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Study of the function of epitopes of Mycobacterium tuberculosis antigens contributed
significantly toward better understanding of the immunopathogenesis and to efforts for
improving infection and disease control. Characterization of genetically permissively pre-
sented immunodominant epitopes has implications for the evolution of the host–parasite
relationship, development of immunodiagnostic tests, and subunit prophylactic vaccines.
Knowledge of the determinants of cross-sensitization, relevant to other pathogenic or
environmental mycobacteria and to host constituents has advanced. Epitope-defined IFNγ

assay kits became established for the specific detection of infection with tubercle bacilli
both in humans and cattle. The CD4 T-cell epitope repertoire was found to be more nar-
row in patients with active disease than in latently infected subjects. However, differential
diagnosis of active TB could not be made reliably merely on the basis of epitope recog-
nition. The mechanisms by which HLA polymorphism can influence the development of
multibacillary tuberculosis (TB) need further analysis of epitopes, recognized byTh2 helper
cells for B-cell responses. Future vaccine development would benefit from better definition
of protective epitopes and from improved construction and formulation of subunits with
enhanced immunogenicity. Epitope-defined serology, due to its operational advantages is
suitable for active case finding in selected high disease incidence populations, aiming for
an early detection of infectious cases and hence for reducing the transmission of infection.
The existing knowledge of HLA class I binding epitopes could be the basis for the construc-
tion ofT-cell receptor-like ligands for immunotherapeutic application. Continued analysis of
the functions of mycobacterial epitopes, recognized by T cells and antibodies, remains a
fertile avenue in TB research.

Keywords: tuberculosis, antigenic structure, epitope mapping, immunodominant epitopes, immunodiagnosis,
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INTRODUCTION
Pathogenic bacteria produce a wide range of constituents, which
determine their virulence and host responses following infec-
tion. In the case of Mycobacterium tuberculosis (Mtb), antigenic
and immunomodulatory constituents may be considered as viru-
lence factors, because they can act as “decoys,” triggering excessive
immune responses which can lead to pathology of the lungs in
active tuberculosis (TB), instead of host protection (1). Hence,
immunological research has been essential for the study of patho-
genesis as well as for the development of prophylactic vaccination
and for the detection of latent infection. Detailed analysis of the
specificity and of the phenotype of immune responses is manda-
tory in the desire to discover biomarkers for protective immunity,
for predicting the risk of reactivation from latent infection and for
developing immunotherapies, adjunct to chemotherapy.

Dissection of the antigenic structure of Mtb to its epitope
constituents has been driven by the newly developed technolo-
gies, starting with hybridoma-produced monoclonal antibodies
(2, 3), followed by recombinant DNA expression libraries (4),
T-cell cloning and hybridomas (5), and DNA sequencing. More
recently, new epitopes predicted within the whole Mtb genome
on the basis of algorithms (“silico mapping”) (6) have a useful
rate of empirical confirmation (7). The location of discontinuous

and conformational epitopes recognized by antibodies can be
predicted by integrated analysis of the dynamical and energetic
properties of proteins (8). Mapping of T-cell epitopes within the
known protein sequence used synthetic peptides with overlapping
sequence (“pepscan”) and single-residue substitutions identified
epitope cores, flanks, and key residues involved in binding to
major histocompatibility complex (MHC) or T cell receptor (TcR)
molecules.

Characterization of the membrane markers and cytokine pro-
files of responding T cells identified the existence of T-cell subsets
and their regulatory networks. Emphasis on the T-cell phenotype
and recently on the transcriptomic signature of T cells is currently
expanding (9), but without full attention to antigen and epitope
specificity. However, restoring the balance of knowledge between
the functional phenotype and recognition specificities of T cells
seems compelling.

The extensive knowledge on the mapping of anti-
genic epitopes has been cataloged and made accessible by
the NIH IEDB database http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2228276/; http://www.iedb.org/; http://help.iedb.
org/entries/19150-user-documentation-iedb-version-2.

This inventory contains more than 1000 epitopes, mostly
derived from only about 30 of the most immunogenic antigens,
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representing a very small fraction from the about 4000 known
open reading frame proteins of the Mtb genome (10). Recently
combined analysis of epitope predictions, high throughput
ELISPOT, and T-cell libraries from latently Mtb-infected subjects,
categorized the epitopes into prominent “antigenic islands” (11).
The wider significance of epitope specificity of immune responses
of Mtb-infected hosts has been reviewed recently (12).

This chapter points out the role of individual epitope specifici-
ties and aims to integrate this knowledge with different functions,
relevant for the host–parasite relationship. Potentials for future
research are targeted at improving the control of TB, particularly
for vaccination, immunotherapy, detection of latent infection, and
early diagnosis of infectious forms of active disease.

MHC-PERMISSIVE EPITOPES
Immunodominant epitopes were originally thought to be recog-
nized in the context of only one or a few MHC class II alleles,
though a number of genetically permissive epitopes were found in
microbial pathogens. Initial mapping of CD4 T-cell stimulatory
epitopes showed two hsp65 peptides recognized by several H-2-
disparate mouse strains, one of them presented by both I-A and I-E
molecules (13). Subsequent analysis of two glyco-lipoproteins and
the α-crystallin (Acr) antigen identified the same few epitopes as
immunodominant in a number of inbred strains of mice, carrying
different H-2A alleles (14–16). H2I-A promiscuous recognition
of p350–369 was demonstrated using CD4 T-cell hybridomas,
though with allele-specific binding of IA polymorphic critical
residues (17). Moreover, pepscan analysis revealed separate pat-
terns of recognition by T hybridomas of the same H-2 haplotype,
whereby every core residue was critical for at least one hybridoma,
with only one substitution (74 Val→Ala) common to all hybrido-
mas (18). While core residues were critical for both MHC and TcR
binding, T-cell recognition was influenced also by the substitution
of flanking residues (19).

The apparently abundant occurrence of MHC-permissive epi-
topes in tubercle bacilli may be an evolutionary consequence of
selection of mutants carrying protective MHC-permissive epi-
topes. These organisms would have been advantageous to the
pathogen, by being conducive to the longer survival of individu-
als, who were capable of aerosol transmission of the infection. This
evolutionary concept is supported by the finding that T hybrido-
mas from H-2Ab/d heterozygous mice had a higher frequency of
IA-promiscuous recognition than hybridomas from each of the
parental H-2 homozygous hybridomas (17). The IA-promiscuous
hybridomas could also be stimulated with lower peptide concen-
trations, indicating TcR recognition of higher TcR affinity. Selec-
tion of MHC-permissive epitopes by low antigen concentrations
in chronically Mtb-infected outbred populations would have had
the advantage for the protection and survival of the infected hosts.

Analysis of HLA-DR heterozygous T-cell lines against the
permissively recognized 91–110 epitope of the Acr antigen also
showed superior stimulation in the context of heterozygous anti-
gen presenting cells (APCs) (20). Moreover, stimulation in the
context of DR-homozygous APCs showed that the HLA-DR hap-
lotype influenced not only the magnitude, but also the IFNγ/IL-4
secretion profiles of the T-cell lines. The demography and evo-
lution of Mtb lineages, virulence, and selection of epitopes of

conserved structure were suggested also as an adaptation to other
genetically diverse constituents in human macrophages, but with-
out due consideration of the selective role of the HLA system for
the selection of permissive epitopes (21).

The definition of MHC-permissive epitopes is mandatory for
further development of both diagnostics and vaccines with a
potential to function in large sections of genetically diverse human
populations. HLA class II-permissive epitopes have been identified
in a number of antigens of different structure, such as PstS1 glyco-
lipoprotein (22), heat shock proteins hsp65 (23), and GroES (24),
Acr (25), ESX proteins (26, 27), secreted proteins Ag85B (28) and
MPB70 (29), and PE/PPE proteins (30) (Table 1). The abundance
of human CD4 and CD8 T-cell responses to the respective epitopes
was explained by their permissive binding to several HLA-DR (15,
22, 31, 32) and also HLA class I (26, 33, 34) molecules.

Detailed analysis of the p350–369 epitope of PstS1 (35) showed
a range of binding affinities to different DR molecules and identi-
fied the epitope core to be of 9–11 residues. Binding to both DR1
and DRB5*0101 shared F-354 as the common primary contact
residue. Molecular modeling suggested that the peptide bound to
DR1 in the elongated conformation as usual for MHC class II
molecules, but in a “kink,” when bound to DRB5*0101, which is
common for peptides bound to MHC class I complexes. The pos-
sible influence of different conformations imposed on the same
peptide by distinct HLA alleles on T-cell responses has yet not
been elucidated.

Substitution of single amino acids in the epitope core has
been employed to identify both HLA-DR and TcR-binding con-
tact residues within the DR17 restricted p3–13 epitope from the
hsp65 antigen. Using this approach, TcR V gene families of human
CD4 T-cell clones were analyzed in respect of the most immun-
odominant, HLA-DR promiscuous 91–110 epitope of Acr (25).
The HLA-DR-binding and TcR-binding cores and contact residues
were identified within 9-mer or 13-mer cores, which differed
between the DR haplotypes. Notably, preferential TcR usage was
demonstrated by the finding that the majority of clones used the
BV2 TcR and contained a common R-L/V-G/S-Y/W-E/D sequence
motif in the CDR3 region (36). These data may be useful to design
peptides with altered HLA anchor residues or TcR interaction sites
to increase their immunogenicity.

The “in silico” algorithms (ProPred1) predicted a number of
HLA class I-permissive epitopes in histone or proteins of unde-
fined function from Mtb (37). ProPred prediction of Mycobac-
terium leprae epitopes identified a number of both class I and
II, HLA-permissive T-cell reactivity, in leprosy endemic popula-
tions in Brazil, Ethiopia, and Nepal (38). Comparing algorithms
for HLA-binding promiscuity between ecologically diverse human
microbial pathogens, found the promiscuity of Mtb epitopes to
be of a similar degree as in HIV, S. pyogenes, or even higher for
B. anthracis and C. tetani (39). However, these epitope predic-
tions need empirical confirmation and should take into account
that HLA binding affinities may not always associate with the
magnitude of T-cell responses.

CROSS-REACTIVITY OF MYCOBACTERIAL EPITOPES
The antigens of Mtb are related to a number of proteins
from non-tuberculous mycobacterial pathogens or commensal

Frontiers in Immunology | Microbial Immunology March 2014 | Volume 5 | Article 107 | 2

http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


Ivanyi Epitope functions and potentials

Table 1 | Mtb antigens with identified HLA-DR-permissive CD4+T-cell stimulatory epitopes.

Protein group Antigen name Gene accession no. kDa Epitope sequence Reference

Glyco-lipoprotein PstS1 Rv0934 38 1–20; 350–369 Jurcevic et al. (22)

Chaperonin stress proteins α-Crystallin, Acr Rv2031 16 91–110 Caccamo et al. (25)

GroEL2, hsp65 Rv0440 65 61–75; 141–155 Mustafa et al. (23)

GroES Rv3418c 10 25–40 Chua-Intra et al. (24)

RD-1, ESX family ESAT-6, EsxA Rv3875 6 1–20 Tully et al. (27)

CFP-10, EsxB Rv3874 10 71–88 Shams et al. (26)

Secreted proteins Ag85B mycolyl transferase Rv1886c 30–32 91–108 Valle et al. (28)

MPB70, mpt70 Rv2875 22 106–130, 166–190 Al-Attiyah et al. (29)

Cell surface PPE family Eight genes 3–316 Eight epitopes Wang et al. (30)

non-pathogenic mycobacterial species and more rarely with
human proteins. These relationships are of interest, because envi-
ronmental priming can influence resistance to Mtb, it can interfere
or enhance the protective immune response to vaccination and
may exclude from vaccine development, any molecules that can
lead to autoimmunity. The latter category includes the chaper-
onins hsp65 and hsp71 with highly conserved sequences between
prokaryotic and eukaryotic species and consequently extensive
cross-reactivity between mycobacteria and humans (40). An hsp65
epitope at sequence 285–295, detected by mAb ML30 is strongly
expressed on the surface of human cells with abundant mitochon-
dria (40). Elevated expression was observed on monocyte-derived
cells in different inflammatory diseases, including rheumatoid
arthritis (41), atherosclerosis (42–44), and multiple sclerosis (45).

Analysis of antigen homologs from different species of
mycobacteria showed that cross-recognition by T cells requires
sharing fewer amino acids than cross-reaction by antibodies. Thus,
polyclonal and monoclonal antibodies to ESAT-6 from Mtb and M.
leprae, which share only 36% amino acids, are all strictly species-
specific (46). In contrast, recombinant ESAT-6 from both species
are similarly recognized by T cells from individuals, who were
exposed to either tuberculous or leprosy infection (46). Cross-
reactivity at the level of T-cell, but not B-cell recognition can lead
to the recall of antibody production with specificity for the initial
antigen (termed:“original antigenic sin”) (47). This interpretation
was given to the finding of elevated antibody levels against Mtb-
specific epitopes in lepromatous leprosy patients from TB endemic
areas (48). However, M. leprae-specific antibodies in patients with
active TB were not raised, since these patients were probably not
exposed to M. leprae infection.

Cross-reactivity without sequence homology, i.e., mimicry, has
been observed with a broad range of molecules of different struc-
ture, such as lactoferrin, transferrin, and proteoglycan. Another
example of mimicry is the cross-recognition by CD4 T cells of an
octamer epitope on two unrelated mycobacterial proteins, which
is immunodominant for the 19-kDa protein of Mtb and cryptic
for the 28-kDa protein of M. leprae (49, 50). Assumptions that
epitope-based mimicry between proteins could lead to unsus-
pected cross-sensitization, maintain T-cell memory, or lead to
autoimmunity, need further study.

Despite wide sequence homologies, heat shock proteins contain
also species-specific epitopes. Increased Mtb-specific antibody lev-
els were reported for hsp65, hsp71 (51, 52) in patients with active
TB, including patients with smear-negative disease, which remains
a diagnostic obstacle. Elevated serum antibodies to mycobacterial,
but not to human hsp65 in Crohn’s disease, implied a patho-
genic role of mycobacteria, whereas antibodies in ulcerative colitis
bound to human hsp65 (53). Further support for the mycobac-
terial pathogenesis of Crohn’s disease came from the finding of
elevated antibody levels against three different antigens derived
from Mycobacterium paratuberculosis (54).

Immunodominant species-specific T- and B-cell epitopes can
be found in a mycobacterial 10-kDa GroEL heat shock protein
despite its highly conserved amino acid sequence. Despite a 90%
sequence identity with Mtb, studies in mice identified two M.
leprae-specific closely overlapping CD4 T-cell epitope cores (24–
34 and 28–34), restricted by H-2Ad and H-2Ed, respectively and
overlapping with an M. leprae-specific mouse mAb (ML6 and 10)
epitope at residues 25–31 (55). The lack of antibody response to
this epitope in lepromatous leprosy patients was suggested to be
due to the T-cell epitope overlap.

The CD4 T-cell epitope repertoire of GroES was investigated
also in TB and leprosy patients. The N-terminal (1–16) peptide
(residues 1–16) was specifically stimulatory in the majority of
active TB patients (56), while none of the other peptides was dis-
criminatory. On the other hand, peptide 25–40 (29–37 core) of
M. leprae, but not of Mtb sequence was specifically stimulatory
in tuberculoid leprosy patients; this peptide bound to a num-
ber of HLA-DR molecules, of which HLA-DRB5*0101 had the
strongest affinity (24). Four other leprosy-specific epitopes were
identified on the 35-kDa protein of M. leprae, which has a homol-
ogous constituent in M. avium, but not in Mtb (57). Analysis
of epitope specificities explained the phenomenon of split lep-
rosin/tuberculin anergy of skin hypersensitivity in a proportion
of leprosy patients. Thus, blood T-cell proliferative responses were
found to be diminished to cross-reactive antigens, but elevated
toward the predominantly Mtb-expressed PstS1 antigen and the
Acr epitope 71–91 (58).

A special case of cross-reactivity is the induction of epitope-
specific immune responses by anti-idiotype (Id) antibodies, acting
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as the epitope’s “internal image.” This was demonstrated for both
mouse and human CD4 T-cell responses, using rabbit anti-Ids
raised against PstS1-specific mouse mAbs (59, 60). However, the
corresponding structural determinants remained undefined and
the approach has been overtaken by the more exact recombinant
DNA and synthetic peptide technologies. Id specificities have also
been identified on anti-DNA autoantibodies stimulated probably
by bacterial polyclonal B-cell activation in patients with TB and
leprosy (61, 62).

T-CELL EPITOPE ANALYSIS IN LATENT Mtb INFECTION
Mycobacterium tuberculosis infection is routinely being monitored
by skin delayed type hypersensitivity (DTH) reactions against
tuberculin (PPD), a crude extract from M. tuberculosis. This
test has poor specificity, due to cross-reaction with environmen-
tal mycobacteria and vaccination by Bacillus Calmette-Guerrin
(BCG). The discovery of Mtb-specific, immunodominant, HLA-
permissive epitopes, led to the use of synthetic peptide for the
in vitro stimulation of blood T-cell responses. The numerous
candidate peptides described (not reviewed here) have all been
selected from several antigens on the grounds of better specificity
than PPD, but they are performing at lower sensitivity than PPD.
Improvements to sensitivity by using peptide pools has however
had a limited impact, because of overlapping, rather than com-
plementary recognition by the T-cell repertoire (22). The increase
in stimulation by a pool of eight different peptides over the best
single peptide (p91–110 from Acr) has been merely marginal. This
outcome was attributed to HLA permissiveness and to competi-
tion between peptides for a limited number of binding sites on
the HLA class II molecules of the APCs. This latter explanation
has been supported by the finding of a declining response trend to
higher concentrations of pools, but not of single peptides.

Nevertheless, commercially available IFNγ detection kits
(IGRA), e.g., QuantiFERON-TB Gold (QTF-G), T-SPOT.TB etc.
have been widely used for the specific detection of latent Mtb
detection. They usually contain a mixture of several epitopes, pre-
dicted by algorithms of the Mtb-specific ESAT-6 and CFP-10 RD-1
antigens (absent from BCG and environmental mycobacteria).
However, the use of these kits in areas highly endemic for TB is not
of great added value for diagnosis. Recent side-by-side analysis of
constituent antigens indicated potentials for further improvement
of the test kits (63). Peptide cocktails have also been useful for the
diagnosis of bovine TB in cattle, using either skin test or blood
assays (64, 65). The blood INFγ assay (BOVIGRAM) readout has
been further enhanced by adsorbing the peptides onto a range
of microparticulate and nanoparticulate substrates (66). Detec-
tion IFNγ-induced protein (IP-10), which is produced in 100-fold
greater amounts than IFNγ, has been developed for a simplified
and more robust lateral flow test than IGRA (67). Notably, satis-
factory results were obtained using dried plasma spots, amenable
for conventional postal transport (68).

In view of the possibility that sequence variations in epitopic
regions between clinical Mtb isolates might affect the results of
IFNγ assays, human clinical samples were sequenced to iden-
tify substitutions that may have an impact on immunogenicity.
A number of sequence polymorphisms (SNPs) have been revealed
in the epitope regions of EsxB and EsxH genes (69), with evidence

for recombination events, which may truncate the corresponding
protein. Even single-residue differences altered the responder fre-
quencies to these antigens from M. bovis isolates (70). Hence,
immune variation may influence the diagnostic performance of
kits, which contain epitopes from the ESX proteins.

T-CELL EPITOPE REPERTOIRE IN ACTIVE TB
Commercially available IGRA assays routinely used in clinical
practice do not distinguish reliably between active TB and latent
infection and have limited value for predicting the risk of devel-
oping active TB (71). Therefore, it has been of interest to search,
if fine analysis of epitope specificities could improve the diagno-
sis. Proliferation assays of blood T cells from patients with active
TB recognize a smaller number of Acr epitopes than sensitized
healthy subjects (Table 2) (32). Similarly, patients with leprosy
recognize fewer GroEL epitopes than healthy contacts (24). These
findings corroborate with the previously known skin DTH anergy
to PPD in a fraction of active TB patients and with the develop-
ment of leprosin anergy in multibacillary leprosy. The search for
epitopes, which would distinguish patients from latent infection,
yielded a promising result only for the amino-terminal peptide of
GroES (1–16) (56). The selective power of this peptide is surpris-
ing, considering its overlap, except for one residue, with the M.
leprae sequence and is in need of confirmation with more clinical
samples.

A reciprocal approach to the differential diagnosis has come
from the finding of selective T-cell anergy in active TB in respect
of the carboxy-terminal epitope p350–369 of the PstS1 antigen,
which is strongly immunogenic in latently infected subjects (31).
The lack of blood T-cell response can be due to sequestration
to the site of disease (e.g., pleural fluid) and the ratio of T
cells between these compartments is influenced by chemother-
apy (72, 73). The post-chemotherapy recovery of blood response
seemed more pronounced for T cells reacting with the Acr pep-
tides, than those responding to the PstS1 peptides, which could
be explained by differences in expression between replicating and

Table 2 | Recognition of fewer epitopes in active disease than in

latently infected subjects.

Subjects (no. tested) Peptides

from

Frequency (%) of

respondersa, no. of

test peptides (p)

From Londonb Acr 1–3 p 4–6 p >6 p

Healthy PPD+ skin test (25) 24 52 24

Active TB (38) 52 30 18

From Bangkokc GroES 1–4 p 5–10 p >10 p

Healthy family contacts (12) <1 58 42

Tuberculoid leprosy (18) 33 56 11

aBlood mononuclear cells of responders had at least threefold elevated 3H-

thymidine uptake in cultures containing the test peptide over medium alone.Data

from:
bFriscia et al. (32);
cChua-Intra et al. (24).
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chemotherapy-generated persister organisms. While dissecting of
active from latent TB T-cell repertoire merely on the grounds of
epitope specificity had failed to reach consensus (72), significant
differences in their cytokine secretion are represented by elevated
number of polyfunctional T cells (secreting IL-2, IFNγ, and TNFα)
in active TB (74).

HIV-infected subjects have a high risk of reactivating their
latent Mtb infection. Predicting this outcome better than just on
the grounds of declining CD4 counts, would be of prime interest.
The ratio of IFNγ ELISPOT counts in response to RD-1 pep-
tides over CD4+ T-cell counts, greater than 0.21, showed 100%
sensitivity and 80% specificity for active TB (75). However, the
finding of 19% non-responder TB patients limited the diagnostic
scope of this study. PPD-stimulated T cells carry higher levels of
HIV DNA and depleted sooner than T cells of other specificity
(76). This could explain the frequent reactivation of latent Mtb
infection in HIV+ subjects. The antigen and epitope specifici-
ties involved have not been studied much beyond the crude PPD
extract and the mechanism, which renders Mtb-reactive cells more
permissive to HIV infection, is not understood. One possibility
could be the lower stimulatory dose of the HLA-permissive epi-
topes for T cells with high affinity TcRs. This mechanism would
imply selective recognition of certain epitopes, which would be
rewarding to identify in the future. So far however, attention has
been directed toward the study of the CD4 T-cell phenotype, char-
acterized as CXCR3+ CCR4+ CCR6+ CD57− IFNg+ IL-17+
IL-2hi MIP1blow for the highly HIV-permissive PPD-reactive and
CXCR3+ CCR4− CCR6− CD57+ IFNg+ IL-2low MIP1bhigh for
low HIV-permissive CMV and other virus-reactive T cells (76).

ASSOCIATION OF HLA-DR AND ANTIBODY EPITOPE
SPECIFICITY WITH TB
Susceptibility to TB is considered to be under the influence
of multiple genetic loci, including HLA alleles. HLA-DR2 was
found inherited more frequently in offspring with pulmonary TB,
from both diseased and healthy parents (77) and associated with
sputum-positive, but not with sputum-negative active pulmonary
TB (78). DR2 alleles in sputum-positive TB associated also with
elevated antibody levels to two epitopes of the PstS1 lipoglyco-
protein antigen (79), but not with the similarly elevated antibody
levels to epitopes of three other antigens of diverse nature (Acr, 19-
kDa lipoglycoprotein, and lipoarabinomannan). The intriguing
aspect of this finding is that both the genetic and immunological
specificities were identified.

To explain the DR2 gene control of TB susceptibility, it has
been proposed (80) that T-cell recognition of DR2-restricted PstS1
epitopes may lead to a Th2 response, producing IL-4 and IL-10
cytokines, which can lead to the development of lung pathology,
rather than host protection. This hypothesis is supported by the
finding, that selection of epitopes presented by B cells, rather than
dendritic cells,diverted T cells from protection toward pathogenic-
ity in Leishmania infection (81). Thus, the specificity of antibody
responses during active TB could guide toward antigens, contain-
ing potentially pathogenic Th2 recognized epitopes. The search
for such T-cell epitopes on the PstS1 antigen so far did not yield
supportive data. Epitope specificity was determined only for Th1
cell clones which were mostly HLA-DR promiscuous (82) with all

immunodominant epitopes of PstS1 binding to several HLA-DR
molecules (22). However, these assays may not be suitable to reveal
a DR2-restricted presentation of the same epitope to Th2 T cells.
Development of assays for the mapping of Th2 cell stimulatory
epitopes will be important to explain the mechanism of HLA class
II-mediated influences on the development of multibacillary TB.

Analysis of some of the above raised aspects had been
approached in mouse experimental models. Notably, influence
of H-2 genes (Db or lack of I-E expression) was observed on
the late progression of intraperitoneally delivered infection and
pathology in the lungs, when spleen and liver bacillary counts
remained stationary (83). Though this model of selective multi-
bacillary lung disease seems relevant, the antigen specificity of the
underlying immune responses was not identified. Although anti-
body responses to different antigens and epitopes is under H-2A
control following immunization with soluble antigens in adju-
vants (84, 85), there is no clear corresponding evidence following
Mtb infection. On the other hand,antibody responses to hsp65 and
hsp71 antigens (86) and liver granuloma formation (87) following
Mtb infection were associated with non-H-2 genes.

Further analysis of the Th2 (T-helpers for B-cell responses)
epitope repertoire also needs further studies in mouse models,
addressing the topographical relationship between CD4 T-cell and
B-cell stimulatory epitopes (88). Though using merely prolifera-
tion assays, it appeared, that PstS1 antigen immunized mice pro-
duced CD4 T cells, but not antibodies against the p65–83 peptide,
which contains a non-overlapping cryptic B and an immunodom-
inant T epitope core, while T-cell help was “delegated” probably to
distantly located linear or conformational B-cell epitopes (Table 3)
(89). A functional association between topographically distinct
epitopes was suggested also by the finding that a single amino acid
mutation of epitope core of the 19-kDa antigen abrogated T-cell,
but not the B-cell immunogenicity (90).

PEPTIDE EPITOPE-BASED VACCINATION AGAINST TB
Most research toward a better vaccine against TB has been based
on boosting immunity after BCG priming. The choice of antigen
for this purpose has been to some extent subjective, though usu-
ally targeting proteins which appeared as most immunogenic in
Mtb-infected individuals or experimental animals. Further break-
down of the immune repertoire to individual epitope specificities
showed that both immune recognition was influenced by the
nature of the immunogen. Thus, CD4 T cells recognized differ-
ent peptides, when mice were vaccinated with either PstS1 antigen
or heat-killed Mtb or infected with H37Rv bacilli (Table 3) (89).
Antibodies reacted to different epitopes following vaccination, but
bound only to conformational epitopes following infection. CD8
T cells also recognized different peptides following vaccination or
Mtb infection (91, 92). These results indicate that the nature of
the immunogen could influence antigen processing, which may
deviate T-cell help from one to another B-cell epitope. Substan-
tial differences in protection, cytokine profile, and recognition of
T-cell epitopes of Ag85A or the Ag85B–ESAT-6 fusion protein
were observed after its presentation either expressed in aden-
ovirus vector or with an adjuvant (93). Disparities were observed
also in response to Ag85A and its immunogenic peptides, when
inoculated intranasally or parenterally (94).
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Table 3 | Differences in epitope recognition between immunized and

infected C57Bl/10 mice.

Foot pad injection T-cell proliferation

to peptides

Antibody

level

44–

64

65–

83

123–

143

350–

368

p1–

20

p201–

220

TB71

Recombinant PstS1a
− ++ ++ − − +++ ++

Heat-killed H37Rva
− − + + +++ − +

H37Rv infection + + − − − − ++

Magnitude of the immune response: stimulation indices: −, <1; +, 1–10; ++,

10–20 of spleen and lymph node cells 7 days after immunization.

ELISA peptide binding or TB71 mAb competition titers: –, <10; +, 10–100; ++,

100–1000; +++, >1000 in sera harvested 12 weeks after first inoculation.
aAntigen in incomplete Freund’s adjuvant followed by three boosters without

adjuvant. Data from Vordermeier et al. (89).

DNA gun bombardment has been used for the mapping of
T-cell epitopes and the effect of self-adjuvanting domains. Several
CD4+ and one CD8+T-cell epitopes were identified on the DNA-
binding protein 1 (MDP1) antigen (95), while spleen CD4 T cells
from HLA-DRB1*0401 transgenic mice recognized only the p191–
210 epitope on the MPT51 antigen (96). A fusion DNA vaccine
incorporating the HSP70 C-terminal domain (as adjuvant) and
MPT51 (as target antigen) stimulated CD4, but not the CD8 T-
cell response (97). Though documenting immunogenicity, these
results need to be extended for protection against challenge.

Vaccine design could benefit from modifying the structure
of peptides to increase their immunogenicity, while conjugation
of a MHC-permissive peptide could abrogate genetic restriction
for another MHC-restricted epitope. Studies in this direction
showed that orientation between two epitopes within a synthetic
peptide dimer can profoundly influence immunogenicity (98).
Orientation of peptides played a role also for chimeric peptides
constructed by recombinant DNA technology (99). Immuno-
genicity can be increased also by extension of an epitope core
with non-native flanking residues (100) or by covalent attach-
ment to biodegradable amphoteric branched chain polypeptides
(101). Lipoylation of the MHC-promiscuous 91–110 peptide of
Acr inoculated without any adjuvants was reported to enhance
the immunogenicity and imparted protection against aerosol Mtb
challenge in both mice and guinea pigs to an even better extent
than BCG (102).

EPITOPE-SPECIFIC SERODIAGNOSIS
Mycobacterium tuberculosis species-specific mAbs had been used
in a competition serodiagnostic test for TB and leprosy, preceding
the purification of target antigens (103, 104). The mAb compe-
tition test has the advantage of higher sensitivity due to its low
background values, which allowed the use of 20 times lower serum
dilutions (i.e., 1/5) than standard ELISA tests (1/100). The compe-
tition assay also discriminated species-specific from cross-reactive
epitopes on a number of antigens and identified several asso-
ciations between antibody specificity and clinical aspects of TB
(105, 106) (see also chapter by G. Bothamley). Epitope-specific

antibody levels can be representative for both specificity and sen-
sitivity of the whole antigen (e.g., PstS1) (51). However, the mAb
competition test was more specific than binding to the whole
lipoarabinomann, by targeting a Mtb-specific epitope or avoiding
detection of contaminants. Epitope-specific titers also reflected
the clinical form of TB, when related to titers against the whole
19-kDa lipoprotein (107).

Several serological surveys showed that serum antibody levels
are consistently elevated in the great majority of sputum-positive
TB, but not in sputum-negative disease (108). Though the latter
aspect is greatly limiting the diagnostic application of serology, this
hindrance was not acknowledged during the uncontrolled market-
ing of commercial kits. On the other hand, detection of antibodies
in the cerebrospinal fluid is of particular value for the diagnosis of
TB meningitis (109), where rapid detection can be life saving. Due
to the high sensitivity, low cost, and operational advantages, sero-
logical screening has been suggested for active case finding in high-
risk populations for multibacillary infectious patients (108, 110).
Their early diagnosis could reduce the transmission of Mtb infec-
tion and therefore represents an important epidemiological, rather
than clinical objective. A similar rationale could apply to leprosy,
where antibody levels are elevated in the infectious multibacillary
lepromatous, rather than the paucibacillary tuberculoid form (3).

A recent advance in epitope screening has been the high-content
peptide microarray chip technology, involving the testing of thou-
sands of different peptides. This approach showed that several
epitopes are differentially recognized by IgG antibodies in pul-
monary TB sera (111) and identified epitope “hotspots” within a
number of protein antigens with similar patterns for patients of
different genetic background. These linear epitopes are likely to
detect a different repertoire than serology based on whole protein
molecules, which detects mostly antibodies against conforma-
tional epitopes. Further clinical evaluation,particularly comparing
multi- and paucibacillary forms of active TB, seems warranted.

TcR-LIKE LIGANDS
Tubercle bacilli multiply and persist predominantly in
macrophages,which display on their surface HLA-bound antigenic
mycobacterial peptides, which are recognized by T-cell receptors
(TcR). T cells can impart protection, but their excessive reac-
tions can lead also to inflammatory pathology, characteristic of
active TB. To avoid the latter outcome, suitable T-cell receptor-like
constructs could be protective, without the accompanying unde-
sirable T-cell-mediated inflammation. Immunotherapy using sol-
uble TcR ligands could kill macrophages infected with both
replicating and dormant Mtb organisms. Based on this hypoth-
esis, TcR-based immunotherapy could be used as an adjunct
to chemotherapy and be particularly useful to HIV-infected TB
patients, many of whom being immunocompromised, cannot be
protected by active vaccination. Therefore, TcR immunotherapy
might be better than “therapeutic” active vaccination and also
more efficient than passive antibody therapy, which can target
probably only extracellular Mtb bacilli (112, 113). Unlike antibod-
ies to B-cell epitopes [including those directed against overlapping
T and B epitopes (114)], TcR-like ligands would be directed against
epitopes,displayed in complex with MHC molecules on the surface
of Mtb-infected cells.
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Development of immunotherapeutic agents with TcR speci-
ficity has become feasible with the introduction of two tech-
nologies: (1) single chain antibody fragments (scFv) with TcR
specificity can be selected from phage antibody libraries (115–
118); (2) monomeric high affinity soluble human TcRs (mTcRs)
have been expressed from cloned CD8 T cells and produced within
the cytoplasm of trxB gor mutant E. coli strains (119). TcR-like
mAbs against HLA class I presented epitopes of tumors (120) and
virus-infected cells are being developed as novel immunothera-
peutics with epitope-specific killing potentials, as well as diagnostic
reagents (118). Moreover, genetic fusion of Pseudomonas exotoxin
with TcR-like mAbs amplified the killing tumor cells (121, 122).

These advances, particularly in epitope-specific cancer
immunotherapy, seem attractive for the development of TB
immunotherapy. Production of mAb and mTcR ligands needs to
target some of the empirically identified HLA class I immunodom-
inant epitopes, which have been mapped for a number of Mtb
antigens (26, 33, 34, 91, 123, 124). However, a similar approach
to MHC class II-presented epitopes could be much more diffi-
cult, because their expression is impaired in infected macrophages
(125) and because the procedures for producing the corresponding
TcR-like ligands are yet underdeveloped. However, some concerns
need to be addressed: immunodominance of the currently known
MHC class I epitopes may have resulted from peptide presen-
tation by dendritic cells or by cross-presentation, while a TcR-
based immunotherapy would need to be targeted against epitopes
expressed by infected macrophages. Therefore, it is a prerequisite
to confirm the specificity and density of epitope expression on
Mtb-infected macrophages. This needs to be ascertained by their
capacity to stimulate CD8 T-cell clones or better by direct detection
of the levels of epitope expression by antibody staining (126), or
by tandem mass spectrometry (127). Notably, the latter technique
showed that epitope abundance does not necessarily associate with
the immunodominance hierarchy of epitopes.

Since apoptosis of macrophages is known to be the key mecha-
nism for the killing of intracellular mycobacteria (128, 129), con-
jugation of TcR-specific ligands with apoptosis-inducing agents
may amplify the therapeutic effect. Suitable candidate compounds
for this purpose, with proven apoptosis-inducing capacity are
Pseudomonas exotoxin A (130), granzyme B (131, 132), or BH3
peptide (133, 134).

Further synergistic benefit may come from recombinant INFγ

treatment, which enhances the surface expression of MHC-bound
epitopes and has even alone been therapeutically beneficial in TB
patients (135).

TREGITOPES
Tregitopes are epitopes, mostly in the Fc and constant Fab region of
IgG, with highly conserved structure between mammalian species.
They bind promiscuously to HLA class II molecules and stimulate
and expand CD25(+) FoxP3(+) natural regulatory T cells (nTreg)
(136). Tregitopes were shown to inhibit CD8 T-cell responses
to co-administered antigens, with potentials to prevent or treat
autoimmune disease, e.g., Type 1 diabetes or suppress allo-specific
responses in mouse models. Co-administration of Tregitopes and
auto-antigens reduced diabetes in NOD mice, while the in vitro
response of T cells from diabetic patients to GAD65 epitopes was

found suppressed by Tregitopes (137). Tregitopes might also pre-
vent immune responses against hyper-variable Ig Ids, generated by
somatic mutations.

The long-known therapeutic effects of intravenous human
gamma globulin therapy (ivG) in autoimmune or allergic dis-
eases, organ transplantation, and graft-versus-host disease have
been attributed to the presence of Tregitopes in IgG (136, 138).
The proposed mechanism as ivG-induced immunological toler-
ance has been supported by the increase of Treg cells and IL-10
production after ivG treatment. This concept is relevant to TB,
considering the finding that intranasal or intraperitoneal inocula-
tions of human gamma globulin inhibited the BCG viable counts
in the lungs of intranasally infected mice (139, 140). Although
the authors attributed this effect to the action of specific antibod-
ies, an alternative possible explanation could involve the role of
Tregitopes.

Increased Treg numbers in patients with active TB depress the
IFNγ-secreting T-cell response to a protective antigen, such as the
heparin binding hemagglutinin (141). Mycobacterium-activated
human CD8 Treg cells co-express CD39, which is involved in the
suppression of CD4 Th1 cell proliferation, lymphocyte activation,
and express also LAG-3 and CCL4 (142). Impairing the function of
Tregs in mice reduced Mtb infection (143), but antibody inactiva-
tion of Tregs, which increased the immune response did not affect
the bacterial load after infection (144) and did not influence pro-
tection by BCG vaccination (145). In view of these discrepancies
about the possible Treg function in TB and the lack of knowledge
about their specificity, the possible role of Tregitope recognition
deserves further study.

CONCLUSION
Epitope specificity of immune responses of Mtb-infected hosts is
significant for the immunopathogenesis of TB and its knowledge
is mandatory for the development of new approaches toward TB
control. HLA-permissive epitopes may have evolved in the tuber-
cle bacilli due to the advantage from immune reactions, which
lead to protracted transmission of the infection. Further research
needs to expand knowledge on associations between epitope speci-
ficity with different effector and regulatory T-cell populations.
It is proposed that combining of the biosignature of the T-cell
phenotype with epitope specificity might lead to the discovery of
protection and disease-associated biomarkers. There are impor-
tant potentials toward the future development of epitope-defined
diagnostics, prophylactic vaccines, and immunotherapies.
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