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A B S T R A C T   

Skin cancer is a pervasive and potentially life-threatening disease. Early detection plays a crucial 
role in improving patient outcomes. Machine learning (ML) techniques, particularly when com
bined with pre-trained deep learning models, have shown promise in enhancing the accuracy of 
skin cancer detection. In this paper, we enhanced the VGG19 pre-trained model with max pooling 
and dense layer for the prediction of skin cancer. Moreover, we also explored the pre-trained 
models such as Visual Geometry Group 19 (VGG19), Residual Network 152 version 2 
(ResNet152v2), Inception-Residual Network version 2 (InceptionResNetV2), Dense Convolutional 
Network 201 (DenseNet201), Residual Network 50 (ResNet50), Inception version 3 (Incep
tionV3), For training, skin lesions dataset is used with malignant and benign cases. The models 
extract features and divide skin lesions into two categories: malignant and benign. The features 
are then fed into machine learning methods, including Linear Support Vector Machine (SVM), k- 
Nearest Neighbors (KNN), Decision Tree (DT), Logistic Regression (LR) and Support Vector Ma
chine (SVM), our results demonstrate that combining E-VGG19 model with traditional classifiers 
significantly improves the overall classification accuracy for skin cancer detection and classifi
cation. Moreover, we have also compared the performance of baseline classifiers and pre-trained 
models with metrics (recall, F1 score, precision, sensitivity, and accuracy). The experiment results 
provide valuable insights into the effectiveness of various models and classifiers for accurate and 
efficient skin cancer detection. This research contributes to the ongoing efforts to create auto
mated technologies for detecting skin cancer that can help healthcare professionals and in
dividuals identify potential skin cancer cases at an early stage, ultimately leading to more timely 
and effective treatments.   

1. Introduction 

In the United States, the Skin Cancer Foundation estimated in 2022 that more than 9500 people receive a skin cancer diagnosis per 
day, also more than two people die from the condition every hour [1–3], the skin can be affected by a wide variety of tumor types, 
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making skin cancer the most prevalent type of cancer [2]. The most prevalent types of skin cancer, in addition to melanoma, are basal 
cell carcinoma (BCC), squamous cell carcinoma (SCC) [3–6], and epithelioma. A thorough recovery and the avoidance of the cancer 
metastasizing into deeper tissues depend on prompt identification. However, there are currently few non-invasive, economically viable 
approaches for broadly aiding diagnosis and characterizing skin lesions objectively. Typically, when suspicious cases arise, derma
tologists conduct visual examinations of the skin using epiluminescence [3–5,7,8]. Skin cancer refers to a class of diseases where 
aberrant skin cells proliferate out of control, leading to the development of tumors. Most of these tumors are caused by UV (ultraviolet) 
radiation exposure and unprotected skin damage [2–4]. Basal cell and squamous cell carcinomas make up most skin cancer cases (99 
%), whereas melanomas account for barely 1 % [2]. Since the 1970s, there has been a rise in the incidence of skin cancer, and there are 
many different methods used by doctors to identify this disease [3–5,7]. Trained clinicians frequently use specific criteria, such as 
visual inspection, dermoscopy, and biopsy, to diagnose the malignancy of a lesion. Image identification accuracy has increased 
significantly due to dermoscopy, going from 75 % to 84 %. For those with skin disorders, it might be difficult and time-consuming to 
make an accurate diagnosis, and a doctor’s knowledge is still necessary [9]. In circumstances when trained professionals are not easily 
available, computer-assisted diagnosis can analyze dermoscopy operations, eliminating variances between samples and practitioners. 
However, previous computer-assisted skin image categorization systems faced two main challenges: inadequate data and inconsistent 
image quality [9–12]. The use of substantial preprocessing, segmentation, and feature extraction has been replaced using machine 
learning (ML) technology in modern techniques. This strategy saves time and effort and is consistent with the wider trend of using ML 
approaches for cancer detection [13]. Machine learning algorithms have increased the accuracy of cancer by 16 %–25 % throughout 
the previous 20 years. Among these techniques, convolutional neural networks (CNNs), a type of deep learning, stand out as a reliable 
and popular approach for image recognition and classification that makes use of advanced computational algorithms and big datasets. 
In fact, researchers have reduced the frequent use of traditional ML techniques that demand extensive background knowledge and 
lengthy preparation stages. Skin cancer in photos may be accurately identified by deep learning-based classifiers, outperforming 
dermatologists in this regard. They achieve this by using CNNs to support the creation of dermatologists’ computer-aided classification 
systems for skin lesions. However, a lack of sufficiently annotated and described photos of rare classes hinders the availability of 
high-quality medical image training sets. Smaller data sets have a lower success rate for standard CNNs. Furthermore, some researchers 
use unusually deep CNN models, such as Resnet152 [14] with its 152 layers, that raises concerns regarding processing costs for 
therapeutic applications. These models increase network classification performance but need a significant amount of processing 
power. To minimize data overfitting, researchers used CNNs trained to categorize skin lesions and supplement them with charac
teristics extracted from real-world picture datasets such as ImageNet [11]. This integration of AI, particularly Computer-Aided 
Diagnosis (CAD), dramatically simplifies and reduces the cost of identifying and treating tumor disorders. Skin lesions were origi
nally recognized visually, even though detecting organ issues frequently involves imaging techniques like MRI, PET, and X-rays. This 
has now been made possible by several techniques, including CT, dermoscopy image processing, and clinical screens. Dermatologists 
with less training are more likely to misdiagnose skin lesions, mainly because it takes time and is frequently subjective and imprecise to 
evaluate and analyze photographs of lesions. Accurately capturing skin disease on camera is difficult. The capacity of CAD and 
Computerized Pathology Systems (CPS) to detect skin cancer has been greatly improved because of the incorporation of machine 
learning. Lesion image classification and image preprocessing are important steps in this procedure. However, there is an urgent 
requirement to increase skin cancer survival rates and outcomes by early identification. To speed up and improve AI in medicine is 

Abbreviations 

BCC Basal Cell Carcinoma 
SCC Squamous cell carcinoma 
CPS Computerized Pathology Systems 
ABCD Airborne Contact Dermatitis 
CAD Computer-Aided Diagnosis 
CNN Convolutional Neural Network 
KNN k-Nearest Neighbors 
SVM Support Vector Machine 
E-CNN Enhanced Convolutional Neural Network 
ANN Artificial Neural Network 
SVM Support Vector Machine 
ML Machine Learning 
DL Deep Learning 
ISIC International Skin Imaging Collaboration 
HOG Histogram of Oriented Gradients 
PSO particle swarm optimization 
DCNN Deep Convolutional Neural Networks 
PCA Principal Component Analysis 
GLCM Gray Level Co-occurrence Matrix 
UV Ultraviolet  

I.A. Kandhro et al.                                                                                                                                                                                                     



Heliyon 10 (2024) e31488

3

becoming more and more popular among doctors as a tool for diagnostic decision-making [13,15–20]. In this study, we provide a fresh 
approach to identifying benign from malignant melanoma, a vital issue in skin cancer classification. 

Benign tumors consist of normal cells that proliferate and divide without impairing the normal functions of surrounding cells. 
Melanoma tumors, on the other hand, are composed of aberrant cells that exhibit excessive growth, disrupting normal cell functions. 
These cells undergo uncontrollable proliferation and division [4,5,21]. Fig. 1 illustrates the comprehensive classification of skin 
cancer. 

Our research provides the following significant contributions.  

• Present an enhanced version of the VGG-19 model for the detection of skin cancers, incorporating additional layers and 
hyperparameters.  

• Employ robust feature selection and extraction methods to derive deep features from skin cancer images.  
• Compare the performance of the enhanced VGG-19 model (E-VGG19) with other architectures that combine machine learning and 

pre-trained models. 

The remainder of the paper is organized as follows: In Section 2, we give a review of the literature on skin cancer categorization, 
encompassing different ML and DL models. The approaches used are examined, with an emphasis on both human and automated 
feature extraction methods. The architecture we propose is described in Section 3 along with further details on the approaches of our 
DL and ML models used. The results of the experiment from the distinct DL, ensemble models, and ML are presented in Section 4 of this 
paper. Additionally, a thorough comparison between our suggested model and skin cancer detection models is provided in this part. 
Lastly, in Section 5, we conclude the paper and present potential directions for future research in this domain. 

2. Related work 

In recent years, skin cancer detection has become a critical area of research due to its significant impact on public health. Deep 
learning techniques, especially pre-trained CNN models, hold promise for enhancing accuracy and efficiency in skin cancer detection, 
segmentation, and classification. In this section we will discuss the related works to the four main techniques used in this field. We start 
by the literature working on features extraction in subsection A. Then we move to discuss the works related to the features selection 
and fusion in subsection B. After that we explore the machine learning classifiers used to detect the skin cancer. Last, the CNN-based DL 
techniques are discussed in subsection D. 

2.1. Features extraction 

The feature extraction process of the present research included the use of ABCD to extract general features. With respect to color 
features, they were obtained from HSV, LAB, and RGB. Textures were obtained through Gray-Level Co-occurrence Matrix (GLCM). For 
selecting important factors and using them in a mathematical model later on, a genetic algorithm was used [22]. A combination of 
first-order moments and color histogram features was proposed by the researchers who favored a superior approach in feature 
extraction; this would entail integration with Histogram of Oriented Gradients (HOG) technique. This fusion of image and text was first 
introduced as a way to enhance the traditional bag-of-words approach [23]. In their paper, the researchers noted that the utilization of 
these different feature extraction methods together might result in better quality features that represent more accurate key points. 

Fig. 1. The detailed classification of skin cancer.  
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Researchers have discovered eight links to nearby objects with the use of LTRP, a special tool. In addition to this, it employed Local 
Binary Patte-rn and also Local Vector Pattern. These were able to locate the conne-ctions. The researc-hers als-o employ CST in 
describing these connections. Using LBP + LVP worked better as compared to other methods [24]. 

The researchers employed the ABCD approach as a means of gathering an array of symmetry-related characteristics from the le
sions. This comprehensive method delves into parameters such as border features, color attributes, and diameter measurements, 
providing a nuanced understanding of the lesions’ structural intricacies [25]. In tandem with this, the classification SVM leverages the 
GLCM and HOG techniques. These methods, operating synergistically, play a crucial role in extracting the textural characteristics 
inherent in the lesions. 

The analysis of second-order texture characteristics is not limited to pixel values only. The texture features under examination are 
carefully chosen to embody the most significant aspect in the picture. A strategic approach, as such, allows deeper exploration into the 
subtle textural attributes of these lesions thereby contributing towards a comprehensive characterization and classification process. 
ABCD, GLCM, HOG and SVM classified systems’ integration also signifies that this research embraces multiple pronged approaches 
aimed at increasing accuracy and depth of lesion analysis [25]. The colour histogram uses a GLCM spatial and colour information for 
OPP, HSV and RGB colour spaces [26]. To determine local features of a sample Speeded Up Robust Feature calculates global textures of 
the sample amongst other factors that contribute in extraction. 

In the classification phase, SVM performed better than K-Nearest Neighbors (KNN), whereas SURF features beat GLCM and SIFT 
[27]. The Local Binary Pattern extracts the statistical features of mean texture, smoothness, skewness, and energy [99]. They blended 
color and texture elements using a bag of words method during the feature extraction stage. Additionally, to highlight the colour 
information, HL and HG were bagged independently and mixed with other bagged Zernike and bagged angles of colour vector [28]. 
The standard deviation, minimum, mean, skewness, and kurtosis for each component (R, G, and B) were calculated to extract 
color-based features, whereas the wavelet transform was used to produce texture-based features [29]. ReliefF, Chi2, RFE, and CFS were 
the four distinct feature selection methods that the researchers investigated. After that, they used standard score transformation to 
feature normalization [30]. 

2.2. Features selection and fusion 

The researchers offered numerous ways for extracting the most useful information using machine vision to classify skin cancer. 
They integrated first-order histogram features and GLCM used PCA to minimize dimensionality [31]. Furthermore, the researchers 
used the cumulative level difference mean to modify ABCD and pick important features using the ranking and selection technique of 
features via the Eigenvector [32]. To identify a melanoma, they performed network training on the important characteristics, notably 
those obtained by the GLCM technique, and optimized it utilizing a binary bat technique, which gives a meaningful collection of 
features [33]. This unique strategy, referred to as the optimized framework by fusing PCA with features with higher entropy values 
[34]. The major objective is to use an accurate feature extraction approach to discriminate between malignant and non-cancerous 
tumors. The researchers propose combining a slew of features with accelerated, reliable features [35]. However, more optimum 
features must be extracted and optimized further to lower the error rate associated with complicated features. 

2.3. Machine learning classifiers 

In the area of machine learning-based skin cancer detection, researchers have achieved impressive results. An SVM was used to 
analyze melanoma skin cancer using one version of the ISIC dataset, yielding a 96.9 % accuracy rate [36]. They also employed Several 
classifiers to diagnose melanoma, including Decision Tree. KNN, SVM, Ensemble. The resulting accuracy was 89.5 %, 86.5 %, 76.0 %, 
and 100 % [37]. Another technique entailed developing a skin lesion categorization system based on decision trees that obtained an 
accuracy of 97 % on both the HAM 10,000 and ISIC 2017 datasets [38]. The Nave Bayes classifier was used in conjunction with the 
Dermatology Information System and DermQuest to attain a precision of 97.6 % [39]. They also investigated other classifiers and their 
versions, with the SVM form attaining the greatest accuracy of 83 % [40]. The Nave Bayes classifier detected melanoma, keratosis, and 
benign skin diseases with accuracies of 91.2 %, 92.9 %, and 94.3 %, respectively [41]. Another study suggested a method for mela
noma detection that used a KNN classifier based on fuzzy decision ontology, reaching an accuracy of 92 % on the DermQuest and 
Dermatology Information method datasets [42]. Finally, employing ANN and SVM classifiers, researchers created a system for mel
anoma identification with accuracy of 96.2 % and 97 %, respectively [43]. 

Recent advancements in computer vision and deep learning have considerably advanced the science of prediction. These ad
vancements have had a significant influence on a wide range of computer vision applications, including cancer detection, autonomous 
driving, medical picture segmentation, and others [44–46]. However, since large, well-annotated datasets are scarce for this endeavor, 
skin cancer detection confronts a unique obstacle. Current techniques to skin cancer classification may be divided into two categories: 
those that use handmade features and those that use deep learning for automated feature extraction. 

Mahmoud and Elgamal [47] used methods for feature extraction, notably wavelet processing. They retrieved these traits, and then 
used dimensionality reduction techniques before feeding them into machine learning models. They used k-nearest neighbor (k-NN) 
and artificial neural networks (ANN) to classify skin cancer based on clinical observations, detect features within Dermoscopic pic
tures, and quantify tumor depth. Approximately 81 descriptors, including color, texture, form, and pigment network properties, were 
retrieved. They reached an amazing 95 % overall accuracy by combining logistic regression and neural networks. 

In another study [48], grayscale morphology was used to reduce information distortion caused by undesirable objects in the 
photographs, such as hair particles. To segment lesions, three unique methods were developed: a 3-D colour clustering idea, dynamic 
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thresholding, and global thresholding. Moreover, original photos were converted from the RGB scale to the HSI space to compute basic 
colour characteristics. The most accurate supervised learning system employed to classify skin cancer has a 77.6 % overall accuracy. 
The categorization of melanoma skin cancer was suggested in Ref. [48], with the classifier being support vector machines (SVM). Prior 
to feature extraction, images were preprocessed and segmented using thresholding. The Gray Level Co-occurrence Matrix (GLCM) was 
used to extract features, which focused on four Dermoscopic characteristics symbolized by the acronym ABCD, which stands for " 
Diameter, Asymmetry, Colour, Border." 

Furthermore, the Principal Component Analysis (PCA) method was used to reduce the dimensionality yielding a remarkable total 
accuracy of 92.1 %. In later study [49] multiple supervised learning algorithms for the categorization of benign and malignant 
melanoma pictures were examined and analyzed. We compared the algorithms SVM, ANN, and AdaBoost. In order to analyze it 
further, some pre-processing methods were employed such as de-noising, image sharpening, resizing and segmentation. Segmentation 
was done using K-means clustering technique with best results being obtained from AdaBoost and SVM algorithms on the experimental 
dataset. Use of deep learning (DL) in automating feature extraction in skin lesion classification has been gaining popularity among 
researchers. For instance Ref. [50], used Ph2 dataset which consists of about 200 skin cancer images for training purposes only. To 
solve the problem of a small dataset, they did so by performing data augmentation techniques where they manipulated their photos 
thereby increasing their number to 6600. This involved updating the neural network’s weights based on AlexNet architecture that had 
previous knowledge before applying stochastic gradient descent (SGD) algorithm to update the net weights again. They tested it using 
metrics like accuracy, precision; recall; and specificity thus exhibiting that this model outperformed the previously existing ones. 

In contrast, Zhang et al. [50] focused on limitations relating to DCNNs in skin lesion categorizing based on deep convolutional 
neural networks including lack of attention towards semantically important regions within an image. To overcome this issue, they 
developed an attention residual learning CNN composed of several attention residual learning blocks. They put this network through 
its paces on the ISIC-skin 2017 dataset and discovered that it outperformed state-of-the-art approaches. Another strategy required the 
creation of a melanoma classification ensemble of neural networks [51]. Thermoscopic datasets of several races were used, and the 
categorization considered numerous parameters such as colour, border, and texture, the Deep convolutional neural networks were 
used by the researchers in Ref. [50] for autonomous melanoma identification. They employed residual learning to avoid overfitting 
and used deep convolutional network and the residual network to create a two-stage network. The proposed framework achieved an 
area under the curve (AUC) score of 80.5 % when tested on the ISBI 2016 Skin Lesion Analysis Challenge. Another study [51] built 
many using the HAM10000 dataset to train neural network designs beforehand, which contains many forms of lesions of the skin. The 
ResNet50 model produced the greatest accuracy, they discovered. They used an ensemble strategy, integrating ResNet50, VGG16, and 
DenseNet, to increase accuracy even more. They were therefore able to attain an accuracy of 84 %. 

Using seven classes from the HAM10000 dataset, Chaturvedi et al. [52] built on this work by employing deep convolutional neural 
networks for multi-class skin cancer diagnosis, obtaining good accuracy for both individual and ensemble models. Traditional machine 
learning algorithms like logistic regression and Support Vector Machines (SVM) can still produce excellent results when given the right 
features and image pre-processing methods, even though deep learning is known for its automatic feature extraction abilities. These 
conventional models are a good substitute for deep models since they frequently use fewer processing resources. The experimental 
findings from the proposed study provide support for the above assertion. 

2.4. CNN based techniques 

In the area of machine learning-based skin cancer detection, researchers have achieved impressive results. The CNN with SVM 
classifer was used to analyze melanoma skin cancer using the ISIC dataset, yielding a 97.8 % accuracy rate [36]. Studies on the 
detection of skin cancer using medical image analysis have advanced significantly in recent years [53] The skin cancer diagnosis 
standard was enhanced during the ISIC 2018 event through a challenge competition. In each of these attempts, the researchers have 
used various classification techniques and algorithms to try to improve the diagnosis accuracy. Its architecture underwent several 
significant changes after CNNs were added to the image classification tasks. CNNs are thought to be the most cutting-edge method for 
classifying images because they mimic human visual cognition. We concentrate on deep learning methods for analyzing skin cancer 
pictures in our literature review, even if there is much research on image categorization in the literature. 

Over the past few decades, numerous research has been undertaken that suggests extremely successful image classification algo
rithms for the aim of skin cancer diagnosis. The binary classifications of malignant keratinocyte benign seborrheic keratoses vs. 
carcinomas and benign nevi vs. malignant melanomas were used to train a CNN model [27,52–54] using a collection of clinical 
pictures. The most prevalent malignancies are searched after in the first instance, while the deadliest skin cancers are sought after in 
the second. Their suggested model performs equally well in both tasks as did the entire group of experts tested. This demonstrates that 
smart computer-based algorithms can classify skin malignancies with accuracy on par with dermatologists. A selection of techniques 
for the data-limited verification of training and learning were described in Refs. [55,36,50–52]. When the network gets deeper, 
overfitting and degradation become problems, so they use residual learning to address them. They also developed a fully convolutional 
residual network for the precise segmentation of skin lesions, and they enhanced its capabilities by incorporating a multi-scale 
contextual information integration scheme. Instead of using the entire dermoscopy images, their architecture eliminates the 
shortage of training data by enabling a more accurate and representative extraction from the segmented outputs. Dermoscopic images 
and the diagnoses that go along with them are used. 

The Google’s Inception v4 [15,19] CNN’s architecture was trained and verified. Additionally, for clinical data on two levels, they 
used a set of 100 images. The first level took into consideration dermoscopy pictures. Their method’s main output is a binary diagnostic 
classifier that uses dermoscopy melanocytic images as its basis. The work in Ref. [13] classified skin cancer using a related ECOC 
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SVM-based classifier and an AlexNet CNN-based classifier. As compared to, their model exhibits greater specificity, accuracy, and 
sensitivity when considering a four distinct forms of skin tumors are depicted in a series of 3753 images [13,56,16,21,50,52–54]. 

For the greatest early skin cancer diagnosis, the works [17,57] used CNN. They optimized the CNN parameters using IWOA. The 
network’s weights and biases were best chosen using the optimization algorithm to minimize the intended output mistakes. In this 
paper [18,22,23,49] author proposed a technique for feature optimization using a variant of the PSO based on dermoscopic images. 

Table 1 
Summarized Skin Cancer Detection with Deep Learning and Machine learning Techniques.  

Ref Skin Cancer Detection Dataset Training and Classifier 
Algorithm 

Description Results 

[62] Benign/malignant ISIC dataset 
(2016) 

A very strong remnant of CNN 
and FCRN 

For precise lesions 
segmentation, FCRN 
combined with a multi-scale 
contextual information 
integration approach was 
developed 

Jaccard index (82.9), dice 
coefficient (89.7), specificity 
(95.7), sensitivity (91.1), 
and accuracy (94.9) 

[63] Melanoma/SK ISIC dataset 
(2017) 

Multi-scale depth CNN The Inception-v3 model, 
which was trained on 
ImageNet, was employed in 
the suggested model 

AUC (94.3), Accuracy (90.3) 

[64] Malignant melanoma/SK ISIC dataset 
(2017) 

AlexNet, ResNet-18, and VGG16 
are three previously trained 
deep models that were used to 
extract features for SVM 
classification. 

Logistic regression function 
was used to convert SVM 
scores to probabilities for 
evaluation. 

Average AUC (90.69) 

[65] AK/benign keratosis/nevus/ 
vascular lesion/and 
dermatofibroma 

ISIC dataset 
(2016, 2017) 

CNN model using LeNet 
methodology 

To improve system 
performance, the adaptive 
piecewise linear activation 
function was employed. 

(95.86) Accuracy 

[66] Atypical nevi/ 
dermatofibroma, benign 
keratosis/melanocytic nevi/ 
BCC/AK/IC/and vascular 
lesions 

PH2 and 
HAM10000 
dataset 

Deep CNN architecture (ResNet 
152, DenseNet 201, Inception 
v3, and 
v2) InceptionResNet 

In terms of overall mean 
results, deep-learning models 
outscored highly skilled 
dermatologists by at least 11 
%. 

ResNet 152: 98.61-98.04; 
DenseNet 201: 98.79-98.16; 
Inception v3: 98.60-97.80; 
InceptionResNet v2: 98.20- 
96.10) 

[67] Benign keratosis, Bowen’s 
disease, BCC, melanocytic 
nevus, Bowen’s disease, AK, 
vascular lesion, and 
dermatofibroma 

ISIC dataset 
(2018) 

PNASNet-5-Large, SENet154, 
InceptionV4, and 
InceptionResNetV2 

To set up network 
parameters and fine-tune 
them, an image-net model 
that had been trained was 
utilized. 

Score for Validation (76) 

[68] BCC/non-BCC FF-OCT images: 
297 

ResNet18 pruned It was determined, using K- 
fold cross-validation, the 
effectiveness of the suggested 
system 

(80) Accuracy 

[69] Melanocytic nevi, BCC, SK, 
and SCC 

1300 pictures of 
skin lesions 

CNN Mean subtraction and Pooled 
Multiscale with averaging in 
augmented feature space. 

Accuracy (81 %) 

[70] Lupoma, fibroma, 
scleroderma, and melanoma 

ISIC dataset 
(2016) 

Clustering using deep region- 
based CNN and fuzzy Logic. 

A combination of fuzzy C- 
means and region-based CNN 
achieved greater accuracy in 
disease identification 

Precision (94.8) 
responsiveness (97.81) 
precision (94.17) 
(95.89) F1_score 

[71] Benign/malignant 1760 
dermoscopy 
pictures 

5-fold cross-validation on CNN Images were prepared based 
on melanoma cytological 
results 

Specificity (88.1), sensitivity 
(80.9), and accuracy (84.7) 

[72] Combination nevus and 
malignant melanoma 

Dataset (Derma, 
Dermnet, 
Danterm and 
DermQuest) 

CNN For fine-tuning, the pre- 
trained BVLC-AlexNet model 
from the ImageNet dataset 
was employed. 

Average mean precision (70) 

[73] Malignant/benign ISIC 2016 and 
MED-NODE 
datasets 

Six layers thick 
CNN 

Image illumination had an 
impact on how well the 
system performed. 

Precision (77.50) 

[74] Nonmelanoma/melanoma ISIC dataset 
(2016), ISBI 
(2016) 

Fully hybridized CNN with 
autoencoder, decoder, and RNN 

The proposed model 
performed better than the 
most advanced SegNet, FCN, 
and ExB architecture 

Precision (98) 
Sensitivity (95), specificity 
(94), and Jaccard index (93) 

[75] Benign/malignant ISIC dataset 
(2017) 

CNN with two layers and a new 
regularized 

The suggested regularization 
strategy reduced complexity 
by imposing a penalty on the 
classifier’s weight matrix’s 
dispersion value 

Accuracy 97 %, Specificity, 
and Sensitivity 94 %. 

[76] Cancerous vs. benign ISIC dataset 
(2016,2017) 

Dark CNN Data balance required data 
augmentation. 

Precision (81), accuracy 
(80.3), and AUC (69)  
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Along with attraction operations, flee and sub-swarms, local and global food and enemy signals, and mutation-based local exploitation, 
their proposed algorithm also includes a variety of matrix representations to prevent the primary PSO algorithm from convergent too 
early. To diversify the search processes, they also used probability distribution and dynamic matrix representations. They use SVM and 
KNN as two classifiers to categorize skin lesions. Authors in Ref. [19] suggested Skin cancer classification using an automated 
hyper-parameter CNN [1,5,9,27,31–41,21,57–62]. The suggested method makes use of CNN’s hyperparameters by choosing the right 
encoding schemes. The deep larning and machine leaning methods,descriptions of models, datasets, and results on lesions of skin 
cancer is summarized in Table 1. 

3. Proposed E-VGG19 model and Methodology 

The architecture of proposed Enhanced VGG19 models is thoroughly explained in this section with comparison of other pretrained 
models. The basic structure E-VGG19 model is based on CNN, The CNN is a fundamental deep learning model that can be used to assign 
weights and biases that can be trained to an image’s input to determine its relevance to various objects and aspects of the image and 
distinguish one from the others. During the training phase of the main CNN model, to understand the properties of different training 
patterns, the filters are manually developed. The Visual Cortex organization served as inspiration for the CNN model’s architecture, 
which is strikingly comparable to the connection pattern’s architecture of human brain neurons. Individual neurons only react to 
stimuli in a small area of the visual field known as the receptive field. These fields should be combined to cover the entire visual region. 

Fig. 2. Configuration of E-VGG19 architecture A. Image segmentation.  
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In addition, Machine learning techniques are integrated with the CNN based model (i.e., E-VGG19) in our proposal to enhance overall 
performance and robustness in skin cancer detection. The E-VGG19 model that we explain hereafter serves as a feature extractor to 
feed a separate ML classifier (e.g., Support Vector Machine and Random Forest) as shown in Fig. 3. 

The E-VGG19 network has numerous parameters and layers, as mentioned in the previous subsection, which can make recognition 
tasks more difficult. VGG19 is a CNN model with an intricate 19-layer architecture. The pretrained VGG19 model is a fundamental 
component of our work, having been first trained on the 1000 class ImageNet dataset [42]. We investigate the VGG19 architecture and 
carry out experiments with fine-tuning in every layer. A set of four fully connected layers is used in place of the top layers to customize 
the model for our dataset. By strategically retraining the VGG19 architecture, we hope to better suit its capabilities for sophisticated 
feature extraction and classification by adjusting it to the nuances of our dataset. In our method, a convolutional layer was removed 
from the third block while in the first three blocks of VGG19, the settings were maintained constant. A BN layer was also added after 
each pooling layer. To replace the fully connected layer, a GAP layer was finally used. We ignored the dropout layer and substituted a 
BN layer even though many CNNs use dropout layers. The main justification for doing away with the variance offset those results is the 
dropout layer, which might help to improve the accuracy of the results’ mean and standard deviation. 

As a result, during the training phase, there might be a shift in the mini-batch sample distribution. arbitrarily, which could cause 
gradients to vanish or explode. This scenario has an impact on the layers below it as well. The input map was normalized and then the 
network was fitted using batch normalization. To produce a zero means and a unique variance to solve this problem After convolution, 
CNNs are made up of two enormous, fully connected layers with enormously more parameters. However, this circumstance may make 
the network more computationally taxed and slow its performance. As a result, overfitting may occur when the parameters are too 
many. Releasing itself as a vector that is only one dimension, the fully connected layer runs the risk of losing information, whereas the 
global average pooling layer gathers feature information by combining the most recent to gain from preserving feature information, 
input a feature map into a whole. Therefore, rather than using fully connected layers, the suggested method in this work makes use of a 
global average pooling layer. A global average pooling layer also contains fewer parameters than a fully connected layer, which could 
speed up calculations and satisfy the demands of real-time diagnosis [77]. Fig. 2. The network architecture of the recommended 
method is displayed. 

The objective of the skin lesion segmentation stage is to accurately determine the border of a skin lesion. By accurately localizing 
the lesion boundaries, clinicians can gain insights into the extent and shape of the lesion, which is crucial for diagnosis and subsequent 
medical decisions. The precision of this stage holds paramount importance, as the lesion boundary serves as the foundation for 
numerous parameters utilized in assessing the risk of melanoma. In this context, we implement a lesion segmentation technique based 
on texture distinctiveness to precisely identify lesion boundaries. The skin lesion segmentation algorithm initiates by acquiring 
representative texture distributions and determining the texture distinctiveness measure for each distribution (refer to Fig. 4). Sub
sequently, a texture vector is extracted for every pixel in the image. Utilizing this set of texture vectors as a foundation, a Gaussian 
mixture model is then applied to effectively learn the underlying texture distributions. 

Lastly, the texture distinctiveness metric is used to quantify how different a texture distribution is from all other texture distri
butions. Flow chart illustrating the combination of the texture distinctiveness map and the starting regions. In the illustration of the 
early regions, every solid hue designates a particular region. The pixels in the picture are categorized as belonging to the lesion class or 
to the normal skin in the second stage. This is accomplished by segmenting the image into multiple areas. To locate the skin lesion, 
these regions are integrated with the texture distinctiveness map. The geometric feature of the melanoma skin lesion is one of its 
primary characteristics. Therefore, we suggest extracting the segmented skin lesion’s geometric features. The following common 

Fig. 3. Proposed (E-CNN) architecture of skin lesion detection and classification.  
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geometry properties were employed in this instance: Area, Perimeter, Greatest Diameter, Circularity Index, and Irregularity Index, all 
taken from.11 To extract the geometrical features of the skin lesion, the image blob of the segmented picture that only contains the 
lesion is analyzed. The following are the many features that were extracted: Area (A): The lesion’s pixel count. Number of edge pixels is 
the perimeter (P). Major Axis Length, also known as Greatest Diameter (GD), is the length of the line joining the two farthest boundary 
points and passing through the lesion centroid as mentioned Equations (1) and (2), where (xi, yi) is the position of the ith lesion pixel 
and n is the number of pixels inside the lesion. The length of the line that connects the two closest boundary points and passes through 
the centroid of the lesion blob is known as the minor axis length, or shortest diameter (SD). The Circularity Ratio (CRR): It provides 
consistency in the shape. 

(xc, yc)=
(∑n

i=1xi
n

,

∑n
i=1yi
n

)

(1)  

CRC=
4Aπ
p2

(2)  

3.1. Machine learning 

In computer science, machine learning enables computers to learn from data without explicit programming. Numerous machine 
learning approaches, like SVM and logistic regression, are popular machine learning approaches frequently employed for classification 
and regression issues. The foundation of binary SVM is the creation of a maximum geometric and functional margin by using a 
separating hyperplane to divide the data points into two groups. But another significant linear machine learning classifier that uses a 
preset threshold to aid with the binary classification problem is logistic regression, which makes use of the sigmoid function. Using 
logistic regression or linear kernel support vector machines (SVM) usually involves certain trade-offs, depending on the properties and 
attributes of the reference dataset. In this case, we use both linear kernel support vector machines (SVM) and voting for the ultimate 
categorization of skin cancer will be done using logistic regression. To improve feature representation, we first use local binary pattern 
histogram and contourlet transform image processing methods before using these machine learning classifiers for the diagnosis of skin 
cancer. Following dimensionality reduction with PCA, the characteristics obtained by these two image-processing techniques are fed 
into the ML classifier. In this part, we provide a quick explanation of PCA and these image processing techniques. While the feature 
extraction procedure is fully automated, DL approaches prevent us from manually removing characteristics from the photos [31]. Deep 
learning thus suffers when handmade features have the potential to improve accuracy. ML models enable the provision of features 
following a thorough feature extraction process. 

3.2. Transfer learning 

With transfer learning [45], we can apply the best-performing models to the most widespread dataset, "ImageNet". Additionally, it 
allows us to modify the model according to the needs of the problem and the domain. Once the input size was adjusted, we used the 
pre-trained model/problem straight away, substituting the required number of output classes (two in our instance) for the original 
ImageNet problem’s 1000 classes. In addition, we have included a few more layers to refine the model for the problem of skin cancer 
detection. An alternative to using a pre-trained model directly is the deep learning model’s training from the beginning. As it can be 
seen in the results section, compared to the model created using ImageNet weights, the deep learning model was built from scratch and 
outperformed on the dataset. For this study, we tested five strong deep neural network architectures, selecting the top-performing 
model to build an ensemble using our suggested machine-learning technique. The CNN models are trained using a learning rate of 
0.0001, Adam is used as an enhancer, and a few modifications is recommended for the models being considered for skin cancer 
diagnosis. The input photographs are scaled to 224 × 224 pixels during the preprocessing step to ensure uniformity in dimensions. The 

Fig. 4. Process showing texture distinctiveness map and initial regions.  
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skin cancer detection model, known as E-VGG19 and shown in Fig. 3, has an architecture that includes layers that are well-suited to 
different tasks. The E-VGG19 model intentionally uses the convolutional layers first to extract complex information from the input 
images. Convolutional layers are important because they let the model capture hierarchical representations, which in turn helps it 
identify subtle patterns associated with skin diseases. Subsequent pooling layers help retain important information while lowering 

Fig. 5. Architecture of Pretrained models.  
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computational complexity by contributing to spatial reduction. The specific architecture can vary depending on the dataset, model 
complexity, and available computing resources. However, the goal is to achieve accurate and reliable skin cancer detection, which 
might help with early care and diagnosis [52,78]. 

3.3. VGG19 

VGG19 is a pretrained CNN model with 19 layers, as the name would imply. Initial training of the trained VGG19 [42] architecture 
was conducted using 1000 classes from the ImageNet dataset. The VGG19 architecture is tested and retrained on our dataset in this 
work by fine-tuning each layer individually and substituting the top layers with four fully connected layers. The classification result is 
then obtained by applying the sigmoid layer. Resizing the input to match the VGG19’s original input size makes it compliant. 

3.4. ResNet50 [11,19,66] 

Retraining the ResNet50 [19] architecture using the dataset makes it possible to test and improve across all levels. With "relu" 
serving as the activation function, four fully connected layers take the role of the upper layers. After that, a sigmoid layer is used to 
interpret the data into two diagnostic groups. In this case, identity mapping is used by the network to train far deeper networks and 
solve the vanishing gradient problem. Although, this identity mapping lacks parameters the output of the layer below is added to the 
layer above. The outputs from earlier levels are added to the outputs of stacked layers when layer connections are skipped [11]. With 
their pretrained weights, the ResNet50 architecture is maintained like the earlier pre-trained CNNs, At the top, four completely 
connected layers have been added, with "relu" serving as the activation function. The last output layer’s activation function is the 
sigmoid function. We also implemented ResNet152v2, which has 152 layers in the model and a comparable architecture to ResNet50 
and subjected it to thorough testing. 

3.5. InceptionResnetV2 [11,24,66] 

The ResNet models and Inception were used to create this model [20,24,66]. On our dataset, the InceptionResNetV2 architecture is 
retrained, and adjustments are recommended for every layer. To categorize the picture into two diagnostic groups, a sigmoid layer is 
applied at the end, and four completely linked layers are put in place of the top layers. The ISIC dataset is used to train all the models to 
classify skin cancer photos in a binary manner, and it is shown that the VGG19 outperforms any pre-trained CNN in a comparable 
manner. Fig. 5 demonstrates the customization for the categorization of skin cancer and the diagram of these pre-trained CNNs. 

3.6. DenseNet201 [11,43,66] 

A convolution neural network with 201 layers is called DenseNet201 [43]. In DenseNet201, each layer collects information from 
the layers that came before it. This design makes use of a simple connection scheme to guarantee all available data flow between layers 
during both backward and forward computing to address the vanishing gradient problem. The layers are interconnected in such a way 
that each following layer receives input from each by use of its own feature maps, the previous layers. The entire architecture has been 
broken up into numerous densely connected units to aid in down sampling. Transition layers, which perform pooling and convolution, 
divide these dense blocks. Four completely connected layers with the activation function "relu" are placed on top of this pre-trained 
architecture. The last output layer is where classification is performed, and sigmoid is used as the activation function. 

4. Result and discussion 

The proposed approach, along with every other technique considered for comparison and assessment, was implemented in this 
section using the Python programming language and the Scikit-Learn package, alongside Keras, a high-level API based on TensorFlow 
2.0. To conduct deep learning research, train, and test models, we utilize Google Colab Pro, a cloud-based platform. 

4.1. Dataset description 

The experiment was conducted using the ISIC 2020 dataset [79], which comprises 33,126 dermoscopic training photos depicting 
distinct skin lesions from over 2000 patients. These lesions include both benign and malignant cases. Each image is associated with a 
unique patient identification, ensuring a comprehensive representation of different conditions. Malignant diagnoses were confirmed 
through biopsy, while benign diagnoses were validated through expert consensus. 

For training and validation, 70 % of the dataset was allocated to training, while 30 % was reserved for validation and testing 
purposes. During training, a batch size of 128 and an epoch count of 50 were utilized to optimize model performance and convergence. 

The Memorial Sloan Kettering Cancer Centre, the Hospital Clinic de Barcelona, the Medical School of the University of Athens, The 
University of Queensland, and the Medical University of Vienna are just a few of the institutions from which images for the collection 
were compiled. Images of 32,543 benign and 585 malignant moles are included in the dataset. Each image has been reduced in size to a 
low-resolution RGB file (96 96x3) [26]. 

Fig. 6 displaying random data samples of melanoma skin cancer images is a valuable step in understanding the nature and quality of 
the dataset. It offers insights into the diversity of cases, the potential challenges in data preprocessing, and the visual characteristics 
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that the model needs to learn. Proper dataset curation and quality assurance are essential for building accurate and reliable melanoma 
detection models, which can have a significant impact on early diagnosis and patient outcomes. Histopathology has validated every 
malignant diagnosis, while the diagnosis for benign conditions has either been supported by expert consensus, extensive observation, 
or histopathology. It worth mentioning that class imbalance issue can affect the performance and reliability of machine learning 
models. Proper handling of class imbalance through various techniques is crucial to ensure that the model is both accurate and 
effective in detecting malignant skin lesions, ultimately contributing to improved patient outcomes. 

The other hyperparameters were set as follows. The gamma is set to be 0.001, weight decay is configured to 0.0005, and learning 
rate was set to 0.001. Furthermore, epsilon and momentum were adjusted to 0.000001 and 0.99, respectively, in the BN layer. We 
chose Adam to be the optimizer after several tests comparing the results of SGD, Adam, and RMSProp. The suggested strategy for the 
categorization of skin cancer images was assessed using the metrics from the challenge evaluation. The area under the Receiver 
Operating Characteristic curve (AUC), F-measure, specificity, accuracy, and sensitivity are the assessment criteria. We employ 
Equations (3)–(8), to assess the effectiveness of the proposed system. The mathematical formulation of these measures is outlined as 
follows. Accuracy reflects the proximity of measurements to a predetermined value, while precision measures the consistency of 
measurements among themselves. Sensitivity (True Positive rate) quantifies the proportion of true positives correctly identified. 
Additionally, the F1-score is computed based on the precision and sensitivity of the test, representing the harmonic mean of these two 
metrics. 

Acc=
tp + tn

tp + fn + fp + tn
(3)  

Pr=
tp

tp + fp
(4)  

Sn=
tp

tp + fn
(5)  

Fig. 6. Random data samples of melanoma skin cancer detection.  
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Sp=
tn

fp + tn
(6)  

F − measure=
2 × p × r

p + r
(7)  

G − mean=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sn × sp

√
(8) 

Table 2 compares each of these models based on metrics including accuracy, precision, recall, and F1-score. The DenseNet201 is 
found to perform better than other models. In this case, we consider every performance indicator needed to assess the suggested model. 
While some models do well in certain areas, they are unable to produce consistent outcomes across all performance matrices. Resolving 
the deep model’s vanishing gradients issue with the use of skip and residual connections makes ResNet, or the ResNet152v2 variation, 
the second-best performance behind ResNet50. We tried different optimizers, validation splits, and batch sizes, in addition to the Keras 
Tuner to do hyperparameter tuning. The most promising set of hyperparameters used in the suggested model. The best set of pa
rameters for the learning process in our model is determined by using the Keras Tuner package. In addition, we conducted experiments 
using slightly different hypermeters to confirm Keras Tuner’s findings. There is also a comparison between the ML classification model 
with pretrained models. Table 3 displays the testing performance metrics. It is evident from this table that the KNN, DT, Logistic 
Regression model outperforms the other machine learning models in every performance matrix. Out of all the machine learning 
models. 

Fig. 3 provides layers details of the pretrained network structures, while in-depth details are available in the literature. The per
formance of the pre-trained models is illustrated in Table 2, ranking the networks according to their accuracy concerning the number of 
layers. Figs. 7 and 8, presenting F1 scores for pretrained and ML models with respect to benign and malignant classes, The proposed E- 
VGG16 model acthived 89 % F1 score on benign and 87 % on malignant class. It aids in model selection, threshold optimization, bias 
detection, and clinical decision-making, ultimately contributing to more accurate and effective diagnostic tools. The skin cancer 
segmentation shown in Fig. 9 highlights the significance of augmenting data sets for enhancing the dataset and the potential ad
vantages that accrue to a segmentation model. Fig. 10, displaying the confusion matrix for a CNN used in skin cancer classification, is a 
valuable tool for assessing the model performance in a medical context. It provides essential metrics for evaluating the model’s ac
curacy, precision, recall, and clinical relevance, helping to make informed decisions about its readiness for clinical use and identifying 
areas for improvement. 

For improved model training, generalization, and overall performance, data augmentation can have an impact on clinical practice 
in the realm of skin cancer diagnosis and treatment. It is critical for ensuring image segmentation models are able to accurately identify 
skin cancer lesions across different environments. This understanding is based on comprehending the nature and quality of a dataset. It 
provides insight into variation in cases, data preprocessing problems that may arise and visual attributes which the model must 
recognize. Dataset curation should be done properly and ensured of its quality so as to come up with melanoma detection models that 
are accurate and reliable enough to lead to early diagnosis hence better patient outcomes. 

We used the Kaggle platform, which runs Linux on an Nvidia K80 GPU and supports Python 3.7, Keras 2.4, and Tensor Flow 2.4, for 
our experiments. The Kaggle platform was selected because it offers a large library of machine learning and deep learning resources 
and supports the quicker GPU training of ensemble models or deep learning models. The E-VGG19 model demonstrated an accuracy of 

Table 2 
Performance Comparison of pre-trained models and ML methods on Skin cancer detection. (B- Benign, M − Malignant).  

Methods Classes #Precison #Recall #F1-Score #Accuracy 

SVM B 0.79 0.74 0.79 0.79 
M 0.70 0.71 0.70  

Linear SVM B 0.76 0.70 0.75 0.75 
M 0.75 0.72 0.73 

DT B 0.74 0.75 0.70 0.74 
M 0.70 0.70 0.69 

KNN B 0.59 0.65 0.60 0.60 
M 0.70 0.55 0.61 

LR B 0.80 0.84 0.75 0.75 
M 0.82 0.81 0.73 

VGG19 B 0.83 0.85 0.82 0.82 
M 0.81 0.81 0.83 

ResNet152v2 B 0.81 0.82 0.83 0.82 
M 0.80 0.70 0.82  

InceptionV3 B 0.80 0.88 0.83 0.84 
M 0.80 0.85 0.84 

ResNet50 B 0.80 0.83 0.86 0.86 
M 0.82 0.81 0.80 

DenseNet201 B 0.83 0.83 0.86 0.86 
M 0.78 0.81 0.80 

Proposed E-VGG19 B 
M 

0.87 
0.94 

0.93 
0.86 

0.89 
0.87 

0.88  
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88 % on the training dataset and 91 % on the validation dataset, according to our observations. The model undergoes 50 iterations of 
training, when using the Adam optimizer, and the loss function is binary cross entropy. Furthermore, additional deep learning models, 
including InceptionResNetV2, DenseNet201, ResNet50, and InceptionV3, are also being explored and experimented with for the 
purpose of detecting skin cancer. 

Table 2 compares each of these models based on metrics including accuracy, precision, recall, and F1-score. The E-VGG19 is found 
to perform better than other models. In this case, we consider every performance indicator needed to assess the suggested model. While 
some models do well in certain areas, they are unable to produce consistent outcomes across all performance matrices. Resolving the 
deep model’s vanishing gradients issue with the use of skip and residual connections makes ResNet, or the ResNet152v2 variation, the 
second-best performance behind VGG19. We tried different optimizers, validation splits, and batch sizes, in addition to the Keras Tuner 
to do hyperparameter tuning. The most optimal collection of parameters for the learning method is determined by using the Keras 
Tuner package. In addition, we conducted other experiments using slightly different hypermeters to confirm Keras Tuner’s findings. 

The following confusion matrix reported in Fig. 10 is used to determine the classification’s assessment criteria for the main DL 
pretrained models. On one hand, True Positive (TP) refers to the instances that were correctly classified as positive by the model where 
True Negative (TN) signifies instances that were correctly classified as negative by the model. On the other hand, False Positive (FP) 
indicates the instances that were falsely classified as positive by the model. Also, False Negative (FN) represents the number of 

Table 3 
Comparative performance of VGG19 and E-VGG19 pre-trained networks using different ML classifiers.  

Pretrained Model Classifier Optimizer Epoch Batch Size Learning Rate Accuracy Sensitivity 

VGG19 SVM A 25 32 0.0001 0.83 0.84 
RP 50 64 0.001 0.82 0.82 

Linear SVM A 25 32 0.0001 0.82 0.82 
RP 50 64 0.001 0.77 0.82 

DT A 25 32 0.0001 0.79 0.81 
RP 50 64 0.001 0.82 0.81 

KNN A 25 32 0.0001 0.80 0.83 
RP 50 64 0.001 0.79 0.83 

LR A 25 32 0.0001 0.78 0.82 
RP 50 64 0.001 0.80 0.83 

E-VGG19 SVM A 25 32 0.0001 0.84 0.82 
RP 50 64 0.001 0.87 0.85 

Linear SVM A 25 32 0.0001 0.88 0.85 
RP 50 64 0.001 0.87 0.87 

DT A 25 32 0.0001 0.87 0.87 
RP 50 64 0.001 0.85 0.86 

KNN A 25 32 0.0001 0.83 0.88 
RP 50 64 0.001 0.82 0.88 

LR A 25 32 0.0001 0.88 0.87 
RP 50 64 0.001 0.88 0.87  

Fig. 7. F1 score comparison with ML classifiers against E-VGG19.  
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incorrect predictions where the model predicted the class as negative (False) when the actual class was positive (True). 
The Receiver Operating Characteristic (ROC) curve combines these measurements to create a graphical representation. This curve 

shows how many times a model makes classification mistakes and FN or FP rates on top of that. Moreover, ROC curve can also be used 
in creating AUC plot. Specifically speaking here, AUC follows the ROC as probability curve which represent the degree of separability 
for any given test result. The ROC curve for the benign-vs-malignant lesions is shown in Fig. 11. The classifier gives a TPR of 0.89, a FPR 
of 0.20 and a FNR of 0.11 for the malignant lesions at the optimal cut-off value of 0.42. The area under the ROC curve is 0.94 for the 
benign-versus-malignant classification problem. A model’s ability to do classification work increases with its AUC. A model that has a 
near-one AUC is considered optimal and has high separability metrics. Conversely, an AUC close to 0 indicates a poor separability 

Fig. 8. F1 score comparison with DL pretrained models against E-VGG19.  

Fig. 9. Skin Cancer Segmentation with data Augmentation techniques.  
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metric. The probabilities of TP and FP represent sensitivity and specificity, respectively, the estimated AUC may be expressed in the 
following manner. 

Fig. 12 presents a visual depiction of the precision and decrease across epochs for the two models utilized in our framework. To 
attain optimal performance, we adopted the modified DenseNet201 architecture with pre-trained ImageNet weights and subsequently 
fine-tuned the fully connected layers. In Fig. 12 (a), the training loss achieved a remarkable 0.17 %, while the validation loss stood at 
0.18 %. Additionally, this model demonstrated a superior training accuracy of 91.01 % and a commendable validation accuracy of 
84.22 %. The findings show how effective our method is and the high-quality performance that can be achieved by using ResNet152v2. 

5. Conclusion 

This research study presents novel (E-VGG16) model by using machine learning and transfer learning techniques for real-time 
artificial intelligence-based skin cancer detection. In this paper, we have combine transfer learning (pretrained)and machine 
learning classifers to come up with an efficient skin cancer classifier. We used transfer-learning which enabled us take advantage of 
feature extraction capability in pre-trained DL models, greatly reducing the need for manual features creation as well as making our 
system more robust. The outcomes show that these combinations of models were able to correctly diagnose skin lesions particularly E- 
VGG19. In turn, application of transfer learning together with good fine-tuning technique and data augmentation has led to significant 
improvement in recognition accuracy. These findings would totally transform the future diagnosis of skin cancer since they have great 
implications for real time skin cancer diagnoses. Using a mixture of deep learning and machine concepts we were able to create a strong 

Fig. 10. Classification of skin cancer lesion using pretrained models (a) InceptionV3, (b) ResNet50 and (c) DenseNet201, and d) ResNet152v2.  
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Fig. 11. ROC curve of benign-versus-malignant.  

Fig. 12. Training and Validation accuracy ResNet50 (a), (b) and a) ResNet152v2 (c) & (d).  
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tool which can help medical professionals accurately identify skin cancers more instantly than ever before. Given our study, we 
recommend further investigation on these methods over wider range of subjects. Furthermore, the integration of real-time capabilities 
into the system to enable instantaneous skin cancer detection presents an exciting avenue for future research, with the potential to 
make a substantial impact on healthcare, particularly in the field of dermatology. Researchers may use sectional classification in the 
future to examine techniques for detecting skin cancer. There are other categories within traditional segmentation, such as threshold- 
based, region-based, and clustering-based. In a similar vein, colour, shape, and texture features should be distinguished when clas
sifying the extracted features. While CNN continues to produce excellent results, there are still certain constraints, such as those related 
to generalization and optimization, which may be resolved in the future with the use of quantum computing. 
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