can be attributed to the therapy under investigation alone, as model varia-

tions will act as confounders.

Fig 5. Bone volume data for studies looking at interventions of human proteins and hormones, cells and tissues, minerals, elements and

chemicals, pharmaceuticals or animal derivatives. Forest plot illustrating mean difference in cubic millimetre (mm3) of bone volume as

measured by different histological or radiological measures. �Since none of the control groups healed, the increase in bone volume was set as 0

and the standard deviation as 0.0000001 in order to be able to illustrate those results in a forest plot using STATA. Abbreviations: BMP2, bone

morphogenetic protein 2; BMSCs, bone marrow stromal cells; CI, confidence interval; HA, hyaluronic acid; IGF-1, insulin growth factor-1;

MSCs, mesenchymal stem cells; OPG, osteoprotegerin; PI, proteasome inhibitor; SDF-1, stromal cell derived factor 1; VEGF, vascular

endothelial growth factor; wks, weeks; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0201077.g005
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In clinical practice the progression of a fracture to established non-union is multi-factorial,

with different types of non-union existing. The majority of primary research contained within

this systematic review failed to consider this variability during model development: though the

stated aim was to test a therapy designed to prevent or treat non-union, very few used proven

models of non-union. The poor fidelity to clinical situations further limits the utility of the pre-

clinical findings.

This systematic review used a methodologically rigorous approach to identifying, selecting

and appraising primary studies. There were however some deviations from the previously pub-

lished protocol; the authors chose to use the MEDLINE version of PUBMED to allow easier

duplication of the search strategy on OVID. The decision to limit the systematic review to only

these two primary databases was made due to the large volume of eligible studies included.

The authors judged it unlikely that the inclusion of a small number of additional studies identi-

fied through other sources would significantly alter any conclusions, particularly given the

variable and methodologically poor reporting of studies identified in the main databases.

Additionally, the large number of studies meant that the risk of bias assessment was performed

by one reviewer only for each study.

The studies included in this systematic review were limited by inadequate reporting of

methodological details and results. Applying the risk of bias tool developed by SYRCLE

showed that many risk of bias criteria were not reported and the rating of ‘unclear’ risk

of bias was most common. This in turn hampers interpretation of results. It is however in

line with the findings of previous studies which found poor reporting of randomisation

Fig 6. Bone density data for studies looking at interventions of human proteins and hormones, cells and tissues or plant extracts. Forest

plot illustrating mean difference in milligrams per cubic centimetre (mg/cm3) of bone density as measured by different histological or

radiological measures. Abbreviations: CI, confidence interval; GSK3, glycogen synthase kinase 3; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0201077.g006
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Table 4. Defect repair data for studies evaluating therapies based on pharmaceuticals (16 therapies, 14 studies).

Study Therapy Species Maximum length of

survival (days)

Outcome Overall

effect

Alic 2016 [92] Cilostazol Rats 21 No difference between groups at end of 21 days =

Baht 2017 [93] Nefopam Mice 21 Treatment with Nefopam resulted in fracture calluses that contained higher

proportions of bone and lower proportions of fibrous tissue

!

Bernick 2014

[94]

Lithium Rats 28 Fracture healing was maximised with low dose, later onset and longer

treatment duration of lithium, resulting in significantly greater yield torque

in the therapeutic group

"

Cai 2015 [95] Lithium Rabbits 84 New bone area for lithium containing mesoporous bioglass markedly higher

than that for lithium containing bioglass at 56 and 84 days

!

Cakmak 2015

[96]

Pentoxyfylline Rats 56 No bone growth in control or systemic pentoxyfylline only groups =

Cakmak 2015

[96]

Pentoxyfylline + iliac

crest autograft

Rats 56 Radiological bone union was observed in the iliac crest autograft and

systemic pentoxyfylline group compared to no new bone growth in the

control group

!

Del Rosario

2015 [97]

Simvastatin Rats 56 No significant difference between groups =

Donneys 2013

[98]

Deferoxamine Rats 40 Greater union rate in treatment group than in irradiated group, but both less

than control group

#

Fan 2017 [99] Phenamil Rats 86 Incomplete mandibular restoration was observed in the defect treated with

phenamil alone

?

Fan 2017 [99] Phenamil + BMP Rats 86 Addition of BMP to phenamil synergistically augmented bone healing,

resulting in almost complete bone healing

!

Ishack 2017

[100]

Dipyridamole Mice 56 Significant increase in percentage of bone regenerated in dipyridamole group

compared to control group

"

Kutan 2016

[101]

Doxycycline Rats 28 Osteogenesis in the test group was significantly higher than that of the

control group

"

Limirio 2016

[102]

Doxycycline

+ alendronate

Rats 15 Statistically greater bone density in therapeutic group compared to control

group at 15 days

"

Wada 2013

[103]

Salicylic acid Rats 84 Significantly higher new bone in defect in therapeutic group compared to

control group

"

Werkman

2006 [104]

Risedronate Rats 28 No significant difference between therapeutic and control groups =

Wixted 2009

[105]

Zileuton Mice 28 Net increase in callus size relative to control !

" indicates statistically significant effect on bone formation in trial therapy compared to control
! indicates greater bone formation in trial therapy compared to control, but the effect did not reach statistical significance
= indicates no difference in bone formation rates between the therapeutic or control groups
# indicates less effect on bone formation in trial therapy compared to control
? indicates results are unclear, and no effect size could be determined

https://doi.org/10.1371/journal.pone.0201077.t004

Table 5. Model of non-union by species and anatomical location.

Calvarium Femur Humerus Mandible Radius Rib Tibia Ulna Zygomatic arch Total

Pigs 2 2

Dogs 1 1 2

Goats 1 1

Rabbits 17 8 1 2 14 10 4 1 57

Rats 42 40 6 1 1 14 1 105

Mice 10 12 8 30

Total 71 60 1 8 16 1 34 5 1 197

https://doi.org/10.1371/journal.pone.0201077.t005

Preclinical therapies for fracture non-union

PLOS ONE | https://doi.org/10.1371/journal.pone.0201077 August 1, 2018 12 / 22

https://doi.org/10.1371/journal.pone.0201077.t004
https://doi.org/10.1371/journal.pone.0201077.t005
https://doi.org/10.1371/journal.pone.0201077


procedures and blinding of assessors in animal studies[106], despite multiple resources

for study design and reporting available to researchers[107–109]. Some omissions were

extremely basic, for example 11% of studies had to be excluded from the forest plots for not

stating whether their results were reported as mean with standard deviation, or standard

error of the mean, with authors failing to provide clarification when contacted. The use

of ± in methodological reporting without further explanation has previously been identified

as a persistent problem[110, 111].

To address the problems identified by this review, the authors recommend that the ortho-

paedic trauma community attempt to reach a consensus on preferred animal models of bone

healing similar to the standardisation of fracture classification with the OTA/AO/Muller sys-

tem[112]. Once a consensus on the standardisation of species, defect and outcome measure is

achieved, funding could be restricted to researchers using agreed models and study methodol-

ogy[113], and journals should similarly restrict publication to studies that would allow direct

comparison and insist on reporting results in detail. However, even if this were achieved, the

translatability of animal research into effective clinical trials remains controversial [114–116],

with even highly cited animal studies failing to translate into successful interventions in clinical

trials[117].

Fig 7. Bar graph demonstrating varied study methodology. Illustration of study-end point in weeks and outcome measure used by all 197

studies.

https://doi.org/10.1371/journal.pone.0201077.g007
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This systematic review describes the diverse range of treatments currently under investiga-

tion at the preclinical stage for the prevention or treatment of fracture non-union. These thera-

pies can be divided into nine broad treatment categories. Approximately 90% of interventions

were only evaluated by a single study, and only five were evaluated three or more times. Reli-

ance on a single study is problematic given the methodological limitations of the research and

when considered in the context of publication bias.

Publication bias is an established problem of clinical trials, and its prevalence in animal

studies is increasingly recognised[115, 118]. Failing to publish non-significant results of pre-

clinical research limits the ability of researchers to interpret the efficacy of a therapy in the

context of the wider literature. It is also unethical: subjecting animals to experiments without

publishing the results effectively wastes those animals. The majority of studies included in this

review (66%) reported significantly greater rates of bone healing in the therapeutic group com-

pared to the control group. While formal assessment of publication bias was not possible it is

reasonable to speculate that a bias against publication of negative or non-significant results

persists.

The variability across studies meant that no two studies from the 197 included in this review

were judged to be sufficiently similar across clinical and methodological parameters to allow

pooling of results in a meta-analysis. Only 31% of studies presented their results in sufficient

detail to be illustrated graphically in a forest plot. Not only does this preclude a rapid visual

comparison of results from different studies, but it is also indicative of a lack of detail in report-

ing scientific findings.

Heterogeneity is expected in systematic reviews of preclinical research. Indeed, it could

be argued that the aim of a systematic review in this field is to explore and demonstrate the

breadth of the evidence, the variability between studies and the consistency of any findings.

The generation of a precise pooled effect estimate through meta-analysis even where this is

deemed feasible may be of limited value given translatability issues. Yet in this review it was

mostly not possible to comment on the consistency of benefit of a particular intervention, as

they were mostly only explored in one or two studies.

This systematic review has defined the considerable range of therapies currently being

investigated at the preclinical phase for the treatment and prevention of fracture non-union.

Though some studies report statistically significant results for some therapies, high levels of

clinical and methodological heterogeneity and poor methodological quality and reporting

severely hamper the ability to prioritise therapies for translation into clinical trials. If the

orthopaedic trauma community were to collectively agree on a standardised animal model

for investigating this question, and standards for reporting of all results regardless of findings

were mandated, improved clinical treatments for fracture non-union will be developed more

efficiently.
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