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Abstract

A current strategy for obtaining haplotype information from several individuals involves

short-read sequencing of pooled amplicons, where fragments from each individual is identi-

fied by a unique DNA barcode. In this paper, we report a new method to recover the phylog-

eny of haplotypes from short-read sequences obtained using pooled amplicons from a

mixture of individuals, without barcoding. The method, AFPhyloMix, accepts an alignment

of the mixture of reads against a reference sequence, obtains the single-nucleotide-poly-

morphisms (SNP) patterns along the alignment, and constructs the phylogenetic tree

according to the SNP patterns. AFPhyloMix adopts a Bayesian inference model to estimate

the phylogeny of the haplotypes and their relative abundances, given that the number of

haplotypes is known. In our simulations, AFPhyloMix achieved at least 80% accuracy at

recovering the phylogenies and relative abundances of the constituent haplotypes, for mix-

tures with up to 15 haplotypes. AFPhyloMix also worked well on a real data set of kangaroo

mitochondrial DNA sequences.

Author summary

In evolutionary studies, it is customary to obtain homologous sequences from different

individuals in a population or a species to construct a phylogeny. Frequently, sequences

from different individuals will be identical; we refer to a set of identical sequences as a

haplotype. If short-read sequencing technologies are used to obtain sequences from many

individuals, the sequence from each individual is tagged with a unique barcode, and a

mixed sample of tagged sequences is subsequently sequenced. The tagged sequences can

be identified using the appropriate bioinformatics tools, for further downstream analyses.

We have developed a novel method, AFPhyloMix, to reconstruct the phylogeny of a

mixed sample of homologous sequences, and the relative abundance of different haplo-

types, from different individuals without the need for barcoding. AFPhyloMix aligns the

short reads obtained to a reference alignment, and identifies the variable sites along the
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alignment. On the basis of the patterns of nucleotide frequencies at these and neighbour-

ing sites, AFPhyloMix uses a Bayesian inference model to compute the phylogenetic tree

and the haplotype relative abundances. Our results show that AFPhyloMix works well on

both the simulated data set and the real data set.

This is a PLOS Computational Biology Methods paper.

Introduction

Molecular phylogenetic reconstruction is the mainstay of modern evolutionary biology [1, 2].

To use a particularly relevant and recent example, tracing the spread of the COVID-19 pan-

demic, and understanding the emergence of new variants, has required the use of reliably con-

structed phylogenies of SARS-CoV-2 genomes [3]. DNA sequencing is used to produce the

data from which such valuable phylogenies can be inferred. However, because modern

sequencing technologies can produce several gigabases of nucleotide sequences in a single day,

one of the challenges for the molecular phylogeneticist is to deal with this quantity of data in a

timely manner while still reconstructing accurate phylogenies. To this end, phylogeneticists

have developed rapid alignment and tree reconstruction algorithms [4, 5], using pre-processed

and curated sequences. Pre-processing and sequence curation can be laborious, but are neces-

sary tasks because a great deal of sequence data are generated using next generation short-read

sequencing technologies. Such sequences are often barcoded using unique DNA identifier

tags, and then collectively pooled and sequenced in a single run. The unique barcode allows

sequences belonging to different samples to be separated computationally, before additional

error-correction and subsequent down-stream analyses are performed.

Quite apart from the costs incurred by data pre-processing and curation, the preparation of

barcoded sequence libraries is itself costly. More importantly, there are some samples where

barcoding is impractical. For instances, rapidly evolving viruses (e.g., Human Immunodefi-

ciency Virus (HIV) and Hepatitis C Virus (HCV)) typically exist as a collection of genetically

diverse genomes within an infected individual. In some instances, hosts are infected with dif-

ferent strains of the same virus (i.e., coinfection). To sequence one or more target genes from a

collection of these viruses using barcoding, one would need to isolate individual viral genomes

before library preparation. This can be done, but again, is time-consuming and laborious.

In this paper, we describe a novel approach, AFPhyloMix (Assembly-Free Phylogenetics for

Mixtures), to reconstruct the phylogeny of non-barcoded amplicons in a mixture that has been

sequenced using short-read sequencing. More precisely, the input sample consists of mixtures

of anonymous (i.e., non-barcoded) amplicons of a targeted locus, obtained from multiple indi-

viduals, each amplicon being longer than the read-length of sequenced fragments. We assume

that all short-reads can be aligned to the same reference sequence. We have developed our

method to work on samples drawn from a population of closely related individuals (i.e., from

individuals within a species). In any mixture of individuals drawn from such populations,

some amplicons may be identical to others. We refer to a group of identical amplicons as a

haplotype [6]. The mixture, therefore, contains a collection of haplotypes, each haplotype

being represented by a relative abundance between 0 and 1 (non-inclusive). AFPhyloMix esti-

mates the phylogeny of the haplotypes and their relative abundances, without the need for

reconstructing the haplotype sequences. To validate our approach, we evaluate the efficiency

of the method on simulated and real data, and we discuss the conditions under which the

method performs well, and its limitations.
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Methods

Overview

The algorithm, AFPhyloMix, proceeds as follows. Given a mixture of n haplotypes, with rela-

tive abundances (r1, r2, . . ., rn), short-read sequencing generates k sequences that can be

aligned to a reference sequence. AFPhyloMix then identifies the potential sites with single-

nucleotide-polymorphisms (SNPs) from this alignment of reads. Under an infinite-sites model

of evolution [7], where each mutation occurs at a new site and any given SNP can have a maxi-

mum of two nucleotides, we distinguish between the frequency of a given nucleotide at a given

SNP, and the number of SNPs with the same frequency distribution of nucleotides. We refer

to these two types of frequencies as the SNP ratio and the SNP frequency, respectively. For

example, assume that in an alignment with three SNPs, site i has nucleotides A and G with

ratios 0.75 and 0.25, respectively; site j has nucleotides C and T, with ratios 0.6 and 0.4, respec-

tively; and site k has nucleotides G and T with ratios 0.75 and 0.25, respectively. We will adopt

the convention of using the smaller nucleotide ratios when identifying the value of a SNP

ratio. Therefore, the SNP ratio for site i and k is 0.25 and site j is 0.4. Sites i and k have the

same frequency distribution of nucleotides, even though they may have different constituent

nucleotides. In this case, the SNP frequency for the nucleotide distribution instantiated in sites

i and k is 0.67 or 2/3. (We note that the SNP ratios and frequencies are related to the Site Fre-

quency Spectrum [8]; however, because coverage of short-reads vary across the alignment,

nucleotide ratios at each SNP vary as a continuous rational variable rather than as an integer).

In AFPhyloMix, a likelihood function computes the probability of observing the distribu-

tions of SNP ratios (data, D) along the alignment given their expected distributions, which is

itself conditional on a specified tree topology, haplotype relative abundances, and sequencing

error, assuming an infinite-sites model of evolution. A Bayesian approach is used to compute

the posterior probability P(R, T, e|D) of a set of parameters: the relative abundance of haplo-

types (R), the tree topology (T), and the sequencing error (e), given the observed pattern of the

data (D), as follows.

PðR;T; ejDÞ � LðDjR;T; eÞPðRÞPðTÞPðeÞ

L(D|R, T, e) is the likelihood of the observed pattern of SNPs given the relative abundances

of haplotypes, tree topology, and the sequencing error. P(R), P(T), and P(e) are the prior prob-

abilities of the relative abundances of haplotypes, tree topology, and the sequencing error,

respectively. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC) infer-

ence engine is implemented, to deliver the joint posterior probability distribution of tree topol-

ogies and haplotype relative abundances. After the Bayesian computation, the edge lengths on

the tree are computed according to the SNP frequencies and the tree topology with the highest

posterior probabilities.

To illustrate this approach, consider Fig 1 which shows the relationship between observed

and expected SNP ratios and frequencies, along a specified tree. Given a 5-tip tree with tip rela-

tive abundances (i.e. the relative abundances of the corresponding haplotypes represented by

the tips) shown in Fig 1A, a mutation x 2 {A, C, G, T} that occurs on the edge XA over evolu-

tionary time would lead to a different nucleotide on a SNP site in haplotype A relative to other

haplotypes. The expected SNP ratio of any mutation along the edge XA would be 0.075, which

is the relative abundance of tip A. The number of SNPs with this mutational pattern—the SNP

frequency—would depend on the length of the edge XA. Fig 1B shows the expected SNP ratio

and the expected SNP frequencies (i.e. the expected ratio of the occurrences for the mutations

on different edges of the tree). For example, the high expected SNP frequency of sites with

SNP ratio of 0.485 is due to the mutation on the long edge XZ.
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Consideration of the connection between two SNP sites

In Fig 1B, every SNP site is treated independently. The fact that reads cover multiple SNP sites

means that there is an association amongst the observed ratios for multiple SNPs; we found

that modelling this association improved the accuracy of the estimation on the tree topology

and the tip relative abundances. Where there is no sequencing error, as illustrated in Fig 2A,

two SNP sites can generate three different combinations (patterns of nucleotides) on the nucle-

otide sequences if the mutations of the two SNP sites occur on different edges of a tree, while

there are only two patterns of nucleotides if their mutations happen on the same edge of the

tree. For example, two SNP sites with one mutation on the edge ZE and another on the edge

XY, as shown in Fig 2A, lead to three different patterns of nucleotides on these two SNP sites

with expected ratios 0.125, 0.41, and 0.465. Different locations of the mutations on the tree can

result in different sets of expected ratios (Fig 2B). Similar to the compatibility problem of two

sets of binary characters [12], since the infinite site model only allows one mutation along the

tree for every SNP site, two SNP sites can create either two or three, but not four patterns of
nucleotides. Moreover, how often these patterns of nucleotides happen depends on the product

of the lengths of the edges on which the two SNP sites occur.

Fig 1. SNP frequencies vs SNP ratios. (A) An example of a 5-tip tree with expected tip relative abundances (i.e.

haplotype relative abundances). (B) The expected SNP frequencies against the expected SNP ratio of the occurrences for

the mutations on different edges of the tree. (C) The observed distribution of SNP ratios from the short read sequences

generated from five simulated genomic sequences with expected relative abundances based on the tree in (A). To obtain

observed frequencies and relative abundances, paired-end error-free reads of length 150bp with total coverage of 15,000x

were simulated by ART [9] from five 50k-long haplotype sequences generated by INDELible [10] with JC model [11].

https://doi.org/10.1371/journal.pcbi.1008949.g001
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Considering the possible three patterns of nucleotides (with ratios f1, f2, f3 = 1 − f1 − f2 where

f1� f2� f3) due to the mutations of two SNP sites on different edges of the tree, Fig 3A shows

the distribution of all possible pairs of f1 and f2 according to the tree in Fig 2A. The size of the

circle represents the expected probability of occurrence. For example, the largest circle at (f1 =

0.125, f2 = 0.39) refers to the patterns of nucleotides created by two SNP sites with mutations on

the edges XZ and ZE, and the probability is relatively high because of their long edge lengths.

AFPhyloMix implements a Bayesian inference methodology to estimate the posterior prob-

ability distribution of tree topologies and tip relative abundances given the observed ratios of

the patterns of nucleotides created by pairs of SNP sites.

Estimation of tree topology and tip relative abundances

Assume that there are n haplotypes. If there is no sequencing error, there should be only two

types of nucleotides on each SNP site; for convenience, we will refer to the two allowable states

at a given SNP location canonically as ‘0’ and ‘1’. Considering two sites i and j, let s(ij) be the

nucleotides of the same read covering the sites i and j. Also let the states of the root of the tree

be ri and rj, where ri, rj 2 {0, 1}, on the site i and the site j, respectively. Given a n-tip rooted

tree topology T, a set of n tip relative abundances R, and the edges of T: {e1, � � �, e2n−2}, let

~PðsðijÞ ¼ pqju; v; ri; rjÞ, where p, q 2 {0, 1} and u, v 2 {ε, e1, � � �, e2n−2} (the empty string ε rep-

resents no mutation on the site), be the expected probability of the same sequence having

nucleotide p on the site i and nucleotide q on the site j given the mutations of the site i and j
are on the edge u and the edge v, and the states of the root of the tree are ri and rj. For example,

for the topology and tip relative abundances in Fig 2, when u = ZE, v = XY, ri = rj = 0,

Fig 2. Consideration of connections between two SNP sites. (A) Under the infinite site model, by allowing one mutation along the tree for every SNP

site, two SNP sites may make three different patterns of nucleotides. (B) Different locations of the mutations on the tree can result in different set of

expected ratios.

https://doi.org/10.1371/journal.pcbi.1008949.g002
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~PðsðijÞ ¼ 00ju; v; ri; rjÞ ¼ 0:465, ~PðsðijÞ ¼ 01ju; v; ri; rjÞ ¼ 0:410,

~PðsðijÞ ¼ 10ju; v; ri; rjÞ ¼ 0:125, and ~PðsðijÞ ¼ 11ju; v; ri; rjÞ ¼ 0:0.

Ideally, if there is no sequencing error, the number of combinations between the nucleo-

tides of the reads covering the sites i and j should either be one (if u = v = ε), two (for example,

when u = v 6¼ ε, or v 6¼ u = ε, or u 6¼ v = ε), or three. However, in a data set with sequencing

error, the number of combinations observed may well be more (up to a maximum of 16). We

will compute the expected probabilities taking account of sequencing errors. With the

sequencing errors, each SNP site may contain 4 nucleotide types, say 0, 1, 2, and 3. Without

loss of generality, we assume 0 and 1 are the major characters, while 2 and 3 are the characters

created by the sequencing errors. Given a tree topology T, a set of tip relative abundances R,

and a sequencing error rate e, define P(s(ij) = pq|u, v, ri, rj), where p, q 2 {0, 1, 2, 3}, as the

expected probability of observing the same read having nucleotide p on the site i and nucleo-

tide q on the site j, when the mutations of the sites i and j are on the edges u and v, and the

Fig 3. Distribution of the first and the second ratios of three patterns of nucleotides created by two SNP sites.

Considering the tree in Fig 2A, two SNP sites having mutations on different pair of edges can lead to three patterns of
nucleotides with ratios f1, f2, f3 = 1 − f1 − f2, where f1� f2� f3. (A) The distribution of all possible pairs of f1 and f2. The

size of the circle represents the expected chance of occurrence. (B) The distribution of pairs of observed values of f1 and

f2 obtained from the short read sequences generated from five simulated genomic sequences referenced in Fig 1C.

Every pair of SNP sites close enough to be covered by the same short reads were checked. Considering the possible

three patterns of nucleotides, the pairs of observed values of f1 and f2 were obtained based on the set of short reads

covering the pairs of SNP sites. The observed distribution is consistent with the expected distribution plotted in (A).

https://doi.org/10.1371/journal.pcbi.1008949.g003
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states of the root of the tree are ri and rj, respectively.

PðsðijÞ ¼ pqju; v; ri; rjÞ ¼
X

p0q02f0;1g

~PðsðijÞ ¼ p0q0ju; v; ri; rjÞcðp
0 ! pÞcðq0 ! qÞ ð1Þ

The function ψ(p0 ! p) where p0 2 {0, 1} and p 2 {0, 1, 2, 3} denotes the probability of

observing a nucleotide p on the read when the actual nucleotide should be p0.

cðp0 ! pÞ ¼

(
1 � e; if p0 ¼ p

e=3; otherwise
ð2Þ

Again, consider two sites i and j, and let nij(p, q), where p, q 2 {0, 1, 2, 3} be the number of

reads observed having nucleotide p on site i and nucleotide q on site j in the data set. Let Aij =

{nij(p, q)|p, q 2 {0, 1, 2, 3}} be the observed combinations of characters on the reads covering

the site i and the site j. Given a n-tip rooted tree topology T, a set of relative abundances of n
tips R, and a sequencing error rate e, define L(Aij|u, v, ri, rj, T, R, e) as the likelihood function of

the alignment with sites i and j, where i 6¼ j, provided that the mutations of the SNP sites i and

j are on the edges u and v, and the states of the root of the tree on the SNP sites i and j are ri
and rj, respectively. We assume that the ratios of the reads having different patterns of nucleo-
tides for the sites i and j follow the multinomial distribution.

LðAijju; v; ri; rj;T;R; eÞ ¼
n̂!

Q
p;qnijðp; qÞ!

Y

p;q

PðsðijÞ ¼ pqju; v; ri; rjÞ
nijðp;qÞ

where n̂ ¼
X

p;q

nijðp; qÞ
ð3Þ

Practically, when performing an analysis on the alignment of the reads, for each site of the

alignment, AFPhyloMix assigns the nucleotide supported by the largest number of reads to 0,

the second largest to 1, the third largest to 2, and the one with the least supports to 3. There are

three reasons to observe two or more nucleotides at a site:

• A site truly has a single mutational event only in its evolutionary history, but sequencing

errors and other technical artifacts can introduce more than two nucleotides in the align-

ment of short-reads;

• A site is truly invariable over the evolutionary tree, but sequencing errors/artifacts introduce

more than a single observed nucleotide in the alignment at that site;

• A site truly has experienced multiple mutational events in its events in its evolutionary his-

tory (and thus, violates the assumption of an infinite sites model).

We will address the second and third of these cases later, but if a site truly has only a single

mutational event in its history, then nucleotides 0 and 1 should dominate, while nucleotides 2

and 3 will be due to sequencing errors.

Let the n SNP sites be {S1, S2, S3, S4, � � �, Sn−1, Sn}. One approach is to consider the patterns

observed with pairs of adjacent SNP sites [i.e., if n is even, then consider (S1, S2)(S3, S4), � � �,

(Sn−1, Sn)]. This approach allows, at most, only n/2 pairs of SNP sites to be considered. On the

other hand, if we nominate a reference site, and pair each non-reference site with the refer-

ence, we can use� n pairs of SNP sites. We have used this approach, as follows: the whole

alignment is partitioned into m non-overlapping windows (W1, W2, � � �, Wk, � � �, Wm) of size d
(d was set to 100 in our implementation). In each window Wk a reference position ck 2Wk is

selected. Let the average of the read coverage along the alignment be covavg. The reference site
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is selected arbitrarily among those sites covered by at least max{50, r � covavg} reads (where r
was set to 0.2). Thus, the selected reference sites will have reasonably high levels of support.

For every site i inside the window Wk, its association with the reference position ck is consid-

ered. This approach allows us to consider n − m pairs of SNP sites. If such reference positions

cannot be found (because the coverage of the whole window is not high enough), AFPhyloMix

selects a reference covered by the highest number of reads in the window.

The likelihood of the whole alignment (A) given the tree topology (T), the tip relative abun-

dances (R) and the sequencing error rate (e) is:

LðAjT;R; eÞ ¼
Y

k

LðWkjT;R; eÞ

¼
Y

k

�X

rck ;v

LðWkjrck
; v;T;R; eÞPrðrck

jT;R; eÞPrðvjT;R; eÞ
� ð4Þ

The patterns obtained from the pair of site i and the reference ck depends on the tree topol-

ogy, the tip relative abundances, the sequencing error rate, the root states, and the edges on

which the mutations occur for both the site i and the reference ck. Amongst all sites paired

with the reference site, pattern ratios are independent after conditioning on the tree topology,

the tip relative abundances, the sequencing error rate, the root state and the edge on which the

mutation occurs for the reference ck.
Therefore, the likelihood of the window (Wk) given the tree topology (T), the tip relative

abundances (R), the sequencing error (e), the root state (rck
) and the edge on which the muta-

tion occurs (v) for the reference ck is:

LðWkjrck
; v;T;R; eÞ ¼

Y

i2ðWk � fckgÞ

LðAick
jrck
; v;T;R; eÞ

¼
Y

i2ðWk � fckgÞ

�X

ri ;u

LðAick
ju; v; ri; rck

;T;R; eÞPrðrijT;R; eÞ

PrðujT;R; eÞ
�

ð5Þ

Using this approach, the likelihood essentially integrates across all observed patterns, thus

negating the need to identify observed nucleotide ratios that are the consequence of sequenc-

ing errors.

By substituting LðWkjrck
; v;T;R; eÞ from Eq 5 into Eq 4, and setting the probability of the

character ri on position i (Pr(ri|T, R, e)) equal to the observed proportion of the nucleotide ri in

the alignment, the likelihood of the alignment (A) given the tree topology (T), the tip relative

abundances (R) and the sequencing error rate (e) becomes:

LðAjT;R; eÞ ¼
Y

k

�X

rck ;v

� Y

i2ðWk � fckgÞ

�X

ri ;u

LðAick
ju; v; ri; rck

;T;R; eÞPrðriÞ

PrðujT;R; eÞ
��

Prðrck
ÞPrðvjT;R; eÞ

�

where PrðriÞ ¼ the observed proportion of the nucleotide ri in A

ð6Þ

Pr(u|T, R, e), which is the probability of having a mutation on the edge u given T, F, and e,

can be approximated as the length of the edge u.
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The following approximation has fewer parameters and allows MCMC to converge at a

faster rate:

LðAjT;R; eÞ �
Y

k

�
max

v

�X

rck

� Y

i2ðWk � fckgÞ

�
max

u

�X

ri

LðAick
ju; v; ri; rck

;T;R; eÞPrðriÞ
���

Prðrck
Þ
��

ð7Þ

For each site, this equation considers all possible edges u (and v) on which the mutation

occurs and assumes that the edge the mutation occurs on should have the highest likelihood

value. This equation does not contain the parameters of Pr(u|T, R, e), and is defined only by

the tree topology (T), the tip relative abundances (R) and the error rate (e). This equation

allows MCMC to converge much faster. After the estimation on the tree topology, tip frequen-

cies and error rate, the edge lengths will be computed in the next step. The details will be

shown in the later subsection “Estimation on edge lengths”.

We now define P(T, R, e|A) as the posterior probability of the tree topology T, the tip rela-

tive abundances R, and the sequencing error e given the alignment A.

PðT;R; ejAÞ / LðAjT;R; eÞPðTÞPðRÞPðeÞ

where PðTÞ; PðRÞ; PðeÞ are the prior probabilities of T;R; e; respectively
ð8Þ

Identifying invariable sites

As noted above, a truly invariable site may appear to be a SNP because of sequencing errors.

To speed up the computation, AFPhyloMix skips all the sites which are identified as invariable

sites. Let the maximum value of the sequencing error rate be emax (in our application of

AFPhyloMix, emax is set to 0.01). A site is regarded as an invariable site if there exists only one

nucleotide such that the percentage of the reads having that nucleotide covering the site is

higher than emax. Let I be the set of these sites which are identified as invariable sites; then

LðAjT;R; eÞ /
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Markov chain Monte Carlo implementation

AFPhyloMix adopts a Bayesian model of inference to obtain an estimate of the joint posterior

probability of phylogenies, haplotype relative abundances, and sequencing error, using Mar-

kov chain Monte Carlo (MCMC) sampling [13, 14]. The MCMC approach has been exten-

sively used in phylogenetic analysis [15, 16], but sampling chains may not mix as well as they

should. To overcome this, the Metropolis-coupled Markov chain Monte Carlo (MCMCMC)

approach was developed by [17]. Although MCMCMC requires multiple parallel sampling

chains to be run simultaneously (and thus, has demanding computational overheads), the

approach has been demonstrated to improve mixing and convergence to a stationary posterior

probability distribution [18].

We implemented MCMCMC in AFPhyloMix, and the details of implementation are listed

in the Supporting information. AFPhyloMix reports the posterior probabilities, the tree topol-

ogy, and the tip relative abundances along the cold chain every, by default, 100 rounds.

Because the tip relative abundances may change along the chain, the consensus of the trees is
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not easy to compute. For the sake of simplicity, AFPhyloMix also reports the tree topology and

the tip relative abundances which gives the highest value among all the resulting posterior

probabilities along with the computation. The performance of AFPhyloMix was then evaluated

based on this tree topology and the tip relative abundances.

Estimation on edge lengths

After AFPhyloMix estimates the topology T, the tip relative abundances R, and the sequencing

error e for the mixture of short read sequences from n haplotypes, AFPhyloMix calculates the

edge lengths in T (with edges e1, � � �, e2n−2) by the following method.

Let length(u) be the length of edge eu. In AFPhyloMix, length(u) is approximated as the

probability of having mutation on edge u along the tree. Note that length(u = 0) is the probabil-

ity of no mutation along the tree (i.e. ∑0�u�2n−2 length(u) = 1).

lengthðuÞ ¼ Prðedge uÞ

¼

P
iPrðedge u at site iÞ

P
u0 f
P

iPrðedge u0 at site iÞg

where Pr(edge u at site i) is the probability of a mutation on edge u of the tree at site i.
As described above, the whole genome is partitioned into non-overlapping windows

(W1, W2, � � �, Wk, � � �) of size d (d was set to 100), and inside each window Wk a reference site

ck 2Wk is selected. For every site i (say it is inside the window Wk), we consider the connection

between the site i and the reference position ck. For i 6¼ ck, let nick
ðp; qÞ, where p, q 2 {0, 1, 2, 3},

be the number of reads observed having nucleotide p at site i and nucleotide q at site ck on the

same read. Define Aick
¼ fnick

ðp; qÞjp; q 2 f0; 1; 2; 3gg as the observed combinations of charac-

ters on the same reads at the sites i and ck. Similarly, for i = ck, let nck
ðqÞ, where q 2 {0, 1, 2, 3} be

the number of reads observed having nucleotide q at site ck, let Ack
¼ fnck

ðqÞjq 2 f0; 1; 2; 3gg

be the observed pattern of characters on the reads at the site ck, and let T̂ , R̂, ê be the estimated

values of topology, tip relative abundances, and sequencing error, respectively.

To calculate Pr(edge u at site i), two cases are considered:

• Case 1: i 6¼ ck (i.e. the site i is not the reference site of the window);

• Case 2: i = ck (i.e. the site i is exactly the reference site of the window).

For case 1,

Prðedge u at site iÞ

¼

P
v

nP
rck

nP
ri
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o
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For case 2,

Prðedge u at site ckÞ ¼

P
rck

LðAck
ju; rck

; T̂ ; R̂; êÞPrðrck
Þ

P
u0

nP
rck

LðAck
ju0; rck
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Þ
o

Pr(ri) and Prðrck
Þ are the probabilities of the root states ri and rck

, which are set to the

observed proportions of ri and rck
in A, respectively. LðAick

ju; v; ri; rck
; T̂ ; R̂; êÞ is the likelihood

value of the observed combinations of characters on the same reads at the sites i and ck given

the estimated topology T̂ , the estimated tip relative abundances R̂, the estimated sequencing

PLOS COMPUTATIONAL BIOLOGY Phylogeny reconstruction using short-read sequences from pooled samples without barcodes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008949 September 13, 2021 10 / 21

https://doi.org/10.1371/journal.pcbi.1008949


error ê, the mutations on edges u and v, and the root states ri and rck
for the sites i and ck,

respectively, while LðAck
ju; rck

; T̂ ; R̂; êÞ is the likelihood value of the observed pattern of char-

acters on the reads at the site ck given T̂ , R̂, ê, the mutation on edge u and the root state rck
for

the site ck. The computation of LðAick
ju; v; ri; rck

; T̂ ; R̂; êÞ is listed in Eq 3, while the calculation

of LðAck
ju; rck

; T̂ ; R̂; êÞ can be done similarly. Whereas it is theoretically possible to simulta-

neously infer edge lengths and topologies, in preliminary simulations, we have found that this

does not deliver accurate results. We think that this is because, in the absence of sequence

information at the tips, inferred mutations will naturally favour long branches, thus lowering

the probability of seeing short branches. Instead, we adopt a two-step approach, in which the

first step focuses on optimization of the tree topology, the tip relative abundances, and the

sequencing error rate, while the second step computes the values of the edge lengths. Because

of the fewer number of parameters needed to be estimated in the first step, we see that the

MCMC chain converges at a faster rate, especially as the number of haplotypes increases.

Removal of the sites that violate the infinite sites model

As noted previously, AFPhyloMix uses an infinite sites model of evolution, and thus assumes

that every site has no or only one mutation in its evolutionary history. Before AFPhyloMix

proceeds to estimate the topology and the tip relative abundances, AFPhyloMix examines the

read alignments and attempts to identify SNP sites which have more than one mutation. The

procedure to identify these sites is as follows:

1. If the SNP site has more than two different nucleotides supported by at least emax (i.e. 1%)

of the reads, then the SNP site is ignored.

2. We consider SNP sites with only two different nucleotides, with each nucleotide supported

by at least 1% of the reads. If there is no back/hidden mutation, two SNP positions will give

at most three combinations (as mentioned before). Based on this observation, the following

simple method has been developed to identify the sites which are likely to have back/hidden

mutations:

For a SNP site i, we check all other SNP sites j such that there are sufficient number of reads

covering both sites i and j. If there are at least d sites (i.e. j1, j2, � � �, jd) which separately have

more than three combinations supported by at least 1% of the reads when paired with site i,
then site i is regarded having back/hidden mutations and it is discarded. We have tested for

different values of d on simulated data and found that when d = 3 the method performed

well in terms of accuracy.

Experiment and results

Both simulated and real data were used to evaluate AFPhyloMix.

Simulated data

To evaluate AFPhyloMix using simulated data sets, six hundred data sets were simulated and

each data set was a mixture of various numbers (n) of haplotypes, where n 2 {5, 7, 9, 11, 13, 15}

(100 data sets each). In each data set, the n haplotypes were mixed in different random concen-

trations (with the difference between any two haplotypes� 0.0033). Paired-end reads of length

150bp with total coverage of 15,000x (where the coverage of the haplotype with the least con-

centration is 250x) were simulated by ART with the Illumina HiSeq 2500 error model—HS25,

from n 50k-long haplotype sequences, which were generated by INDELible using JC model
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from a n-tip tree with 0.03 root-to-tip distance randomly created by Evolver [19] from PAML

package [20].

The root sequence reported by INDELible [10] was used as the reference sequence. After

using BWA [21] to align the reads against the reference sequence, we ran AFPhyloMix under

the default settings on the read alignments to estimate the tree topology and the tip relative

abundances (i.e., haplotype concentrations) for the mixture. By default, AFPhyloMix runs 8

MCMC processes in parallel: one cold chain and seven hot chains, and each chain runs 650K

(for mixture with 5 sub-samples) to 1150K (for 15 sub-samples) iterations, depending on the

number of edges in the resulting tree. Fig 4 shows a result from AFPhyloMix on a simulated

data set with a mixture of 15 sub-samples. Fig 4A displays the posterior probabilities along the

cold chain of MCMCMC process while running the AFPhyloMix. The posterior probabilities

increased rapidly during the burn-in period and then appeared to stabilise to an equilibrium

distribution. Fig 4B shows the distribution of tip relative abundances along the cold chain of

MCMCMC process from AFPhyloMix. The distribution was found to match the expected tip

relative abundances (marked with red dots) in the real tree used to simulate the data set. Fig

4C is the resulting tree from AFPhyloMix with tip relative abundances. This is the tree with

the highest posterior probability along the cold chain of the MCMCMC process. The tree is

topologically congruent with the real tree (Fig 4D) and the tip relative abundances are also

very similar with the real sub-sample concentrations.

Fig 5A shows the summary on the accuracy of AFPhyloMix running on the simulated data

sets. Among the data sets with the same number of haplotypes, the figure shows the percentage

of data sets with correct estimation on both topologies and tip relative abundances. An esti-

mated result is regarded as correct if the tips on an estimated tree can be paired up with the tips

on the actual tree satisfying the following conditions: (1) the difference between the estimated

tip relative abundances and the corresponding true tip relative abundances is less than 0.01;

and (2) their unrooted topologies are identical. Details of the method on pairing between the

tips on an estimated tree and those on the actual tree is listed in Supporting information. From

the figure, AFPhyloMix achieved at least 80% accuracy for the mixtures with up to 15

haplotypes.

To further examine the deviation between the predicted tip relative abundances and the

actual sample concentrations, and that between the estimated and the actual edge lengths,

for each data set with correct estimation, we computed the root-mean-square value of the

differences between the estimated and the actual values. Fig 5B and 5C show the summary

on the distributions of the root-mean-square of the differences for the tip frequencies and

the edge lengths. The values rise gradually as the number of haplotypes increases. For tip

relative abundances, the root-mean-square values were all below 0.0012, while over 75% of

the cases were below 0.0008. For edge lengths, the root-mean-square values were all below

0.005.

The pooled 95% highest posterior density of the MCMCMC estimate of error rates on these

simulated data sets was between 0.00199 and 0.00204 with an average 0.00202. ART [9] reports

the errors for the reads simulated by the error model HS25; in our simulations, we obtained a

simulated error rate of 0.00190. AFPhyloMix relies on the alignment of reads against a root

sequence to obtain the marginal posterior probability distribution of error rates. We expect,

therefore, that the slightly higher value (� +0.00012) of the MCMCMC estimate of error rates

on these simulated data sets, compared with the simulated error rate reported by ART, is likely

due to imperfect alignment between simulated reads and the root sequences.

The experiments were conducted on machines with 4 x 16-core Intel Xeon 2.10GHz CPUs.

The running times of AFPhyloMix were listed in the Table 1.
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Real data

Apart from the simulated data sets, mixtures of reads from kangaroo haplotypes were also

used to evaluate the performance of AFPhyloMix.

Fig 4. The result of AFPhyloMix on a simulated data set with a mixture consisting of 15 sub-samples. AFPhyloMix was run under the default

settings on the read alignments of a simulated mixture of 15 sub-samples in order to estimate the tree topology and the tip relative abundances. (A) The

posterior probabilities along the cold chain of MCMCMC process while running the AFPhyloMix, which increased rapidly during the burn-in period

and then frustrated steadily over a range of values and was reaching a convergence. (B) The distribution of tip relative abundances (i.e. sub-sample

concentration) along the cold chain of MCMCMC process from AFPhyloMix. The actual sub-sample concentrations are marked by the red dots. (C)

The tree with tip relative abundances having highest posterior probability along the computation reported by AFPhyloMix. (D) The real tree with the

actual sample concentration used for simulating the data set.

https://doi.org/10.1371/journal.pcbi.1008949.g004

PLOS COMPUTATIONAL BIOLOGY Phylogeny reconstruction using short-read sequences from pooled samples without barcodes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008949 September 13, 2021 13 / 21

https://doi.org/10.1371/journal.pcbi.1008949.g004
https://doi.org/10.1371/journal.pcbi.1008949


DNA material collection and extraction. In Australia, kangaroo are not farmed, but are

culled annually to control population numbers. Culled animals are butchered by certified

butchers, and the meat is sold in supermarkets. As the exact provenance of kangaroo meat sold

at supermarkets is unknown, meat (produced by Macro Meats) was purchased at local super-

markets in the Australian Capital Territory (Coles Supermarkets Australia Pty Ltd and

Fig 5. Performance of AFPhyloMix on simulated data. (A) Accuracy of AFPhyloMix—The percentage of data sets

(out of 100), for different number of haplotypes, with correct estimated topologies and predicted tip relative

abundances. (B) Root-mean-square differences between the actual- and the predicted tip relative abundances. (C)

Root-mean-square differences between the actual and the predicated edge lengths. The accuracy decreased gradually

while the variation between the estimated and the actual haplotype relative abundances and the edge lengths increased

with the number of tips.

https://doi.org/10.1371/journal.pcbi.1008949.g005

Table 1. Average running time of AFPhyloMix on the simulated data sets.

Number of tips Running time

5 4.0 hours

7 14.5 hours

9 22.3 hours

11 39.8 hours

13 76.8 hours

15 112.6 hours

https://doi.org/10.1371/journal.pcbi.1008949.t001
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Woolworths Ltd) on 10 separate occasions over one year (from 29th May 2018 to 26th July

2019), to avoid sampling the same animal. According to statistics from the Department of the

Environment and Energy of Australia, they should be of genus Macropus, and most likely east-

ern grey kangaroo, Macropus giganteus, as it is the largest population with the highest quota in

New South Wales, Australia [22].

Approximately 30 mg of meat was excised and homogenized for each individual. Genomic

DNA was then extracted using the DNeasy Blood & Tissue Kits (Qiagen) following the manu-

facturer’s protocol.

Amplification and sequencing. Long PCR amplification of complete kangaroo mito-

chondrial genomes was carried out using the pair of primers (Lt12cons: 5’- GGGATTAGA

TACCCCACTAT -3’, HtPhe: 5’-CCATCTAAGCATTTTCAGT -3’), which was selected from

a previous study [23]. PCR reactions was performed using Takara PrimeSTAR GXL DNA

Polymerase under the following conditions: 1 min initial denaturation at 95˚C, followed by 30

cycles of 10 s at 98˚C, 15 s at 55˚C, and 15 min at 68˚C. The PCR products were electropho-

resed in 1% agarose gel, purified the fragments, and then randomly fragmented to 650 bp by

sonication (Covaris S220).

Library preparation and sequencing were performed by GENEWIZ. Amplified fragments

of all 10 individuals were sequenced under the same run. In order to obtain a highly reliable

phylogenetic tree of these sub-samples for evaluating our method, each individual was bar-

coded with unique indices before multiplexing and sequencing, so that each short read

sequence could be identified to the corresponding sub-sample. The relative concentrations of

the sub-samples are listed in the Table 2 (2nd column). Sequencing was performed on an Illu-

mina MiSeq machine with paired-end read length of 2 x 300 bp.

Phylogenetic tree reconstruction. To start with, a reliable phylogenetic tree of the haplo-

types was constructed, so that this gold-standard result could be used to evaluate our method.

First, all the short read sequences were demultiplexed into sub-samples according to the bar-

codes appended on the sequences. Then de-novo assembly was performed on the short reads

for each sub-sample separately by SOAPdenovo-Trans-127mer from SOAPdenovo-Trans

package [24] with parameter: kmer-size = 91. After the mitochondria DNA sequences of the

10 haplotypes were constructed, a multiple sequences alignment was computed by MAFFT [4]

with G-INS-i strategy in Geneious 11.1.5 [25]. The phylogenetic analysis was conducted using

IQ-TREE [26] with the evolutionary model HKY+F+I, and the ML phylogenetic tree (shown

in Fig 6B) was used as the reference tree to evaluate our method.

Table 2. Concentration of kangaroo sub-samples.

Sub-sample ID Concentration Concentration without K01

K01 0.019 -

K02 0.029 0.030

K03 0.045 0.046

K04 0.047 0.048

K05 0.094 0.096

K06 0.102 0.104

K07 0.125 0.127

K08 0.130 0.132

K09 0.188 0.192

K10 0.221 0.225

Total 1.000 1.000

The relative concentration between different kangaroo sub-samples.

https://doi.org/10.1371/journal.pcbi.1008949.t002
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The short read sequences from 10 haplotypes were then mixed, and the barcode of each

haplotype was removed. Trimmomatic [27] was run on the mixture of reads to remove adap-

tors, leading and trailing low quality bases by using the options: “ILLUMINACLIP:Tru-

Seq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36”.

Next, the reads were aligned to the reference sequence of the eastern gray kangaroo mitochon-

drial genome (GenBank Accession Number: NC_027424) by BWA [21] and the alignments

with mapping quality score (MAPQ) lower than 20 were discarded.

AFPhyloMix was used with the short-read alignment to estimate the phylogenetic tree and

the relative abundances of each haplotype. For each read, AFPhyloMix discarded the nucleo-

tides with base quality score lower than 25. Fig 6A shows the reported tree, as well as the tip

relative abundances, with the highest posterior probability obtained. The tip labels inside the

brackets were added manually after comparing with the tree reported by IQ-Tree (in Fig 6B),

indicating the corresponding sample that each tip should be assigned according to the topol-

ogy and the tip relative abundances. Overall, the topology and the tip relative abundances

recovered by AFPhyloMix matched the tree from IQ-Tree, except that AFPhyloMix combined

two haplotypes K01 and K07 into one. From the tree reported by IQ-TREE, the distance

between the tips K01 and K07 is 0.00054 (99.946% similarity between these two sequences).

The method could not distinguish the two too-similar sequences, and thus regarded them as

the same sequence.

To determine whether these two nearly identical sequences affected the performance of

AFPhyloMix, we removed the sub-sample of K01 and re-estimated the phylogeny with the

same method described above. The updated relative concentrations of the remaining haplo-

types among the mixture is shown in Table 2 (3rd column). Both AFPhyloMix and IQ-TREE

Fig 6. Result on a real data set with mixture of 10 sub-samples. (A) The tree with tip relative abundances reported by

AFPhyloMix. (B) The tree reported by IQ-Tree [26]. Note that the tip labels inside the brackets in (A) were added manually

after comparing with the tree reported by IQ-Tree, indicating the corresponding sample that each tip should be assigned to

according to the topology and the tip relative abundances.

https://doi.org/10.1371/journal.pcbi.1008949.g006
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analyses resulted in the same topology associated with tip relative abundances well matched

the concentrations of those 9 haplotypes (in Fig 7).

The 95% highest posterior density of the MCMCMC estimate of error rates on the real data

sets was between 0.000722 and 0.000735 with an average 0.000729. In order to compute the

underlying actual error rate on the real data set, reads which had been processed by Trimmo-

matic [27], were compared with the corresponding assembled haplotype and the error rate of

0.000713 was obtained, after discarding the read bases with base quality scores lower than 25

(the same criteria AFPhyloMix used to filter out the low-quality read bases). Again, the slightly

higher value (� +0.000016) of the MCMCMC estimate of error rates on the real data sets com-

pared with the obtained error rate is consistent with what we observed with simulated data,

and is likely due to the imperfect alignment between the reads and the reference sequence.

Discussion

This research demonstrates the feasibility of reconstructing a phylogenetic tree directly from

the short read sequences obtained from a mixture of closely related amplified sequences, with-

out barcoding. The results indicate that our methods work well on the simulated data set for a

mixture of reads generated from up to 15 haplotypes and on a real data set of a mixture with

10 haplotypes.

Perhaps unsurprisingly, AFPhyloMix worked better on the simulated data sets than in the

real data sets when it came to estimating haplotype concentrations. The root-mean-square dif-

ference between the estimated sub-samples concentrations and the expected concentrations in

the real data sets was 0.0059 (from Fig 7), which was larger than those in the simulated data

Fig 7. Result on a real data set with mixture of 9 sub-samples. The haplotype K01 was removed from the mixture and the

experiment was repeated. (A) The tree with tip relative abundances reported by AFPhyloMix. (B) The tree reported by

IQ-TREE [26]. Note that the tip labels inside the brackets in (A) were added manually after comparing with the tree reported

by IQ-Tree, indicating the corresponding sample that each tip should be assigned to according to the topology and the tip

relative abundances.

https://doi.org/10.1371/journal.pcbi.1008949.g007
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sets (i.e. all were below 0.0027 in Fig 5B). Of course, the expected haplotype concentrations

may have differed from the true concentrations in the mixture: the physical act of mixing

small volumes could have led to differences in the relative concentrations of haplotypes, and

this may have contributed to a higher-than-expected root-mean-square.

Another factor affecting the performance of the method is the varying coverage of short

read sequences along the genome. Fig 8A shows the actual distribution of the read alignments

of 10 haplotypes along the genome. We expected read coverage to vary along the genome ran-

domly, without any association to haplotypes. Surprisingly, we found that, when all the haplo-

types were sequenced under the same run (i.e. all haplotypes were pooled into the same library

before sequencing), the read coverages of the haplotypes had similar trends: all had relatively

high (or low) read coverages at the same regions of the genome. The similar trends of the read

coverages along the genome between the haplotypes led to a consistent distribution of the

ratios of haplotypes along the genome (Fig 8B). The consistent read coverage ratios along the

genome worked in our method’s favor; however, we noticed that a few short regions on the

genome had sudden changes in the ratios of the read coverage amongst haplotypes (Fig 8B). In

these regions, some reads were trimmed after the alignment against the reference sequence or

could not be aligned to the reference sequence due to the dissimilarity between the read

Fig 8. Distribution of the read alignments of 10 haplotypes against the reference genome. (A) The absolute read

coverages along the genome. (B) The ratios on read coverages between sub-samples along the genome.

https://doi.org/10.1371/journal.pcbi.1008949.g008
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sequences and the reference sequence. Another preprocessing step was therefore developed in

AFPhyloMix, in which read alignments were examined and problematic regions removed if

more than r reads in those regions were trimmed (r was set to 2% of the read coverage).

AFPhyloMix’s performance also depends on the SNP frequency and the read length. Too

short a read length or too low a SNP frequency will mean that any given read will be unlikely

to have more than a single SNP. If this happens, it will confound AFPhyloMix’s use of SNP

pairs.

AFPhyloMix only considers the association between two SNP sites, but it is sensible to con-

sider the association between more SNP sites in order to acquire higher sensitivity of the meth-

ods especially when the number of haplotypes increases. The time complexity of the algorithm

is O(mnd) where n is the number of haplotypes, m is the number of potential SNP sites, and d
is the number of SNP sites used to construct patterns of nucleotides. In our current implemen-

tation of AFPhyloMix, d = 2. The running time of the algorithm will increase exponentially as

d increases. It will be a challenge to come up with a faster algorithm and consider the associa-

tion between more SNP sites.

Finally, it is worth noting that we have applied AFPhyloMix to sequences of closely related

individuals—in our simulations, we set a root-to-tip distance of 0.03. The assumption of an

infinite sites model that is applied in AFPhyloMix is appropriate for closely-related individuals.

Amongst other things, the infinite sites model allows us to constrain the number of site pat-

terns we expect to see, and use deviations from these expected patterns to error-correct. To

extend our algorithm to more divergent sequences will require a different model of mutation.

This remains a work in progress.

Conclusion

AFPhyloMix is designed to estimate the concentration of haplotypes and reconstruct the phy-

logenetic tree directly from the short read sequences in the mixture of haplotypes with no bar-

code, given that the number of haplotypes is known. This research demonstrates the feasibility

of our approach, and is a first attempt to infer the phylogenetic tree from the mixture of reads

unidentifiable to haplotypes, bypassing the assembly process of multiple genomic sequences.

The experimental results have demonstrated that AFPhyloMix works reasonably well for both

simulated data and real data.

Supporting information

S1 Fig. Performance of AFPhyloMix on simulated data with different read coverage. (A)

Accuracy of AFPhyloMix between data sets of which the least abundant haplotype has at least

250x and 100x read coverages. (B) Root-mean-square differences between the actual and the

predicted tip relative abundances for data sets with different read coverages. (C) Root-mean-

square differences between the actual and the predicated edge lengths for data sets with differ-

ent read coverages.

(TIF)

S2 Fig. Performance of AFPhyloMix on simulated data evolved under two different substi-

tution models. (A) Accuracy of AFPhyloMix between data sets evolved under a simple model

—JC and a model with site variation—JC+G. (B) Root-mean-square differences between the

actual and the predicted tip relative abundances for data sets evolved under JC and JC+G. (C)

Root-mean-square differences between the actual and the predicated edge lengths for data sets

evolved under JC and JC+G.

(TIF)
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S1 Text. Evaluation of AFPhyloMix on other simulated data sets.

(PDF)

S2 Text. Implementation details in Markov chain Monte Carlo.
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S3 Text. To check the correctness of an estimated tree and report the minimum root-

mean-square difference between the estimated and the actual haplotype relative abun-

dances.
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