
Vol.:(0123456789)1 3

Mol Genet Genomics (2018) 293:381–390 
DOI 10.1007/s00438-017-1395-0

ORIGINAL ARTICLE

The immunophilin repertoire of Plasmodiophora brassicae 
and functional analysis of PbCYP3 cyclophilin

Khushwant Singh1,2,3 · Georgios Tzelepis1 · Miloslav Zouhar2 · Pavel Ryšánek2 · 
Christina Dixelius1 

Received: 9 June 2017 / Accepted: 6 November 2017 / Published online: 11 November 2017 
© The Author(s) 2017. This article is an open access publication

and hence was selected for further analysis. PbCYP3 was 
heterologously expressed in Magnaporthe oryzae gene-inac-
tivated ΔCyp1 strain. The new strain ΔCyp1+ overexpress-
ing PbCYP3 showed increased virulence on rice compared 
to the ΔCyp1 strain. These results suggest that the predicted 
immunophilins and particularly PbCYP3 are activated dur-
ing plant infection. M. oryzae is a well-studied fungal patho-
gen and could be a valuable tool for future functional studies 
of P. brassicae genes, particularly elucidating their role dur-
ing various infection phases.

Keywords  Cyclophilin · Immunophilin · Plasmodiophora 
brassicae · Rhizaria

Introduction

The plant immune system recognizes microbial pathogens 
in various ways to prevent infection. Pathogens try on the 
other hand to evade recognition and defense responses in 
plants. Knowledge on these events has rapidly increased 
over the last years (Boutrot and Zipfel 2017). However, 
pathogens with obligate biotrophic lifestyle are lagging 
behind in this context, since extraction of high-quality 
nucleic acids and any kind of gene editing are difficult 
and in some cases almost impossible. Plasmodiophora 
brassicae is a good example of this type of category. 
This organism is an obligate biotrophic plasmodio-
phorid that belongs to the Phytomyxea class within the 
eukaryote supergroup Rhizaria, taxonomically distinct 
from other plant pathogens, such as fungi or oomycetes 
(Neuhauser et al. 2011; Sierra et al. 2016). Rhizaria is 
one of the least studied groups of eukaryotes (Sibbald 
and Archibald 2017). Besides P. brassicae, few other 
genomes are available in Rhizaria; all for diverse species 
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such as the chlorarachniophyte alga Bigelowiella natans, 
the foraminifera Reticulomyxa filosa, the transcriptome of 
the potato powdery scab pathogen Spongospora subter-
ranea and few transcriptome datasets on marine species 
(Curtis et al. 2012; Glöckner et al. 2014; Keeling et al. 
2014; Schwelm et al. 2015; Krabberød et al. 2017). The 
P. brassicae genome is relatively small (25.5 Mb) com-
pared to the free-living B. natans (~ 100 Mb) and R. filosa 
(~ 320 Mb). Plasmodiophorids infect a wide range of host 
organisms (Neuhauser et  al. 2014). The Brassicaceae 
plant family is the preference of P. brassicae, the club-
root disease agent. This disease is increasing in impor-
tance, causing a 10–15% yield reduction on a global scale 
(Dixon 2009). Due to the hidden lifestyle in the soil and its 
requirement of a living host plant root for growth and mul-
tiplication, many aspects on this plant pathogen remain to 
be elucidated. This also calls for new tools for functional 
gene assessments.

Immunophilins are ubiquitous proteins with properties 
that allow them to regulate protein structure, activity and 
stability (Wang and Heitman 2005; Hanes 2015). They 
operate either by peptidyl-propyl isomerization of selected 
targets, as chaperons or by binding of small ligands. The 
immunophilins comprise of three structurally unrelated sub-
families: the cyclophilins (CYPs), the FK506-binding pro-
teins (FKBPs), and the parvulin-like proteins (Hanes 2015). 
Besides modulating the formation of cis–trans isomers of 
proline (Galat 2003), immunophilins have two important 
amino acid properties: (a) prolyl-isomerase activity, which 
catalyzes the rotation of the X-Pro peptide bonds from the 
cis to trans configuration, a rate-limiting step in protein 
folding (Wang and Heitman 2005), and (b) affinity to bind 
to immunosuppressive drugs. The stramenopile human 
parasite Blastocystis sp. lives under anaerobic conditions 
partly like P. brassicae (Gravot et al. 2016) and secretes a 
range of immunophilins with potential effector functions, 
which could lead to cell death (apoptosis) in the host tissue 
(Denoeud et al. 2011). Another animal parasite, the proto-
zoan Toxoplasma gondii uses a cyclophilin (TgCYP18) to 
manipulate host cell responses (Ibrahim et al. 2009). Among 
plant pathogens, some cyclophilins are able to inhibit RNA 
replication of plant viruses (Lin et al. 2012; Kovalev and 
Nagy 2013), while some effector proteins interact with plant 
cyclophilins, and thereby induce plant defense responses 
(Domingues et al. 2010, 2012; Kong et al. 2015). In the 
rice blast fungus Magnaporthe oryzae, the cyclophilin A 
homolog MgCYP1 acts as a virulence determinant. When 
this gene was inactivated it led to reduced virulence, and 
the Cyp1 mutant strain was malfunctioned regarding for-
mation of penetration peg and appressorium turgor genera-
tion (Viaud et al. 2002). MgCYP1 is also the cellular target 
for the drug cyclosporin A in M. oryzae, functioning as an 
inhibitor of appressorium development and hyphal growth 

in a CYP1-dependent manner, suggesting a role for the cal-
cineurin regulation of appressorium development (Viaud 
et al. 2002).

This work aimed to monitor the presence of immuno-
philin encoding genes in the genome of P. brassicae, and 
to analyze potential candidates for function, here using the 
molecular amenable plant pathogen M. oryzae as heter-
ologous test system. All with the overall aim of enhanc-
ing our understanding of this root gall (club)-inciting plant 
pathogen.

Materials and methods

Prediction of immunophilins, domain analysis 
and subcellular localization

To identify putative members of immunophilins in P. brassi-
cae, the Hidden Markov Model profiles, unique to cyclophi-
lin (PF00160), FKBP (PF00254) and parvulins (PF00639) 
from the Pfam database version 28.0 (Finn et al. 2016), were 
retrieved and searched against the annotated genome of P. 
brassicae (Schwelm et al. 2015). Protein candidates were 
identified as described previously (Singh et al. 2014; Tri-
pathi et al. 2015). Significant hits (e value: 1.0E–0) with 
positive scores were selected for further classification. In 
analogy with earlier denominations, the proteins identified 
were named with the prefix Pb (P. brassicae), followed by 
CYP (cyclophilin), FKB (FK506-binding proteins), and PAR 
(parvulin-like proteins), according to the catalytic domain 
present, followed by numbers in increasing order based on 
the highest Hidden Markov Model scores. Protein domain 
structures were confirmed with the SMART software (Letu-
nic et al. 2015).

Subcellular localization of the putative immunophilin 
proteins was predicted using PSORT (Nakai and Horton 
1999). Signal peptide cleavage sites and mitochondrial-tar-
geted peptides were predicted using SignalP 4.1 (Petersen 
et al. 2011) and the TargetP 1.1 server, respectively (Ema-
nuelsson et al. 2000). Nuclear localization signals (NLS) 
were predicted using NLS mapper (Kosugi et al. 2009).

Phylogenetic analysis

Phylogenetic analysis was conducted on PbCYP3 homologs, 
derived from different phytopathogens and the host Arabi-
dopsis thaliana, based on catalytic domain sequences and 
was carried out using the maximum likelihood method 
implemented in the MEGA v.7 software (Kumar et  al. 
2016), using the JTT substitution model (Jones et al. 1992). 
Bootstrap analysis was performed on 1000 replicates. The 
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CLUSTAL W algorithm was used for alignments (Thomp-
son et al. 1994) (Supplementary dataset 1).

Transcriptome analysis

The transcriptome of P. brassicae genes, coding for putative 
immunophilins, was analyzed exploiting data from various 
life-stage-specific forms, such as germinating spores, matur-
ing spores and plasmodia of P. brassicae and in clubroot-
infected Brassica hosts (B. rapa, B. napus and B. oleracea), 
as described by Schwelm et al. (2015). Fragments per kilo-
base of transcript per million mapped reads (FPKM) were 
calculated (Trapnell et al. 2010). Furthermore, the immuno-
philin gene expression levels were visualized in heat maps 
as log10-transformed FPKM values and were normalized by 
calculating the Z-score for each gene across all transcriptome 
libraries. Heat maps were drawn using the gplot package of 
R software (R Core Team 2014), as described previously by 
Singh et al. (2014).

Construction of overexpression vector and Magnaporthe 
oryzae transformation

The P. brassicae single spore isolates e3, was used for spore 
isolation and purification (Fähling et al. 2004). DNA was 
extracted from purified P. brassicae resting spores using a 
NucleoSpin® Plant II Mini kit (Macherey–Nagel) follow-
ing manufacturer’s instructions. PbCYP3 was PCR amplified 
from genomic DNA using high fidelity Phusion Taq poly-
merase (Thermo Scientific) and BamHIPbCyp3 and KpnIPb-
Cyp3 primers (Table 1). The pCB1532 vector, conferring 
resistance to chlorimuron ethyl (Yang and Naqvi 2014), 
was used as a destination vector to construct the pCB1532-
PbCYP3+ overexpression vector. The orientation and integ-
rity of the insertion were confirmed by DNA sequencing 
(Macrogen Inc.).

Construction of M. oryzae ΔCyp1+ overexpression strain 
(containing the P. brassicae PbCYP3 gene) was carried out 
using a protoplast-mediated protocol. Briefly, M. oryzae 
mycelia from the ΔCyp1 strain (Viaud et al. 2002), with the 

Guy11 genomic background, were incubated in OM buffer 
(1.2 M MgSO4, 10 mM Na-PO4 pH 5.8) containing lytic 
enzymes (Novozymes). Protoplasts were mixed with the 
pCB1532-PbCYP3+ overexpression vector in STC buffer 
(1.2 M sorbitol, 10 mM Tris–HCl pH 7.5, 10 mM CaCl2) 
and incubated at room temperature for 25 min. PTC buffer 
(60% PEG 4000, 10 mM Tris–HCl pH 7.5, 10 mM CaCl2) 
was then added followed by incubation at room tempera-
ture for 20 min. Finally, protoplasts were added to molten 
BDC medium (yeast nitrogen base without amino acids and 
ammonium sulfate, 1.7 g/L ammonium nitrate, 2 g/L, aspar-
agine, 1 g/L, glucose, 10 g/L, pH 6, 1.5% agar). The plates 
were incubated for at least 16 h at 24 °C and overlaid with 
approximately 15 ml BDC medium without sucrose, supple-
mented with 1.5% agar and 150 μg mL−1 chlorimuron ethyl 
(Sigma Aldrich). Fungal colonies resistant to chlorimuron 
ethyl were verified by PCR that contain the PbCYP3 gene, 
and expression levels of this gene confirmed using RT-qPCR 
as described below.

Quantitative real‑time PCR

Total RNA was extracted from 1-week-old cultures of wild-
type (Guy 11), ΔCyp1 and ΔCyp1+ M. oryzae strains using 
the RNeasy Plant Mini Kit (Qiagen) according to manu-
facturer’s instructions and concentrations were determined 
using NanoDrop (Thermo Scientific). For cDNA synthesis, 
1 µg total RNA was reversed transcribed in a total volume 
of 20 µl using the iScript cDNA Synthesis Kit (Bio-Rad). 
Transcript levels were quantified by quantitative reverse 
transcriptase PCR (RT-qPCR) using the iQ5 qPCR System 
(Bio-Rad) as described previously (Tzelepis et al. 2012). 
Relative expression values of PbCYP3 gene were calculated 
using the 2−ΔΔCT method (Livak and Schmittgen 2001). The 
M. oryzae actin gene (Che Omar et al. 2016) was used to 
normalize the data using the MgActF/R primers listed in 
Table 1.

Phenotypic analysis and quantification of Magnaporthe 
oryzae biomass in infected plants

Magnaporthe oryzae Guy11 (WT), ΔCyp1+ and ΔCyp1 
strains were grown in triplicates on oatmeal agar plates and 
kept for 1 week at 25 °C in darkness. Rice plants of the 
cultivar CO-39 (Oryza sativa) were grown under controlled 
conditions at 28 °C in cycles of 14 h light and 10 h dark. 
4-week-old plants were inoculated with 2 mm mycelia plugs, 
derived from 2-week old M. oryzae cultures of wild-type, 
ΔCyp1+ and ΔCyp1, while mock inoculation was con-
ducted with only agar plugs as previously described (Dong 
et al. 2015). Fungal colonization on leaves were monitored 
after 1 week and DNA was extracted using a CTAB method 
(Möller et al. 1992) and quantified using the M. oryzae actin 

Table 1   List of primers used in the current study

Primer name 5′–3′

BamHIPbCyp3 ATA​TGG​ATC​CAT​GGC​GAA​CCC​GAA​GGTCT
KpnIPbCyp3 ATA​TCC​ATG​GTC​AGC​ACT​CGC​CGC​ACTTC
OsElfF TTG​TGC​TGG​ATG​AAG​CTG​ATG
OsElfR GGA​AGG​AGC​TGG​AAG​ATA​TCA​TAG​A
MgActF ATG​TGC​AAG​GCC​GGT​TTC​GC
MgActR TAC​GAG​TCC​TTC​TGG​CCC​AT
PbCYP3C_RT-F ATT​TCA​CGA​ACC​ACA​ACG​GCA​CTG​
PbCYP3C_RT-R TGG​ACA​CGG​TGC​ACA​CGA​AGAAC
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Fig. 1   Domain architecture of predicted immunophilins in Plasmo-
diophora brassicae genome. Amino acid sequences were analyzed 
for the presence of conserved domains using the SMART software. 
WD40 tryptophan-aspartic acid repeats, PPIase peptidyl-prolyl 
isomerase, RRM RNA recognition motif, FKBP FK506-binding pro-

tein, TPR tetracopeptide repeat, FHA forkhead-associated domain, 
rotamase domain parvulin-like rotamase domain, mTP mitochondrial 
target peptide, TM transmembrane domain. Predicted cell localization 
is indicated. The bar marker indicates a length of 50 amino acids and 
refers to total protein length
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(act) gene, normalized with the elongation factor gene (elf-
1) from Oryza sativa (Ma et al. 2011) and qPCR techniques 
as described above. At least five biological replicates were 
used. For the statistical analyses, the ANOVA (one way) 
was conducted using a general linear model implemented 
in SPSS 20 (IBM). Pairwise comparisons were performed 
using the Tukey’s method at the 95% significance level 
(Tukey 1949).

Results

Sequence and structure characteristics 
of Plasmodiophora brassicae immunophilins

Our analysis revealed that the P. brassicae genome con-
tained 20 genes encoding putative immunophilins (Fig. 1). 
Eleven belong to the cyclophilins, seven to FKBP and two 
to the parvulin subfamilies. Seven proteins carried a single 
catalytic domain, while a transmembrane domain was pre-
dicted for two. Only the PbCYP1 protein harbored a WD-40 
domain, while a nucleoplasmin domain was detected in the 
PbFKBP3 sequence. Four proteins harbored tetracopeptide 

repeats, while PbPAR1 and PbCYP6 each contained a 
forkhead-associated or a RNA recognition motif. Based on 
localization signals, following distribution was predicted; 
PbCYP8 and PbFKBP4 were extracellular, PbPAR1 was 
localized to the nucleus, while PbCYP9, PbCYP11 and 
PbFKBP2 were localized to the mitochondria. The remain-
ing 14 proteins predicted to be localized in the cytosol 
(Fig. 1).

Expression patterns of immunophilin genes in various 
P. brassicae stages and clubroot‑infected plants

Re-analyzed RNAseq data from Schwelm et al. (2015) gen-
erated differential expression patterns for genes, encoding 
for putative immunophilins, in various enriched life stages, 
such as germinating and maturing spores, plasmodia and 
clubroot-infected Brassica hosts (B. rapa, B. napus and 
B. oleracea). Notably, PbCYP3 was highly induced in all 
studied life stages (Fig. 2a), while PbCYP5, PbCYP7 and 
PbCYP11 showed elevated transcript levels in germinating 
spores. The other PbCYP genes had low transcript levels. 
Only the PbCYP3 gene displayed high induction during 
infection of the three Brassica hosts, while others showed 

Fig. 2   Expression patterns of the predicted immunophilins (IMMs) 
from P. brassicae. The heat maps show the RNAseq-based expres-
sion profile of IMMs during: a different Plasmodiophora brassicae 
life stages; germinating spores, plasmodia and maturing spores, and 

b different clubroot-infected Brassica hosts; B. rapa, B. napus and B. 
oleracea. The heat maps were drawn using the gplot package of R 
statistical software
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Fig. 3   Comparison of Plasmodiophora brassicae PbCYP3 and Mag-
naporthe oryzae CYP1. a Amino acid alignment between PbCYP3 
and CYP1. Sequence similarities are depicted with black shade. 
Alignments were conducted using the CLUSTALW algorithm imple-
mented in MegAlign software (DNASTAR, Madison). b Phylogeny 
of homologs to the PbCYP3 cyclophilin. Analysis was conducted 
using maximum likelihood with the JTT substitution model, based 

on Clustal W alignment using all amino acid sites. The bar marker 
indicates the numbers of amino acid substitutions. Protein identifiers 
include protein name (if available) or protein ID accession numbers 
from TAIR and FungalDB databases. Plasmodiophora brassicae and 
Magnaporthe oryzae cyclophilins are indicated in bold. Bootstrap-
ping was with 1000 replicates and values ≥ 50 are shown
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low expression levels (Fig. 2b). In the FKBP subfamily, 
PbFKBP3 and PbFKBP5 were highly activated during dif-
ferent life stages. PbFKBP2 and PbFKBP6 were upregulated 
in plasmodia, and PbFKBP1 during the germinating spore 
stage (Fig. 2a). Notably, PbFKBP3 and PbFKBP5 were 
highly induced in all host species, whereas PbFKBP7 was 
highly induced only in B. oleracea (Fig. 2b). In the case of 
the PAR subfamily, PbPAR2 was constitutively expressed 
during all stages compared to PbPAR1 (Fig.  2a). High 
transcript level of PbPAR2 was also observed in B. rapa 
and B. oleracea compared to B. napus, while PbPAR1 was 
expressed at low levels in all Brassica hosts.

Sequence, phenotypic and pathogenicity analyses 
of PbCYP3

In our sequence comparison, the P. brassicae PbCYP3 
cyclophilin showed 60% similarity to the M. oryzae CYP1 
(Fig. 3a). In phylogenetic analysis of PbCYP3 homologs 
present in plant pathogenic fungi and oomycetes, PbCYP3 
grouped together with homologs from oomycetes (Fig. 3b), 
while M. oryzae CYP1 clustered in a separate group together 
with cyclophilins derived from filamentous ascomycetes.

Heterologous expression of the PbCYP3 in the M. 
oryzae deletion strain ΔCyp1 was produced using the 
pCB1532:PbCyp3+ vector (Fig. 4a). Five selected chlo-
rimuron ethyl-resistant M. oryzae transformants showed 
elevated transcript levels of the PbCYP3 gene (Fig. 4b). The 
ΔCyp1+ transformant (no. 6), which showed the highest 

transcript levels, was used for further analysis. No differ-
ence in colony morphology and mycelial growth rate was 
observed between M. oryzae Guy11 (wild-type), ΔCyp1, 
and the ΔCyp1+ strains (Fig. 5a, b). To evaluate the role of 
PbCYP3 in virulence, rice plants were infected with these 
three strains independently. Our results showed that the 
wild-type strain caused more severe symptoms on rice plants 
compared to symptoms caused by the ΔCyp1 and ΔCyp1+ 
strains (Fig. 5c). However, no significant differences between 
wild-type and the ΔCyp1+ strain were observed in fungal 
biomass 7 days post infection, whereas the ΔCyp1 strain 
had significantly lower DNA levels, signifying reduced plant 
colonization ability (Fig. 5d).

Discussion

The immunophilin repertoire in P. brassicae comprises 20 
putative members, distributed on three subfamilies. This 
gene family size is also common in other eukaryotes such 
as nematodes, fungi, and oomycetes (Page et al. 1996; Pem-
berton 2006; Gan et al. 2009; Krucken et al. 2009; Singh 
et al. 2017). Commonly, plants harbor 50–60 immunophilin 
proteins (Vasudevan et al. 2015). Arabidopsis thaliana, a 
host of P. brassicae has 52 immunophilins (He et al. 2004). 
Much of immunophilin gene function in plants is associ-
ated to development but also to different abiotic and stress 
responses. The P. brassicae nuclear genome lacks a num-
ber of gene coding for essential metabolites (Schwelm et al. 
2015), which is expected to be a feature of the poorly under-
stood biotrophic lifestyle where the pathogen has evolved a 
strict dependency with its host (Kemen et al. 2011). Whether 
there is any overlapping function between the CYP genes in 
P. brassicae and those in the host is, as most gene functions 
in this specific plant–pathogen interaction, not known. The 
PbCYP3 homolog in A. thaliana is the cyclophilin ROC1 
(AT4G38740), a gene known to function in the immune 
response pathways to Pseudomonas syringae (Aumüller 
et al. 2010). ROC1 also takes part in brassinosteroid sign-
aling (Trupkin et al. 2012). Brassinosteroid synthesis and 
signaling in infected A. thaliana plants participates in club-
root formation (Schuller et al. 2014). It has been suggested 
that biotrophic pathogens can manipulate the host depend-
ency to promote brassinosteroid levels favorable for infec-
tion (Belkhadir et al. 2012). Thus, it cannot be excluded 
that PbCYP3 is active in a similar process which also could 
explain the high transcript levels observed in the infected 
Brassica host.

Heterologous expression of hormone-encoding genes 
isolated from P. brassicae has earlier taken place using 
Escherichia coli followed by in vitro activity tests (Schuller 
and Ludwig-Müller et al. 2006, 2015). Here, we tested the 
PbCYP3 function in M. oryzae system since P. brassicae 

Fig. 4   Construction and validation of Magnaporthe oryzae ΔCyp1+ 
strain. a Map of pCB1532:PbCyp3+ vector used for M. oryzae 
transformation. The plasmid confers resistance to chlorimuron ethyl 
(SUR) in M. oryzae and to ampicillin (Amp) in bacteria. b Expres-
sion profiles of the PbCYP3 gene in five (1–7) positive ΔCyp1+ 
transformants. Relative transcription levels in relation to actin gene 
(act) expression are calculated from Ct values and according to DDCt 
method
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is not amenable for such analysis. M. oryzae is a hemibio-
trophic pathogen that causes blast disease on rice and other 
grass species. After plant cell penetration, the fungus first 
proliferates inside living host cells (biotrophic stage) fol-
lowed by necrotrophic growth feeding on dead tissue (Tal-
bot and Foster 2001). M. oryzae can act as a root pathogen 
on rice, barley and wheat (Sesma and Osbourn 2004) and 
some strains use the necrotrophic stage to infect A. thali-
ana (Park et al. 2008). These findings have implications for 
disease control strategies, fungal biology and its use as a 
model system.

Our results revealed that introduction of PbCYP3 in the 
M. oryzae cyclophilin ΔCyp1 strain led to restoration of fun-
gal colonization in plant tissues similar to wild-type levels. 
Deletion of this gene had as a result significant reduction 
of M. oryzae virulence, as earlier reported by Viaud et al. 
(2002). Our results showed that PbCYP3 was not able to 
fully restore the disease severity of ΔCyp1 to wild-type lev-
els indicating that these two proteins do not exactly share the 
same function. We have to mention here that the infection 
biology of P. brassicae is very different compared to M. ory-
zae (Schwelm et al. 2016). Zoospores of P. brassicae encyst 
when attaching to a host root hair in the soil. The entering of 

Fig. 5   Functional analysis of Magnaporthe oryzae strains. a Col-
ony morphology of M. oryzae Guy11 wild-type (WT), ΔCyp1 and 
ΔCyp1+ strains grown on oatmeal agar. Cultures were maintained 
for 2 weeks at 25  °C in darkness. b Growth rate of M. oryzae WT, 
ΔCyp1 and ΔCyp1+ strains grown on oatmeal agar. c Symptoms 
of M. oryzae WT, ΔCyp1 and ΔCyp1+ strains on rice plants 7dpi. 
d Biomass quantification of M. oryzae WT, ΔCyp1 and ΔCyp1+ 

strains upon infection of rice plants cv. CO-39. DNA was extracted 
from plants 7 days post infection. For quantitative PCR (qPCR), the 
M. oryzae actin (act) gene was used and data were normalized with 
the elongation factor gene (elf-1) from Oryza sativa. Letters (a, b) 
indicate statistically significant differences (p value < 0.05) according 
to Tukey’s HSD test. Error bars represent SD based on at least five 
biological replicates
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root hair cells has been described to occur with the aid of a 
specialized mechanical structure used to inject a protoplast 
of the pathogen into the host cell (Aist and Williams 1971). 
PbCYP3 could possibly be involved in these processes since 
CYP1 in M. oryzae function in penetration peg formation 
and generation of appressoria turgor in the initial infection 
stages (Viaud et al. 2002).

Many aspects remain to be elucidated in the biology of 
P. brassicae not least to provide meaning to the extensive 
number of unknown function among the annotated P. bras-
sicae -specific genes (> 50%) in the genome (Schwelm et al. 
2015). Using heterologous test systems such as M. oryzae 
exploited in this study could help to accomplish such a task.
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