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Abstract

Motivation: Analysis of time series transcriptomics data from clinical trials is challenging. Such studies usually profile very few time points
from several individuals with varying response patterns and dynamics. Current methods for these datasets are mainly based on linear, global
orderings using visit times which do not account for the varying response rates and subgroups within a patient cohort.

Results: \We developed a new method that utilizes multi-commodity flow algorithms for trajectory inference in large scale clinical studies.
Recovered trajectories satisfy individual-based timing restrictions while integrating data from multiple patients. Testing the method on multiple
drug datasets demonstrated an improved performance compared to prior approaches suggested for this task, while identifying novel disease

subtypes that correspond to heterogeneous patient response patterns.

Availability and implementation: The source code and instructions to download the data have been deposited on GitHub at https://github.

com/euxhenh/Truffle.

1 Introduction

Transcriptomics data has been collected and profiled in clini-
cal and drug response studies for over a decade (Meyer et al.
2013). In most cases, researchers profile bulk expression,
though more recently single-cell data was also profiled in
such studies (Wang et al. 2020). The main goal of these stud-
ies is to reconstruct networks and systems that are activated
in response to the disease, drug, or vaccine, over time (Almon
et al. 2003, Huang et al. 2009).

A major challenge in the analysis of data from clinical trials
is the fact that different individuals may display different re-
sponse dynamics (Bar-Joseph et al. 2012, Ding et al. 2022).
Even if the same biological process is activated, based on
baseline differences (related to age, gender, prior disease his-
tory, etc.), these individuals may respond faster or slower to
the same treatment. Furthermore, same-day visits do not cor-
respond to the same disease state which makes it challenging
to rely on the measured time points for integrating data
across these patients. Another challenge is the heterogeneous
responses from different individuals. While a single response
trajectory is possible, often we observe a (small) number of
endotypes. “Endotypes” are subtypes of a disease character-
ized by different pathogenic mechanisms (Lotvall et al. 2011,
Czarnowicki et al. 2019, Battaglia et al. 2020) which can
have an impact on the specific optimal treatment. Each of the
endotype groups may respond differently to the same treat-
ment and so the overall set of patients cannot be directly inte-
grated when studying treatment or vaccine response.

Several methods have been developed to address the first
challenge (aligning patients) (Listgarten et al. 2004, Lin et al.
2008). These often use expectation-maximization (EM) like
methods. In these approaches, genes are represented as

continuous curves and individuals are assigned to different
time points along these (Bar-Joseph et al. 2003). Such meth-
ods have been widely applied (Behnke ez al. 2010,
Czarnewski et al. 2019) but they still suffer from several
drawbacks. First, the continuous expression assumption may
be problematic when sampling rates are sparse (genes can
change a lot between two consecutive measurements) and
second, they cannot reconstruct trajectories for multiple sub-
sets of patients but rather assume a homogeneous response
among all patients.

Another direction that was explored, especially in the
single-cell space, is that of trajectory inference. Unlike the
EM methods, these approaches assume the presence of multi-
ple states in the data and allow for multiple subsets or
branching. These methods range from linear or tree-based, to
more recent adaptations of RNA velocity (Saelens et al.
2019, Lange et al. 2022). However, most of these methods
assume no relationships between cells or samples. Only a few
methods have focused on the case when samples come from
different time points as is often the case with clinical trials
data. For example, Tempora (Tran and Bader 2020) assigns
temporal scores to each cluster of cells which are used to de-
termine the direction of the edges. Psupertime fits a series of
ordinal logistic regression models that separate time points
while trying to find a small number of genes that influence
the resulting order (Macnair et al. 2022). However, these
single-cell methods assume a very large number of samples
(in the thousands or tens of thousands) which is not available
for most clinical studies including the ones analyzed in this
paper. In addition, they usually do not explicitly map the dif-
ferent subgroups within the data, leaving it for subsequent,
post-processing, analysis.
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In this work, we present Trajectory Inference via Multi-
commodity Flow with Node Constraints (Truffle), a method
that performs pseudotime ordering of samples in short time
series data. Truffle is based on the multi-commodity flow al-
gorithm (Leighton et al. 1995) which generalizes minimum
cost flow problems to include multiple source and sink nodes.
Each sample in our data can be seen as either a source or a
sink node and we are interested in recovering directed paths
between these that minimize a cost function (typically some
distance in gene space). The advantage of Truffle is that these
trajectories can be constrained to satisfy timing restrictions
and to pass through other nodes which correspond to inter-
mediate disease states not present in the patient specific time
series. Endotypes are then determined by constructing a state
diagram for different subsets of patients. Truffle allows for
the possibility of recovering contrasting endotypes since tra-
jectories are inferred for each patient rather than for the en-
tire dataset.

We tested Truffle on several microarray and bulk RNA-seq
datasets. As we show, Truffle can accurately identify relevant
disease trajectories and pathways, improving upon prior
methods for clinical time series data and methods for single-
cell data. A number of novel trajectories identified by Truffle
suggest new subsets of patients that can benefit from preci-
sion medicine.

2 Materials and methods
2.1 Data and preprocessing

We used three public time series datasets with the following
GEO accession numbers GSE171012 (psoriasis), GSE212041
(COVID-19), and GSE112366 (Crohn’s disease) (VanDussen
et al. 2018, LaSalle et al. 2022, Liu et al. 2022) (Table 1).

Raw gene counts were downloaded from NCBI GEO for
the two RNA-seq datasets (psoriasis and COVID-19). Only
protein-coding genes that had >0.25 counts per million
(CPM) in at least 1% of the samples were kept. In the case of
duplicated gene identifiers, the gene with the highest mean
expression was considered. Datasets were then normalized
for their guanine-cytosine (GC) content and trimmed mean of
M-values (TMM) was performed (Robinson and Oshlack
2010). If batch information was present, ComBat was used
to extract batch-corrected expression values (Johnson et al.
2006). Only samples with disease/treatment were used for
pseudo-ordering. For microarray data, in the case of multiple
probesets belonging to a protein-coding gene, only the one
with the highest expression was kept. The Crohn’s dataset
was pre-normalized by Robust Multichip Analysis (RMA).

We removed symptomatic COVID — 19~ from the
COVID-19 data and kept only the patients who tested posi-
tive for the disease.

Table 1. Clinical data used in this study.?
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2.2 Assignment of disease states through clustering

To obtain disease states, we clustered the samples. We fol-
lowed a standard practice that is also adopted by other com-
putational tools such as Seurat (Hao et al. 2024). We first ran
principal component analysis (PCA) to obtain low dimen-
sional embedding vectors which were then used to construct
a fuzzy simplicial set as done by Uniform Manifold
Approximation and Projection (UMAP) (Mclnnes et al.
2018). We adjusted the number of neighbors based on the to-
tal number of samples—using 15 for Crohn’s, 20 for
COVID-19, and 5 for psoriasis. Larger numbers resulted in
highly connected graphs. This connectivity graph is the input
for both Leiden clustering (Traag et al. 2019), and multi-
commodity flow (below).

To assign states to biological processes, we performed gene
set enrichment analysis (GSEA) (Subramanian ef al. 2005) us-
ing the prerank function of GSEApy (Fang et al. 2023).
Genes were ranked based on the following score:

gene score; = — log 1o(adj. p—value) - log,(FC)

where in the first term, adjusted p values were obtained from
a two-sided Kolmogorov-Smirnov test (Massey 1951) com-
paring the diseased and healthy sets of patients, and the sec-
ond term is the log fold-change in gene expression between
the two sets. We rely on the gene ontology (GO) biological
processes marker set for the enrichment analysis in this work
(Ashburner et al. 2000).

2.3 Multi-commodity flow with node capacity
constraints

The multi-commodity flow problem with node capacity con-
straints is defined as follows. Consider a directed graph
G = (V,E), where an edge (#,v) € E has an associated cost
cup- We are given a set of K commodities K := [K]. The i
commodity is defined by a source and sink node (s;, ;).

Multi-commodity flow can be used to model patient trajec-
tories. Assume for simplicity patients with only two visits
each. In this setup, each patient corresponds to one commod-
ity, and the two visits represent its source s and sink ¢. The
objective is to recover a smooth disease trajectory between
these two endpoints. If the data contains patients with diverse
disease states, we can assume that some of the samples will
lie “in between” s and ¢. The shortest path between these two
nodes in the neighbors graph captures this smooth transition.
By setting edge and node capacities we force the algorithm to
look for robust paths (defined here as paths with similar state
transitions even though they share no edges). Finally, if a pa-
tient has more than two time points, we consider each transi-
tion separately. For example, a time series a — b — c is split
into two commodities a — b and b — c.

Disease Number of Metadata

Samples Genes Patientst(-) Visits Time points Tissue Treatment
Crohn’s 231 11,133 108 (26) 3 WKO, WK8, WK44 Ileum ustekinumab
COVID-19 650 33,142 304 (8) 3 DO, D3, D7 Blood N/A
Psoriasis 55 16,369 15 (11) 4 Preb, WK2, WK4, WK12 Lesion secukinumab

2 All three datasets contain missing values. We show both the number of patients who tested positive (+) and the number of healthy control patients (-).

Pretreatment week.
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Specifically to use multi-commodity for trajectory infer-
ence, we use the following constrains. For every commodity i,
we wish to learn separate functions f; : E — {0, 1} that satisfy
the following constraints:

1) Max edge capacity: the total amount of commodity that
passes over an edge does not exceed its capacity

V(u,v) € E: Zf,-(u,v)sc.
iek
2) Flow conservation: flow must fully exit source nodes
and enter sink nodes. For all i € K:

1 ifnisthei™ source
Vne VY, oy filn,w)—fi(w,n) = -1 ifnisthe ™ sink
0  otherwise

Given a node capacity N>0, we also consider the fol-
lowing constraint:

3) Max node capacity: the total amount of commodity that
passes through a node does not exceed its capacity

Yw € V:Z Z fi(u,w) <N.

i€ ueVu#w

Along with flow conservation, constraint three guarantees
limits on both incoming and outgoing flow. This variant of
multi-commodity flow with node capacity constraints has
also been explored before (Charikar et al. 2019). The integer
problem has been shown to be NP-complete (Even et al.
1975), however, its fractional form (setting the codomain of /
to be [0, 1]) can be solved in polynomial time through linear
programming. We use the open source Python optimization
library pyomo (Bynum et al. 2021) and the glpk solver (Oki
2012). It is worth noting that faster commercial solvers exist
(Meindl and Templ 2013) (Fig. 1).

In the general formulation of the problem, each commodity
can have a demand D, and each edge can have a capacity C
(Leighton et al. 1995). Since a priori we do not have any pref-
erence for individuals, we set D = 1 for all commodities. We
set C = 1 for psoriasis and Crohn’s datasets. For the COVID-
19 data, the problem was infeasible for C = 1, so we used
C = 2. Enforcing edge and node capacities prevents outliers
and errors in the data from having a large impact. An exam-
ple has been provided in Supplementary Fig. S1.

Multi-commodity flow

)t tient
Patients || Time points Clusters
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2.4 Obtaining flow satisfying solutions
We learn f by optimizing the following target function

U= Z (C,N,Zfi(u,l/))

(u,v)€E ek

Recall that ¢, is a cost function. As we are concerned with
smooth trajectories, this is initialized as the Euclidean dis-
tance between the PCA embeddings for nodes # and v.

Note that for any given commodity defined by source s;
and target ¢;, most of the edges “far away” from s; and #; will
not be picked by the solver. We can incorporate this observa-
tion into our problem by considering only edges that belong
to any path s; — #; of length </ for some ¢. This reduces the
runtime for large datasets without compromising the opti-
mality of the solution. For the smaller datasets, we found that
the solution to this modified problem was similar to the origi-
nal one. For the COVID-19 data, we set £ = 4. Unreachable
commodities were removed (17%).

2.5 Trajectory inference from optimal flow paths

After obtaining a path for each patient, we aggregate this in-
formation in the form of a state-transition matrix. In this
work, we estimate initial and final state probabilities from
the data, although domain expertise or priors determined
from larger knowledge bases can be also used. Finally, we
can then compute the most likely trajectories by performing
random walks of a desired length. This is preferred over sim-
ply counting the occurrence of each path since in that case we
could miss trajectories which are not identical, but show the
same trend. For example, the paths 0-5-2-7 and
0-5-3-2-7 are different, but likely correspond to a similar
disease trajectory. Our setup would assign a high probability
to transitions 0—5 and 2-7.

2.6 STEM analysis of learned trajectories

To determine groups of genes that follow similar transcrip-
tional programs, we perform Short Time-series Expression
Miner (STEM) analysis (Ernst and Bar-Joseph 2006). We per-
formed STEM normalization on gene expression values and
used the default number of profiles (50), except for paths of
length 2 where the maximum possible number is 16. Larger
values for the number of profiles resulted in many redundant
profiles that were nearly identical. For psupertime only, we
reduced the “Minimum Absolute Expression Change” to 0,

Smooth patient paths
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Figure 1. Schematic illustration of Truffle. For each patient, our flow algorithm returns a trajectory that passes through intermediate nodes for a smoother
response. These trajectories are then aligned with the clustering results to obtain a state diagram. Finally, by estimating state initial and final probabilities

from the data, we can compute and study the top directed trajectories.
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since psupertime normalized expression values were in a
much smaller range than for the other two methods.

3 Results

We developed a method to perform pseudotime ordering of
multiple short times series clinical data based on optimal
flow algorithms (Fig. 1). Our method takes as input gene ex-
pression data from multiple subjects along with their specific
time point, and tries to reconstruct trajectories that describe
distinct disease endotypes. As a proof of concept, we first per-
formed a simulation study with randomly generated data.
Truffle accurately recovered the simulated trajectories in this
study (Supplementary Fig. S2). To further validate our
method, we used clinical data for psoriasis, COVID-19, and
Crohn’s disease (Table 1). We compare our method against
prior work developed for similar tasks including Tempora,
psupertime, as well as a baseline that assigns endotypes based
solely on clustering analysis. The set GO Biological Processes
was used for Tempora.

3.1 Truffle recovers trajectories that indicate
regeneration and reduction of inflammation in
patients with psoriasis

We tested Truffle on bulk RNA data from psoriasis patients
treated with secukinumab. The data spans 12weeks and
most patients have data for all four time points (Fig. 2a and
b). Leiden clustering identified six states (Fig. 2c). Cluster 0
predominantly consists of pre-treatment samples (50%) and
contains no samples from week 12. Judging by the PASI
scores (Fig. 2d), this cluster represents severe chronic plaque
psoriasis. GO analysis shows significant upregulation of
genes involved in the regulation of immune response (FDR
<0.001) and defense response to virus & bacterium (FDR
~ 0, Fig. 2f) when compared to healthy samples. We also see
significant upregulation for keratinocyte differentiation (FDR
<0.001) which is a hallmark of moderate-severe disease
states (Ma et al. 2023). Other immune-related processes such
as Neutrophil Chemotaxis, Antimicrobial Humoral
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Response, and Regulation Of Interferon-Beta Production
were also up-regulated in this cluster (Supplementary Fig.
S3d). In contrast, for cluster 1, approximately 70% of the
samples are from week 12 and there are no samples assigned
to this cluster from the pre-treatment week. The PASI scores
for cluster 1 were also the lowest among all clusters (an aver-
age of 2.3). This cluster is enriched for intermediate filament
and supramolecular structure organization, and keratinocyte
differentiation is no longer significant. Downregulation of
processes related to regulation of gene expression is also seen
as a result of drug action, along with a reduced im-
mune response.

We first looked at the most common cluster transitions us-
ing patients’ samples timeline without cost constraints. We
found that three patients transitioned from state 0 — 1, and
two remained at state 4. All the remaining transitions were
exclusive to only one patient. Next, we ran Truffle to uncover
smoother response trajectories. Figure 3 shows the state dia-
gram identified by Truffle as well as the top three paths. The
transition 0 — 1 was supplemented with two intermediate
states, 5 and 3. GO analysis (Fig. 2f) shows that state 5 is
characterized by a downregulation of defense response mech-
anisms when compared to state 0, while serving as an inter-
mediary for a number of downregulated terms in state 1. On
the other hand, state 3 is characterized by an upregulation of
extracellular matrix organization which plays a role in tissue
regeneration. Among the baselines, Tempora was able to re-
cover paths of length 1 only (Fig. 4a). However, it correctly
identified state 1 as a terminal state, but also 3 and 3.
Psupertime identified 294 genes which vary coherently with
time. GO analysis shows that these genes are enriched for in-
termediate filament and supramolecular fiber organization,
as well as epidermis development. However, no significant
terms involving defense response were found for the psuper-
time results.

Finally, we performed STEM analysis on the top three tra-
jectories identified by Truffle. Profiles involving upregulation
of epidermis development and downregulation of defense re-
sponse overlapped across all three trajectories. Trajectories
0-5-1 and 4-5-1 contained decreasing profiles which were
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Figure 2. Clustering analysis of the psoriasis dataset. (a) and (b) Distribution of visits across patients. (c) UMAP plot of cluster assignments. (d) Boxplots
of PASI scores for each cluster. (e) Relative frequency of visits by cluster. (f) Top GO terms for each cluster against healthy samples. We used a KS test
to rank the genes. A (x) symbol means the category was statistically significant [(+x) = g~ 0 and (x) = g<0.05].
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Figure 3. Truffle state diagram and top trajectories for the psoriasis dataset. (a) Original connectivity graph obtained using fuzzy simplicial sets and (b) the
graph corresponding to all the low-cost trajectories selected by Truffle (right). We used an edge capacity of 1 and a node capacity of 3 for this dataset.
(c) The pruned state diagram describing the main state transitions in the Truffle network. Repeated states were collapsed into one, hence, no self-loops

are shown. (d) The top paths identified by Truffle.

significantly enriched for genes involved in “IL-27-Mediated
Signaling Pathway” [Combined Score >1e6, Fig. 5c (right)
and Supplementary Fig. S3c]. These two trajectories differ in
their initial state only. While states 0 and 4 are both enriched
for defense response, state 4 shows a downregulation of
terms such as cytoplasmic translation and other biosyn-
thetic processes.

3.2 Truffle identifies different immune responses to

COVID-19

We repeated the analysis with samples from a larger dataset
of COVID-19 patients collected at days 0, 3, and 7.
Clustering analysis identified 10 states (Fig. 6¢). State 8 con-
sisted of day 0 samples, and showed the highest acuity scores
(Fig. 6d and e). State 0 showed significant upregulation of in-
flammatory response and other defense mechanisms when
compared to healthy samples (FDR = 0, Supplementary

Fig. S5). State 1 was similarly enriched for “Defense
Response to Virus,” but not for inflammation. About 20% of
all patients ended in state 2, which differed from healthy sam-
ples only in it being significantly enriched for Antimicrobial
Humoral Response and Defense Response To Bacterium
(FDR = 0). This suggests that this is a milder state than the
previous two, also confirmed by acuity scores where cluster 2
is the only one containing no samples with acuity 4 or §
(Fig. 6e). Across all three time points, most patients (10)
moved from state 0 to state 2. This was also the top trajectory
captured by Truffle (factoring in initial and terminal proba-
bilities for each state, Fig. 6f). In contrast, this trajectory was
not recovered by Tempora (Fig. 6g).

Next, we studied the top trajectories identified by Truffle
at varying levels of resolution. The top trajectories of lengths
3 and 4 were T;:=0-1-5-2, T,:=0-1-5-4, and
T; :=0-1-2-5-4, T4:=0-2-5-4-3, respectively. For
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Figure 4. Trajectories uncovered by Tempora and psupertime for the psoriasis dataset. (a) Transition graph identified by Tempora. Five trajectories of
length 1 were identified. (b) Separation of time points by psupertime. The y axis is the density of each time point and the x axis is the temporal ordering.
(c) The top five genes identified as relevant by psupertime. These correspond to the genes with the largest absolute coefficients. (d) The top GO terms

for all the relevant genes (294). Subfigures (b) and (c) were generated using psupertime.

brevity, since T, is a subsequence of T3, we only look at T3,
although T, could be an endotype in its own right describing
a “faster” response.

STEM analysis of T; assigned >4000 genes to profile 49
(Supplementary Fig. S4a). GO analysis showed that ~ 50
genes in profile 49 were involved in sensory perception of

smell (FDR =0.02), a common symptom of COVID-19
(Parma et al. 2020). We see an upregulation of these genes
from 0 — 5, but a downregulation from 5 — 2.

On the other end, for T3, STEM assigned >9000 genes to a
strictly increasing profile (profile 41, Supplementary
Fig. S4a). This profile was also enriched for processes related
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The full list of profiles can be found in the supplement.
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to sensory perception of smell, but this time we see an upre-
gulation of related genes across all four temporal steps.
Profile 2 (T3) and profile 9 (T4) indicate downregulation of
immune response. Profile 9 is gradual. Looking at GO enrich-
ment of the final state of T4 (cluster 3), we observe a return

to baseline (healthy) for various defense response processes
and downregulation of gene regulation activities
(Supplementary Fig. S5).

Tempora, on the other hand, identified only two
paths of length >2. These were Q;:=6-2-3 and
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Q; := 8-7-9-2-3. Three significant STEM profiles were
determined for Q1, none of which was significantly enriched
for any GO process (FDR = 0.05). For Q,, STEM returned
11 significant profiles. Among these, only three were enriched
for GO processes (Supplementary Fig. S4b). Profile 10 was
enriched for sensory perception of smell, and profile 7 was
enriched for the only term “Positive Regulation of NF-
kappaB Transcription Factor Activity.” Meanwhile, profile
37 showed an initial increment, followed by a monotone dec-
rement of processes related to signaling. Finally, psupertime
identified 462 relevant genes. GO analysis using these genes
returned only one process: “Hydrogen Peroxide Catabolic
Process” (FDR = 0.007).

3.3 Truffle identifies two contrasting response
mechanisms to ustekinumab in patients with
Crohn’s disease

Finally, we tested Truffle on microarray data from patients
with Crohn’s disease treated with ustekinumab (VanDussen
et al. 2018). The data was collected at weeks 0, 8, and 44.
Clustering analysis revealed eight distinct states. States 1 and
4 were not statistically different from healthy samples. States
0, 3, and 6 expressed genes enriched for inflammatory re-
sponse, while cluster 2 showed a downregulation of the pro-
cess (Supplementary Fig. S6b and ¢).

The top Truffle trajectories of length 2 were C; := 3-4-1
and C, := 2-5-0. C; transitions from a state with inflamma-
tion into two healthy states, suggesting that patients along
this path saw improvement from the drug. In contrast, for C,
we see an activation of immune response in its final state
(cluster 0). Indeed, about 14 patients were clustered under
state 0 at week 44, suggesting that they showed partial re-
sponse to the drug. STEM analysis of C; returned several de-
creasing profiles which were enriched for inflammatory
response. In contrast, C, was assigned increasing profiles
enriched for immune response and activation of T cells
(Supplementary Fig. S6d). Thus, Truffle was able to recover
two contrasting endotypes for patients in this study.

4 Discussion

Several trajectory inference methods have been developed to
date and these differ in representation power and assumptions
made (Saelens et al. 2019). Most of the work has focused on
single cell with much less focus on data collected in clinical
studies. Here we focus on studies that profile a small number of
time-points in multiple patients. To analyze such data, we de-
veloped Truffle which respects the time ordering of samples for
a given patient, and obtains patient journeys through the dis-
ease/treatment process. Truffle is based on multi-commodity
flow by splitting short time series into source and target nodes.
These are then connected through a path that travels through
other intermediate nodes in order to generate a smooth path.
We tested Truffle on several time series datasets and compared
it to two other methods developed for similar tasks.

For the psoriasis dataset, all patients display a significant
health improvement after treatment with secukinumab as in-
dicated by their PASI scores and GO analysis of the terminal
state. Since patients respond differently to the treatment, we
sought to understand different endotypes within the patient
population. Clustering analysis does not lead to accurate
grouping of disease subtypes. Some of the other methods
were able to capture the improvement either by identifying a
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healthy final state (Truffle, Tempora) or by showing enrich-
ment for healing biological processes (psupertime). However,
Tempora identified only paths of length 1, thus providing
lower resolution into the drug response progression, while
psupertime does not provide details into different response
mechanisms or endotypes due to its linearity assumption.
Only Truffle was able to capture temporal dynamics of the
treatment process among different patients and obtain differ-
ent endotypes. For example, Truffle recovered two paths
which end in a healthy state but travel through different
states. Both show the downregulation of IL-27 and its path-
way genes. Reduction in expression of type I & II interferons
(IFNs) and/or tumor necrosis family (TNF) receptors, which
are regulators of IL-27, has been previously observed as part
of the recovery (Povroznik and Robinson 2020).
Furthermore, I1.-27 was previously reported to promote the
onset of psoriasis (Shibata ez al. 2010). However, they also
differ in other pathways. One of these trajectories was char-
acterized by an upregulation of extracellular matrix organiza-
tion (ECM) and downregulation of intermediate filament
organization (IFO), while for the other trajectory we ob-
served the opposite. Prior work has shown that activation of
ECM is related to the severity of psoriasis (Wagner et al.
2021). We hypothesize that the upregulation of ECM may be
an intermediary stage of slow responders. Results show that
a subset of patients quickly attained normalization of kerati-
nocyte differentiation (Figs 2 and 3 clusters 1, 3, 5). Such
patients can be deemed as super/fast responders to therapy.
These patients can be further investigated to better tailor per-
sonalized therapy.

For the COVID-19 dataset, prior methods failed to recover
smooth trajectories with any significant GO terms. Tempora
recovered trajectories that oscillate between time points,
which makes them hard to interpret, and psupertime returned
only one significant GO process, likely because this linear
method was forced to combine heterogeneous subtypes in its
trajectories. Truffle identified several trajectories, including
ones which showed a downregulation of defense response
over time and others where this response was reinstated at
day 7. This was confirmed by a reduction of sensory percep-
tion of smell during this time step.

While the applications we presented are mainly focused on
immunology, we believe that Truffle can also be applied to
oncology time series data and that it can also be integrated
with time series data from other sources including electronic
health records or claims databases.

While successful, Truffle has a few limitations. The data-
sets we used in this study contained at most 650 samples. The
open-source linear solver we used to optimize a graph of this
size may not scale to graphs with several thousands of sam-
ples. In this case, several simplifications to the problem may
need to be introduced, such as limiting the set of edges a com-
modity can be transported over. For the specific datasets we
evaluated, Truffle took 0.12s to run for the small psoriasis
dataset and 22s for the larger COVID-19 dataset (¢ =4)
(tests performed on a MacBook Pro with an M3 Pro Max
chip). In addition, faster commercial solvers can also be used.

To conclude, Truffle is a method for integrating patient
data in time series transcriptomics studies. It is able to both,
identify patient trajectories and subgroups within a popula-
tion. Truffle is available as an open-source software from the
link in the abstract.
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