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Abstract: Non-communicable diseases (NCD) are the leading cause of death and disability worldwide.
The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases
and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies
are extensively sought. Marine organisms are considered as an important source of bioactive
peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological
investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity
effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting
the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived
bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer’s
well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive
peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles
in NCD.
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1. Introduction

Non-communicable diseases (NCD), sometimes referred to as chronic diseases, are the leading
cause of death and disability globally [1,2]. NCD are not passed from person to person, and these
diseases are of long duration and slow progression. Many of the NCD are strongly associated
with lifestyle-related choices (unhealthy diet, physical inactivity, and tobacco and alcohol use),
and environmental and genetic factors [3]. The four main leading causes of NCD deaths are
cardiovascular diseases (CVD), cancers, respiratory diseases and diabetes [4]. In 2012, CVD was
responsible for around 17.5 million deaths (46.2% of NCD deaths), while cancers around 8.2 million
deaths (21.7% of NCD deaths) (Figure 1).

NCD are increase rapidly poses one of the major health challenges of the 21st century. Of the
56 million global deaths in 2012, 68% or 38 million were attributed to NCD and projected to rise
further worldwide. It has been predicted by the World Health Organization of the United Nations
(WHO) that NCD will be responsible for a significant increase total number of deaths in the next decade.
The greatest NCD increase is expected to be seen in low and middle income countries where 80% of
NCD deaths occur. Notably, NCD are projected to surpass communicable, maternal, perinatal and
nutritional diseases as the most common cause of death by 2030 in Africa [5]. The rapidly growing
burden of NCD in low and middle income countries is not only accelerated by population aging,
but also by the negative impact of globalization [2].
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Recognizing the devastating impact of NCD, novel preventive and therapeutic strategies are
extensively sought. Many research groups have combed both terrestrial and marine natural resources
for NCD remedies [4,6–8]. Marine organisms are consistently exposed to biotic and abiotic pressures,
which exert an influence on the organisms physiology, leading to the production of metabolites to
survive and thrive [4,9]. Therefore, marine organisms are reservoirs of structurally diverse bioactive
materials with numerous biological effects for human’s body. These bioactive materials include
polysaccharides (agar, alginates, carrageenan, fucoidan, ulvan, laminarin, porphyran, and fulcellaran),
pigments (chlorophyll, carotenoids, and phycobillins), protein and peptides, polyunsaturated fatty
acids (PUFA), polyphenols, and other bioactive compounds. Among marine-derived bioactive
materials, much attention has been paid to unraveling the structural and biological properties
of bioactive peptides. Depending on the structural and sequence of amino acids, these peptides
can exhibit diverse activities for NCD remedies, including cardio protective, antihypertensive,
anticancer, anti-diabetic, and antioxidative. Not restricted to one activity, many of the bioactive
peptides are multifunctional and can exert more than one of the effects mentioned. For above
reasons, marine-derived bioactive peptides are considered prominent candidates for NCD prevention
and treatment.

This article focuses on bioactive peptides reported from fish, mollusks, crustaceans, and seaweeds.
It highlights and compiles the most relevant studies on the structural diversity of peptides found in
these marine organisms and outlines their potential as candidate raw materials for the generation of
bioactive peptides. Notably, their possible biological role with potential utilization as NCD prevention
and remedy will be briefly discussed. Furthermore, some purification and isolation technique of
marine-derived bioactive peptides will be outlined.

2. Marine-Derived Cardio Protective Peptides

The CVD is the leading cause of death and diseases burden in many countries [10,11]. The major
independent risk factor for CVD is hypertension. In 2000, the estimated total number of adults with
hypertension was nearly one billion or equal to 25% of the total adult population worldwide. The total
number of adult with hypertension was predicted to increase to a total of 1.56 billion (60% of the total
adult population) in 2025 [12].

The important regulator of blood pressure homeostasis in mammals is renin-angiotensin
system (RAS). Renin (EC 3.4.23.15) converts angiotensinogen to angiotensin I, and it will be converted to
biologically active angiotensin II by angiotensin-I converting enzyme (ACE, peptidyldipeptide hydrolase,
EC 3.4.15.1), which ultimately leads to hypertension. In addition, ACE regulates the inactivation of
bradykinin [13]. Therefore, ACE and renin inhibitor makes a positive contribution to hypertension
treatment and specific inhibitors are currently used in pharmaceuticals. Synthetic hypertension drugs
such as captopril, enalapril, and lisinopril are remarkably effective; however, they are known to cause
adverse side effects. Hence, search for natural antihypertensive as alternative to synthetic inhibitors are



Mar. Drugs 2017, 15, 67 3 of 23

of interest. Marine-derived anti-hypertensive peptides have shown potent renin and ACE inhibitory
activities (Figure 2) and, therefore, potential to be used and developed as cardio protective peptides.
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Figure 2. Potent renin and angiotensin-I converting enzyme inhibitory activity of marine-derived
anti-hypertensive peptides.

2.1. Marine-Derived Renin Inhibitory Peptides

Renin has long been recognized as the key regulator of RAS, which has an established role in
controlling blood volume, arterial pressure, and cardiac and vascular function [14]. The first new class
of orally active, non-peptide, low molecular weight renin inhibitors was discovered in Switzerland.
The renin inhibitor was named Aliskiren (formerly CGP 60536) [15]. Afterwards, many studies have
identified renin inhibitory substances derived from plant sources.

In 2012, Fitzgerald and his colleagues had successfully isolated and characterized renin inhibitory
peptides derived from marine red algae Palmaria palmata papain hydrolysates [16]. The tridecapeptide
sequence was identified as Ile-Arg-Leu-Ile-Ile-Val-Leu-Met-Pro-Ile-Leu-Met-Ala. In vivo result showed
that P. palmata hydrolysate and tridecapeptide reduced spontaneously hypertensive rat (SHR) blood
pressure when administered orally after a 24 h period. After 24 h, SHR group fed the P. palmata
hydrolysate recorded a drop of 34 mm Hg in systolic blood pressure (SBP), while the group fed the
tridecapeptide presented a drop of 33 mm Hg in blood pressure compared to the SBP recorded at time
zero [17]. It was concluded that the potential active form of the peptide is dipeptides originated along
the passage through gastrointestinal tract [18]. Further, P. palmata protein hydrolysate was formulated
in wheat bread. Four percent P. palmata protein hydrolysate content in wheat bread did not affect the
texture or sensory properties of the bread to a large degree. Interestingly, wheat bread containing the
hydrolysate retained renin inhibitory bioactivity after the baking process; therefore, baked products
may be one of the suitable delivery vehicles for bioactive peptides as renin inhibitor [19].

2.2. Marine-Derived ACE Inhibitory Peptides

It was revealed that ACE inhibitors significantly reduced the mortality of heart failure patients.
Marine-derived ACE inhibitory peptides have been studied intensively and the first one was isolated
from sardine by a Japanese scientist [20]. Afterwards, many other marine-derived ACE inhibitory
peptides have been discovered. Up to now, more than 125 ACE-inhibitory peptides sequences have
been isolated and identified from marine organisms. The potency of marine-derived ACE inhibitory
peptides are normally expressed as half maximal inhibitory concentration (IC50) value, which is
the ACE inhibitor concentration leading to 50% inhibition of ACE activity [8]. The ACE inhibition
patterns of marine-derived ACE inhibitory peptides were analyzed by Lineweaver–Burk plot and
the competitive inhibitions are the more frequent reported pattern compared to non-competitive
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inhibition [21]. Competitive inhibition means that marine-derived ACE inhibitory peptides can bind
to the active site to block it or to the inhibitor binding site that is remote from the active site to alter the
enzyme conformation such as that the substrate no longer binds to the active site [22].

As summarized in Table 1, peptides derived from algae, tuna, shark and salmon showed stronger
ACE inhibitory activity compared to other marine organisms such as oyster, sipuncula, and jellyfish.
The ACE inhibitory activity of marine-derived bioactive peptides were higher compared to ACE
inhibitory peptide-derived from terrestrial food source (i.e., milk, chicken muscle and bovine) [23,24].
Marine-derived ACE inhibitory peptides are generally short chain peptides [18,25–27]. It was reported
that amino acid residues with bulky side chain as well as hydrophobic side chains were more active
for dipeptides [28]. Meanwhile, for tripeptides, the most favorable residue for the C-terminus was
aromatic amino acids, positively charged amino acid in the middle and hydrophobic amino acid in the
N-terminus [29]. Molecular weight is also an important factor on ACE inhibitory activity of peptides.
Generally, ACE inhibitory peptides are short sequences of hydrophobic amino acids, and have low
molecular weights.

Table 1. ACE inhibitory activity of marine-derived bioactive peptides.

Source Extraction Sequence Inhibition (IC50) References

Seaweed
(Undaria pinnatifida)

Hot water extraction; Chromatography Ile-Tyr 2.7 µM [18]

Enzymatic hydrolysis (Protease S);
Chromatography Ile-Trp 1.5 µM [30]

Seaweed
(P. yezoensis) Chromatography Ala-Lys-Tyr-Ser-Tyr 1.52 µM [31]

Microalgae
(Spirulina platensis)

Enzymatic hydrolysis (Pepsin);
Chromatography Ile-Ala-Pro-Gly 11.4 µM [32]

Yellowfin tuna
(Neothunnus macropterus) Chromatography Pro-Thr-His-Ile-Lys-

Trp-Gly-Asp 2 µM [33]

Skipjack tuna
(Katsuwonus pelamis) bowels Chromatography Leu-Arg-Pro 1 µM [34]

Alaska Pollack skin
(Theragra chalcogramma)

Enzymatic hydrolysis
(serial protease); Chromatography Gly-Pro-Leu 2.6 µM [35]

Chum salmon
(Oncorhynchus keta) muscle

Enzymatic hydrolysis (Thermolysin);
Chromatography Val-Trp 2.5 µM [36]

Pink salmon
(Oncorhynchus gorbuscha)

Enzymatic hydrolysis (papain);
Chromatography Ile-Trp 1.2 µM [37]

Skate skin
(Okamejei kenojei)

Enzymatic hydrolysis
(alkalase/protease); Chromatography

Met-Val-Gly-Ser-Ala-
Pro-Gly-Val-Leu 3.09 µM [38]

Small-spotted catshark
(Scyliorhinus canicula)

Enzymatic hydrolysis
(Trypsin, subtilisin); Chromatography Val-Ala-Met-Pro-Phe 0.44 µM [39]

Pelagic thresher
(Alopias pelagicus) muscle

Enzymatic hydrolysis (thermolysin);
Chromatography Ile-Lys-Trp 0.54 µM [26]

Marine shrimp
(Acetes chinensis)

Enzymatic hydrolysis (Protease);
Chromatography Ile-Phe-Val-Pro-Ala-Phe 3.4 µM [40]

Fermentation; Chromatography Asp-Pro 2.15 µM [41]

Enzymatic hydrolysis (Pepsin);
Chromatography Leu-His-Pro 3.4 µM [42]

Izumi shrimp
(Plesionika izumiae Omori, 1971)

Enzymatic hydrolysis (Protease);
Chromatography Ser-Thr 4.03 µM [43]

Jellyfish
(Rhopilema esculentum)

Enzymatic hydrolysis (pepsin, papain);
ultrafiltration; Chromatography Gln-Pro-Gly-Pro-Thr 80.67 µM [44]

Sipuncula
(Phascolosoma esculenta)

Enzymatic hydrolysis (Pepsin);
Chromatography

Ala-Trp-Leu-His-Pro-
Gly-Ala-Pro-Lys-Val-Phe 135 M [45]

Pearl oyster
(Pinctada fucata martensii)

Enzymatic hydrolysis (Pepsin);
Chromatography Ala-Leu-Ala-Pro-Glu 167.5 µM [46]

Many in vivo studies in SHR and hypertensive human volunteers demonstrated that marine-derived
ACE inhibitory peptides significantly reduce blood pressure. For example, bonito oligopeptide (at a dose
of 3 mg/day) decreased blood pressure in human subjects with borderline or mild hypertension.
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More recently, the purified oligopeptide from bonito was optimized by ultrafiltration methods.
The optimized bonito peptide (at a dose of 1.5 mg/day) showed anti-hypertensive effects in a double-blind,
randomized, cross-over study in 61 human subjects with borderline or mild hypertension without any
side-effects [47,48]. Subsequent report indicated that bonito oligopeptide played a direct action on
relaxation of vascular smooth muscle in addition to the ACE-inhibitory activity [49].

Anti-hypertensive effect of peptides-derived from fish gelatin has already been reported
in SHR. Peptides-derived from O. kenojei inhibited vasoconstriction via PPAR-c expression, activation
and phosphorylation of eNOS in lungs. The peptides also involved in the expression levels
of endothelin-1, RhoA, a-smooth muscle actin, cleaved caspase 3 and MAPK were decreased
by SAP in lungs. SP1 (Leu-Gly-Pro-Leu-Gly-Val-Leu, molecular weight (MW): 720 Da) and SP2
(Met-Val-Gly-Ser-Ala-Pro-Gly-Val-Leu, MW: 829 Da) showed potent ACE inhibition with IC50

values of 4.22 and 3.09 µM, respectively [38]. Peptide from tuna and chum salmon (O. keta) also
showed potent anti-hypertensive activity as tested in SHR [50,51]. Oral administration of tuna
peptides (Gly-Asp-Leu-Gly-Lys-Thr-Thr-Thr-Val-Ser-Asn-Trp-Ser-Pro-Pro-Lys-Try-Lys-Asp-Thr-Pro,
MW: 2480 Da) in SHR decreased SBP of 21 mmHg. Lee et al. (2014) demonstrated that oral
administration (20 mg/kg) of chum salmon peptides showed a strong suppressive effect on SBP of SHR.
They claimed that antihypertensive activity of chum salmon peptide was similar with captopril [50].

The ACE inhibitory activities of brown and red seaweed-derived bioactive peptides have been
confirmed in SHR. More than one decade ago, Suetsuna et al. (2000) successfully characterized di-
and tetrapeptides derived from the brown algae, U. pinatifida and showed that administration of those
peptides in SHR significantly decreased blood pressure in SHR [25]. Marine microalgae (C. ellipsoidea)
tetrapeptides (Val-Glu-Gly-Tyr) also showed a potent anti-hypertensive activity. Oral administration
of C. ellipsoidea tetrapeptides at a dose of 10 mg/kg significantly decrease SBP in SHR [52].

Due to their effectiveness in regulating blood pressure, marine-derived bioactive peptides
have prospective use as high quality diets for the prevention and treatment of CVD as well as
other NCD. In Japan, some of the marine-derived peptides and hydrolysates have been approves
as “foods for specified health uses” (FOSHU) by Japanese Ministry of Health, Labor, and Welfare.
Presently, bonito oligopeptide are incorporated in blood pressure lowering capsules and sold as
nutraceuticals worldwide. However, generally, marine-derived anti-hypertensive peptides are short
sequences of hydrophobic amino acids, which normally give bitter taste. Therefore, to increase
consumer’s acceptance, flavor manipulation needs to be used when developing marine-derived
peptides as functional foods products.

3. Marine-Derived Anti-Cancer Peptides

Cancer is a condition of uncontrolled growth of cells which interferes with the normal functioning
of the body and has undesirable systematic effects [53]. It is a dreadful NCD which increases
with changing lifestyle, unhealthy diet and global warming [54]. Therefore, fruitful approaches
are needed for the prevention and treatment of these diseases. Current cancer available treatments
such as chemotherapy many times causing disastrous side effect; and most anticancer drugs currently
used in chemotherapy are giving toxic effects to the normal cells which cause immunotoxicity and,
hence, aggravate patient’s recovery [55]. In this context, a variety of ingredients of traditional
medicines are being widely investigated to analyze their potential as cancer therapeutic agents.
Presently, more than 60% of the used anticancer agents are derived from natural sources [56].
Although marine resources are still underrepresented in current pharmacopeia, it is anticipated that
marine environment will become the invaluable source for cancer therapeutic agents in the future [57].
Many studies reported that marine-derived bioactive peptides could induce cancer cell death by
different mechanisms such as apoptosis, affecting the tubulin-microtubule equilibrium, or inhibiting
angiogenesis [57,58].
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3.1. Anti-Cancer Peptides Derived from Sponges

Marine sponges (Porifera) are the oldest metazoan group, having an outstanding importance
as a living fossil. There are approximately 8000 described species of sponges and perhaps twice as
many un-described species. Sponges inhabit every type of marine environment, from polar seas
to temperate and tropical waters and also thrive and prosper at all depths. Marine sponges have
been renowned and ranked at the top with respect to the discovery of bioactive compounds with the
diversity in chemical structures being related to an equally diverse pattern of activities. The chemical
diversity of sponge bioactive metabolites is remarkable, including unusual nucleosides, bioactive
terpenes, sterols, peptides, alkaloids, fatty acids, peroxides, and amino acid derivatives (which are
frequently halogenated). In recent years, anticancer peptides have been isolated from marine sponges.

Discodermins is the first head-to-side chain novel cyclodepsipeptides isolated from marine
sponge Discodermia kiiensis. Discodermins A–H contain 13–14 known and rare amino acids as a chain,
with a macrocyclic ring constituted by lactonization of a threonine unit with the carboxy terminal.
All the discodermins types are cytotoxic against murine leukemia (P388) cells, human lung (A549) cell
with IC50 values from 0.02 to 20 µg/mL. It was demonstrated that macrolactone ring is also essential
for the cytotoxic activity. Furthermore, Fusetani and co-workers (1995) reported the isolation and
structure of Halicylindramides A–C, which are cyclic depsipeptides isolated from the Japanese marine
sponge Halichondria cylindrata. Further, the structures of halicylindramide D and halicylindramide E
have also been reported. Halicylindramide E is a truncated and linear version of Halicylindramide B
amidated at the C-terminus. Compared to other type of Halicylindramide, Halicylindramide E loses
cytotoxicity and shows low antifungal activity; suggesting that “head to side chain” arrangement are
crucial for the bioactivity of these peptides.

Jaspamide (also known as Jasplakinolide) is a cyclic depsipeptide with 15-carbon macrocyclic
ring containing three amino acid residues (L-alanine, N-methyl-2-bromotryptophan, and β-tyrosine).
Jasplakinolide was originally isolated from the marine sponge Jaspis johnstoni [59]. These cyclic
depsipeptides have been extensively investigated as a potential cancer therapeutic agent.
Jaspamide has been demonstrated to have growth inhibitory effect on PC-3, prostate carcinoma
(DU-145), and Lewis lung carcinoma (LNCaP) cells [60]. It is unique anti-cancer agents that stabilizes
actin filaments in vitro, and disrupts actin filaments and induce polymerization of monomeric
actin into amorphous masses in vivo. In recent years, several analogs of jaspamides have been
isolated from J. splendens and many of them possess anticancer activity [61]. Another sponge-derived
cyclic depsipeptide, Geodiomolides A, B, H and I, also showed anti-proliferative activity
against breast cancer (T47D and MCF-7) cells via actin depolymerization. Geodiamolides were
previously isolated and characterized from the Carribean sponge Geodia sp. (order Astrophorida;
family Geodidae). Further experiments demonstrated that geodiamolide H induces striking phenotypic
modifications in human breast cancer (Hs578T) cells [62]. Geodiamolide H decreases Hs578T cell
migration and invasion which probably mediated through modifications in the actin cytoskeleton.
Interestingly, Geodiamolides H was not cytotoxic for human mammary epithelial (MCF 10A) cell
lines [63].

Hemiasterlins comprise a small family of naturally occurring N-methylated tripeptide with
highly alkylated unnatural amino acids, was originally isolated from the sponge Hemiasterella minor
(class, Demospongiae; order, Hadromedidia; family, Hemiasterllidae). Hemiasterlins act as potent
tumor growth inhibitors. It was reported that Hemiasterlins exhibit antimitotic activity and thus are
useful for the treatment of certain cancers. Synthetic analog of hemiasterlins, taltobulin (HTI-286) was
a potent inhibitor of proliferation in 18 human tumor cell lines and had substantially less interaction
with multidrug resistance protein 1 than currently used antimicrotubule agents, including vinblastine,
paclitaxel, docetaxel, or vinorelbine [64]. HTI-286 and another hemiasterlin analog (E7974) are recently
being evaluated in clinical trials [65].

Arenastatin A, also known as cryptophycin-24, is potent cytotoxic cyclodepsipeptide isolated from
the Okinawan marine sponge Dysidea arenaria [66]. Arenastatin A showed extremely potent cytotoxicity
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against an epidermal carcinoma [67] tumor cell line. Further experiments of cryptophycin-24
showed only marginal in vivo antitumor activity, making it ineligible for further clinical trials [68].
Phakellistatins, a group of proline rich cyclopeptides, have been isolated from Phakellia sp.
(class Demospongiae, order Axinellida). Up to now, 19 phakellistatins have been isolated [69–72].
Of all the phakellistatins, four comprise the distinctive Pro-Pro track, which represents a considerable
synthetic challenge. Phakellistatin 3 represents a new type of cyclopeptide containing an amino acid
unit apparently derived from a photooxidation product of tryptophan. Interestingly, all phakellistatins
exhibited cancer cell growth inhibitory activities [73]. Reniochalistatins is another group of cyclopeptides
rich in proline residues from an extract of a tropical marine sponge, Reniochalina stalagmitis Lendenfeld
(class Demospongiae, order Halichondria, family Axnellidae) [74]. Recently, Zhan et al. successfully
isolated reniochalistatin [75] and reported that only octapeptide (reniochalistatin) was effective
inhibited growth different tumor cell lines (RPMI-8226, MGC-803, HL-60, HepG2, and HeLa).
Notably, owing to conflicting reports of naturally occurring, proline-rich cyclopeptides that were
initially described as having anti-proliferative activity, but subsequent synthetic samples were not
active; it is premature to draw any general conclusions regarding a structure–activity relationship
among the proline-rich cyclic peptides.

Mostly, anti-cancer activities of peptides-derived from sponge were investigated in vitro, therefore
further detailed animal studies and clinical human trials are highly needed to evaluate the physiological
anti-cancer activities of these peptides. It is important to note that sponges are susceptible to over
exploitation due to their richness in bioactive compounds, hence management and conservations issue
of sponge also need to be addressed. Once isolated and characterized, bioactive peptides derived
from sponges can be synthesized by peptide synthesis. Synthesis of anticancer peptides derived
from sponges can be used for further steps of clinical trials and may provide an alternative to the
overexploitation of sponges as for medicinal purposes

3.2. Anti-Cancer Peptides Derived from Fish

The medicinal use of shark cartilage originated from the basic science and observational studies.
Early theories regarding the use of shark cartilage for cancer stemmed from the belief that sharks are
not afflicted by cancer. In 1992, William Lane published a book entitled “Sharks Don’t Get Cancer” [76].
Additionally, cartilage is often recommended by natural medicine experts for cancer, psoriasis,
and inflammatory joint diseases [77]. Those traditional remedies and studies have gained attention to
develop commercialized anti-cancer agents derived from shark cartilage.

Neovastat (AE-941) is a standardized liquid extract comprising the <500 kDa fraction
from the cartilage of shark, Squalus acanthias [78]. In vitro and in vivo studies of AE-941 have
demonstrated anti-tumor, anti-angiogenic and anti-inflammatory properties. AE-941 could inhibit
matrix metalloproteinases (MMP)-2, MMP-9, and MMP-12, and stimulate tissue plasminogen activator
enzymatic activities. AE-941 also selectively competes for the binding of vascular endothelial
growth factor (VEGF) to its receptor (VEGFR), causing disruption of the signaling pathway which
finally induces apoptotic activities in endothelial cells [79]. Further, AE-941 has been tested in
a randomized phase III trial in patients with advanced solid tumors (prostate, lung, breast and kidney).
However, the result showed that AE-941 was inactive in patients with advanced-stage cancers.
AE-941 failed to meet endpoint in the phase III trial, and hence the development was stopped [80].

In 2007, Zheng et al. purified a linear polypeptide with (PG155) from the cartilage of blue shark
(Prionace glauca). The isolated peptide could inhibit VEGF induced migration and tubulogenesis
of human umbilical vein endothelial cells (HUVECs) [81]. As summarized in Table 2, anti-cancer
peptides from other marine fish such as pipefish, Red Sea Moses sole, tuna, anchovy and grouper
have also been isolated and purified [82–86]. The peptides isolated from marine fish showed
anti-cancer activity in human breast cancer (MCF-7), human lung carcinoma (A549), human leukemic
lymphoblasts (CCRF-CEM), hepatocellular carcinoma (HA59T/VGH), cervical cancer [87], human liver
cancer (HepG2), human fibrosarcoma (HT1080), human myeloid leukemia (U937), human prostate
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cancer (PC-3), and oral squamous cell carcinoma (OSCC) cells. Pardaxin, a cell-penetrating
peptide with cytotoxicity against cancer cells has been isolated from the marine fish Red Sea
Moses sole (Pardachirus marmoratus) [88]. Pardaxin anti-cancer activity was mediated by apoptosis,
as demonstrated by an increase in the externalization of plasma membrane phosphatidylserine and
the presence of chromatin condensation. Cancer cells treated with pardaxin also showed elevation
of caspase-3/7 activities, disruption of the mitochondrial membrane potential, and accumulation
of reactive oxygen species (ROS) production [89]. However, compared to the snake-derived venom
peptide; IC50 value of anti-cancer effects of marine-derived bioactive peptides is relatively higher
(Table 2).

Anticancer peptide has also been isolated from half-fin anchovy (Setipinna taty), the peptide
sequence was identified as Tyr-Ala-Leu-Pro-Ala-His. The peptide was found to be active inhibiting
prostate cancer cells proliferation. Further, three modified peptide were synthesized in order to disclose
the contribution of specific amino acid residue to the anti-proliferative activity. The authors concluded
that hydrogen-bond formation of the guanidine moiety in arginine (R) with phosphates, sulfates,
and carboxylates on cellular components was proposed to be appreciated for cell-permeation efficacy
and crucial for the anti-cancer activity. However, the underlying mechanisms of anti-cancer activities
are yet clarified.

Table 2. Anti-cancer effects of bioactive peptides derived from marine fish and other organisms.

Name Source Anti-Cancer Activity References

Neovastat
(AE-941)

Spiny dogfish shark
(Squalus acanthias)

Inhibition of metastatic activity on HUVEC,
BAEC cells; inhibition of matrix
metalloproteinase; Anti-angiogenic effects;
Pro-apoptotic on BAEC cells

[78,90]

Pardaxin Red Sea Moses sole
(Pardachirus marmoratus)

Pro-apoptotic on HT1080
(IC50: 14.52–15.74 µg/mL), HeLa, OSCC cells [89,91–94]

PG155 Blue shark
(Prionace glauca) Anti-angiogenic effects on HUVECs [81]

Syngnathusin Pipefish
(Syngnathus acus)

Pro-apoptotic on A549 (IC50: 84.9 µg/mL),
and CCRF-CEM (IC50: 215.3 µg/mL), cells [86]

Epinecidin-1 Grouper
(Epinephelus coioides)

Anti-angiogenic effects on A549,
HA59T/VGH, HeLa, HepG2, and HT1080
cells Pro-apoptotic on U937 cells

[82,83]

PAB 1; PAB2 Long tail tuna
(Thunnus tonggol)

Pro-apoptotic on MCF-7 cells
(IC50: 8.1; 8.8 µM) [84]

YALRAH Half-fin anchovy
(Setipinna taty) Pro-apoptotic on PC-3 cells (IC50: 11.1 µM) [85]

Rusvinoxidase Venom of
Daboia russelii russelii Pro-apoptotic on MCF-7 cells (IC50: 83 nM) [95]

The Food and Agriculture Organization of the United Nations (FAO) estimates that world
global fishery capture in 2014 was 93.4 million tons, 81.5 million tons from marine waters and
11.9 million tons from inland waters [96]. These numbers are estimated to rise every year due to
the increasing consumer knowledge about health benefits of fish. It was estimated that in high-risk
populations, consumption of 40–60 g fish per day leads to 50% reduction in death from NCD
(i.e., CVD, and cancer) [97]. Supporting those epidemiological studies, anti-cancer effects of fish-derived
bioactive peptides in several cell lines also has been reported (Table 2). Unfortunately, fish consumption
is very low even in some countries known for their large fish stock, such as in the north African
region; hence, nutraceuticals derived from fish peptide can be develop in order to alleviate NCD.
For many years, a great deal of interest has been developed by many research groups towards
identification of anti-cancer peptides from fish. To develop fish-derived anti-cancer peptides as bioactive
materials in food and pharmaceutical industries, large further research is needed. In addition, the
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potential value of fish by-product is still being ignored. It was estimated that almost half of the fish
is commonly discarded to prepared seafood industrially. The amount of fisheries by-products varies
depending on species, size, season, and the fishing grounds [98]. Assuming 25% of the animal weight
is wasted, the total amount of waste generated from marine capture can be as high as 20.4 million tons
per year. These huge amounts of fish by-product harbor useful source of anti-cancer and other bioactive
peptides. Scientists should find sustainable ways to refine fish and fish by-products, and governments
and industry should invest in using this marine resource in sustainable ways.

3.3. Anti-Cancer Peptides Derived from Urochordata

The urochordata, also known as tunicates and ascidians, have emerged as a rich source
of metabolites with potent anticancer activities [99]. Chemical studies of Caribbean tunicates,
Trididemnum solidum, led to the discovery of the didemnin depsipeptides. Of the didemnins that have
been isolated, didemnin B is the most well-known member. Early studies reported that didemnin B
possesses in vitro and in vivo antitumor activity against melanoma (B-16), sarcoma (M5076), prostatic,
and leukemia (P388) cell lines [100,101]. Based on the significant activity and low toxicity of didemnin
B in pre-clinical models, this peptide has been submitted to clinical trials, making it the first marine
natural product evaluated in clinical trials [102]. Didemnin B has been tested in clinical phase I and
phase II trials against several human tumors. In a clinical phase II trial, patients with non-Hodgkin’s
lymphoma were given a short intravenous infusion of didemnin B every 28 days, and antitumor effects
were observed [103]. Didemnin B has shown modest activity in patients with advanced pretreated
non-Hodgkin’s lymphoma, and advances epithelial ovarian cancer [100,103]. Nausea, vomiting and
anemia are the most frequent reported toxicities due to didemnin B. However, didemnin B clinical trials
were stopped, owing to the onset of severe fatigue in patients. An analog of didemnin B that appears
to be more active in preclinical models is aplidine (plitidepsin, degydrodidemnin B, DDB or aplidin).
Aplidine, a cyclic depsipeptides isolated from the tunicates Aplidium albicans, has a pyruvyl group
instead of a lactyl group in the linear peptide moiety of didemnin B [104]. Preclinical studies indicate
that aplidine is active against several human tumor cell lines. Currently, aplidine has passed clinical
phase I and II trials and is currently undergoing phase III trials for relapsed/refractory myeloma
(NCT01102426) [105]. The exact mechanism of action of aplidine has not been fully elucidated.
However, some researcher suggests that aplidine blocks the secretion of the angiogenic factor VEGF in
human leukemia cells (MOLT-4) leading to the blockage of VEGF/VEGF-1 autocrine loop [106]. It has
also been shown that aplidine induces a cell cycle perturbation with a block of MOLT-4 cells mainly
in G1 phase of the cell cycle. Another mechanism of actions for the activity is aplidine induces cell
apoptosis by inducing caspase-3 and -9 activation, cytrochrome c and membrane dysfunction [107].
Aplidine also induces p53-independent apoptosis in different cancer cell lines in vitro. Similar to
didemnin B, aplidine also has dose-limiting toxicities, including diarrhea, dermal toxicity, asthenia,
and neuromuscular.

Tamandarins A and B are two naturally occurring cytotoxic cyclic depsipeptides which are closely
related to didemnin; these peptides were isolated from a Brazilian ascidian of the family Didemnidae.
The structures of are similar to that of didemnin B, the molecules were found to differ only by the
presence of hydroxyisovaleric acid (Hiv2), instead of the hydroxyisovalerylpropionic acid (Hip2) unit
which is present in didemnins [108]. Tamandarin A showed slightly more potent cytotoxicity against
pancreatic carcinoma (BX-PC3) cells, prostate carcinoma (DU145) cells, and head and neck carcinoma
(UMSCC10) cells as tested in vitro. The cytotoxic effect of tamandarins has been experimentally shown,
but the precise molecular mechanism of action remains uncharacterized. Another cytotoxic peptides
derived from ascidian with uncharacterized molecular mechanisms is mollamide. Mollamide is
a cytotoxic cyclopeptide obtained from the ascidian Didemnum molle and it has shown cytotoxicity
against P388, A549, HT29, and monkey kidney fibroblast (CV1) cells [102]. Trunkamide A is
a cyclopeptide with a tiazoline ring and structurally analogs to mollamides [109]. Trunkamide A has
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already undergone preclinical trials with promising antitumor effects against cell lines derived from
humans, including P-388, A-549, HT-29 and human melanoma (MEL-28) cells [110].

3.4. Anti-Cancer Peptides Derived from Mollusks

Mollusk is one of the most diverse groups of animals on the Earth. Apart from their important
ecological role and commercial value for human food, their pharmacological roles are also of
notable interest. Several anti-cancer peptides have been found in mollusks. Dolastatins, a group
of cytotoxic peptides, have been isolated from marine mollusks Dolabella auricularia, with dolastatin
10 and dolastatin 15 the most prominent [102]. Dolastatin 10 is a pentapeptide containing several
unique amino acid subunits. Cytotoxic activity of dolastatin 10 against mouse lymphocytic leukemia
(L1210), human promyelocytic leukemia (HL-60), human acute myelomonocytic leukemia (ML-2),
human monocytic (THP-1), multiple lymphoma, small cell lung cancer (NCI-H69, -H82, -H446,
and -H510) and PC-3 cells have been reported [111,112]. It has been reported that anticancer activity of
dolastatin involves microtubule assembly by interacting with tubulin and blocking tubulin-dependent
GTP hydrolysis [113,114]. Dolastatin 10 also affects Bcl-2 level and an increase in p53 expression [115].
However, dolastatin 10 clinical trial result was unsatisfactory; hence, dolastatin 10 was withdrawn
from further trials. Another cytotoxic peptide from marine mollusk is the Keenamide A isolated
from Pleurobranchus forskalii. These hexapeptide exhibited significant activity against the P-388, A-549,
MEL-20, and HT-29 tumor cell lines [58,102,115]. Liu et al. (2012) isolated a 15 kDa linier peptides
(Mere15) derived from Meretrix meretrix [116,117]. Mere15 inhibited the growth of leukemia (K562)
cells and the cytotoxicity was related to the apoptosis induction, cell cycle arrest and microtubule
disassembly [116]. Further, in vivo analysis revealed that Mere15 inhibited the growth of A549 cells
xenograft in nude mice by activating intrinsic pathway [117].

Kahalalides are cyclic depsipeptides that was originally isolated from the Hawaiian marine
mollusks Elysia rufescens. Of the seven isolated Kahalalides (A–F), Kahalalide F showed significant
cytotoxic activity against cell lines and tumor specimens derived from various human solid
tumors, including prostate, breast, non-small-cell lung, ovarian, and colon carcinomas [102,118].
Gonzales et al. (2003) demonstrated that cancer cells treated with Kahalalide F underwent a series of
profound alterations including severe cytoplasmic swelling and vacuolization, dilation and vesiculation
of the endoplasmic reticulum, mitochondrial damage, and plasma membrane rupture, suggesting
that Kahalalide F induces cell death via oncosis preferentially in tumor cells. Subsequently, it was
reported that ErbB3 and the downstream PI3K-Akt pathway is an important determinants of the
cytotoxic activity of Kahalalide F in vitro [118]. Kahalalide F was dropped from phase II clinical trials
due to a lack of efficacy despite results indicating a limited number of patients achieved a positive
response. Based on the pharmacokinetic studies, it was suggested that Kahalalide F has a short half-life,
which may affect its efficacy [119].

Ziconotide (formerly SNX-111, Neurex Pharmaceuticals, Menlo Park, CA, USA) is the synthetic
equivalent ofω-conopeptide MVIIA, a 25-amino-acid polybasic peptide originally isolated from the
venom of Conus magus, a marine snail [120]. Ziconotide is an analgesic agent administered intrathecally
and has been for almost one decade for the treatment of chronic cancer pain [121]. However, the use
of ziconotide can induce several and sometimes serious adverse events. Hence, a low initial dosage
followed by slow titration is recommended to reduce serious adverse events.

3.5. Anti-Cancer Peptides Derived from Cyanobacteria

Cyanobacteria (blue-green algae) are a very old and diverse group of photosynthetic, prokaryotic
organisms that produce a variety of secondary metabolites with various biological activities, including
phenols, peptides, alkaloids or terpenoids [122]. Cyclic depsipeptides, grassypeptolides D and E,
have been isolated from the marine cyanobacterium Leptolyngbya sp. [123]. These peptides have shown
cytotoxic effect against mouse neuroblastoma (N2A) and HeLa cell line, which was confirmed by
MTT cell viability assay. Lyngbya majuscula, a benthic filamentous marine cyanobacterium, has been
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extensively studied and has produced more than 250 compounds with diverse structural features.
This diversity is in part attributable to the fact that a major theme in L. majuscula biochemistry relies on
the production of metabolites via polyketide synthases and nonribosomal peptide synthetases within
specialized biosynthetic pathways. Malyngamide 4, somocystinamide A, and hectochlorins are potent
anti-cancer lipopeptides isolated from L. majuscula [124–126]. Hectochlorins have been reported to be
strong actin-disrupting agents. Hectochlorin showed great anti-proliferative activity against colon,
melanoma, ovarian, and renal cancer cells [127]. Shaala et al. (2013) demonstrate that malyngamide
A inhibited proliferations of A549, HT29, and breast adenocarcinoma (MDA-MB-231) cells cultured
in vitro. Another lipopetide isolated from L. majuscula, Somocystinamide A showed potent cytotoxicity
against N2A cells. Further, Somocystinamide was found as potent apoptosis inductor in a number of
tumor cell lines and angiogenic endothelial cells via intrinsic and extrinsic pathways, but the more
effective mechanism is the activation of caspase 8 [126]. Apratoxin A is a cyclodepsipeptide isolated
from a L. majuscula. This peptide showed anti-proliferative activity in KB and LoVo cancer cells.
Apratoxin A mediates its anti-proliferative activity through the induction of G1 cell cycle arrest and
an apoptotic cascade, which partially initiated through antagonism of FGF signaling via STAT3 [128].

The blue-green colored pigment-protein complex, c-phycocyanin, isolated from marine
cyanobacteria Agmenellum quadruplicatum, Mastigocladus laminosus, Oscillatoria tenuis appeared to
be a potent activator of pro-apoptotic gene and downregulator of anti-apoptotic gene expression [129].
Transduction of apoptosis signals resulting apoptosis of HeLa cells in vitro [130]. Further, apoptosis
features such as cell shrinkage, membrane blebbing, nuclear condensation and DNA fragmentation
were observed in A549 and HT29 treated with c-phycocyanin [131].

Cyanobacteria possess several advantages to be developed as nutraceuticals for the prevention
and treatment of cancer and other NCD. The advantages of cyanobacteria include simple growth
requirement, ease of genetic manipulation, and attractive platforms for carbon neutral production
process [132]. However, it should be noted that some cyanobacteria produce cyanotoxins, therefore
an appropriate regulatory framework should be developed for pharmaceutical and nutraceutical
products from cyanobacteria to ensure that safety and quality standards are met.

4. Marine-Derived Antioxidant Peptides

In addition to the general risk factors in the development of NCD, free radicals are also known
to play a significant role in NCD. Marine-derived protein, protein hydrolysates, peptides and amino
acids have been shown to have significant antioxidant effects. Marine organisms are probably the most
extensively studied as an important source of antioxidants. Antioxidant activity of marine organisms
has been determined by various in vitro and in vivo methods, such as 2,2-diphenyl-1-picrylhydrazyl
(DPPH), peroxide, hydroxyl and superoxide anion radical scavenging activities which have been
detected by electronspin resonance spectroscopy method as well as intra cellular free radical scavenging
assays, such as DNA oxidation, ROS scavenging, membrane protein oxidation and membrane
lipid oxidation [133]. Many studies reported that proteins from marine organisms exhibit potent
antioxidant activity; however, in many cases, peptide fractions or protein hydrolysates showed greater
antioxidant activity. These suggest that peptides play a significant role in antioxidant actions of
marine proteins. Therefore, many individual bioactive peptides responsible for antioxidant activity of
marine protein or protein hydrolysates were then purified and identified. Marine-derived peptides
have varied antioxidant activities depending on the structure. The peptide structure including the
size and amino acid sequences were influenced by the protein sources and extraction conditions.
As an example, clam peptides, isolated from body or viscera of clam (Meretrix casta) protein hydrolyse
with three different enzymes such as trypsin, pepsin and papain resulted in different DPPH radical
scavenging activities, ranging from 9.1% to 82.5% and reducing power ranging from 0.1 to 0.7,
measured as the ability of the hydrolysate to reduce iron (III) [134]. Rajapakse et al. (2005) identified
four different molecular weight peptides from giant squid mussel by employing ultrafiltration
membrane with three different molecular weight cut off membranes (10, 5 and 3 kDa). Lower molecular
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weight peptide was found to possess stronger antioxidant activity compared to the higher molecular
weight peptides. They assumed that lower molecular weight improves contact ability with membrane
lipids and or permeability [135]. Further, it is believed that aromatic amino acid and histidine act
positively as direct radical scavengers within peptide sequences. The presence of aromatic amino acids
in the structure of a peptide is an advantage in this regard because they can donate protons easily
to electron-deficient radicals and, at the same time, maintain their stability via resonance structures.
Hence, it can be speculated that difference in scavenging activity could be due to the molecular weight
or the specific arrangement of amino acid residues in the peptide sequence [13].

In addition to marine peptides, marine processing by-products have also been explored for
production of proteins, peptides, and hydrolysates with antioxidant potentials [136]. Purification of
antioxidant peptides derived from marine by-product using enzymatic hydrolysis has been in
practice during recent years. Antioxidant peptides derived from marine processing by-product
were found to possess strong antioxidant activity in linoleic acid model [137,138]. Himaya et al. (2012)
demonstrated that peptide isolated from Japanese flounder skin gelatin could protect against cellular
oxidative damage. Some peptides derived from marine processing by-product were found to possess
strong activity to inhibit lipid peroxidation in linoleic acid models. This activity was attributed to the
ability of peptide to interfere propagation cycle of lipid peroxidation and there by slowing radical
mediated linoleic acid oxidation. Hydrophobic amino acids in peptide sequences may contribute to
peroxidation inhibition by increasing the solubility of peptide in lipid and thereby facilitating better
interaction with radical species [139]. Position of hydrophobic amino acid, Leu at the N-terminus of
the peptide sequences has been shown to increase the interaction between peptides and fatty acids.
More importantly, hydrophobic peptides can protect macromolecule oxidation by donating photons to
reactive radicals [13,140]. Moreover, the activity of histidine containing peptides has also been reported
to act against lipid peroxidation. In addition, Shahidi and Zhong (2008) reported that in the case of
tripeptide, tripeptides containing 2 tyrosine units had higher capacity than those containing 2 histidine
units in inhibiting linoleic acid oxidation. Later, it was reported that histidine-containing peptides can
act as metal chelator, active oxygen quencher, and hydroxyl radical scavenger, thus contributing to the
antioxidant activity of the protein hydrolysate and peptide.

Epidemiological studies show that a diet rich in antioxidants is associated with low prevalence
of NCD, longevity and good health. Therefore, researchers are continually seeking for a good
source of diet with potent antioxidant ability as an alternative for the dietary supplements and
food. Bioactive peptides of marine origin have the potential to subside the biochemical imbalances
induced by the formation of free radicals, and many of these peptides have been viewed as promising
agents for the prevention and treatment of NCD. One of the commercially available products from
marine organisms to reduce oxidative stress is Fortidium Liquamen, a hydolyzed skin of white fish
(Molva molva) [141]. Based on those collective findings, it may be assumed that marine-derived
bioactive peptides is a healthy choice to strengthen the body’s fight against oxidative stress and other
related NCD.

5. Anti-Diabetic and Hypocholesterolemic Effects of Marine-Derived Bioactive Peptides

Metabolic disorders comprise a collection of health disorders that increase the risk of morbidity
and loss qualify of life, these includes diabetes and obesity. Marine-derived proteins and their peptides
exert anti-diabetic effects. Zhu et al. (2010) have reported that treatment with oligopeptides from
marine salmon skin modulated type 2 diabetes mellitus-related hyperglycemia and β-cell apoptosis
in rats induced by high fat diet and low doses of streptozotocin. The anti-diabetic effect of salmon
skin-derived oligopeptides was mediated by down-regulation of type 2 diabetes mellitus-related
oxidative stresses and inflammation, which then protect the pancreatic β-cells from apoptosis [142].

A marine collagen peptide (MCP) isolated from wild marine fish caught from the East China Sea
has shown anti-diabetic effects in patients with or without hypertension [143]. The levels of free fatty
acid, hs-CRP, resistin and prostacyclin were decreased significantly following MCP treatment, indicating
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that MCP could offer protection against diabetes and hypertension by affecting levels of molecules
involved in diabetic and hypertensive pathogenesis. Further, it was confirmed that MCP modulates
glucose and lipid metabolism in patients with type 2 diabetes mellitus [144]. It was demonstrated that
MCP is a peptide mixture containing two to six amino acid residues in length with molecular weight
100–800 Da. Unfortunately, the amino acid sequence of MCP is not elucidated yet. Peptide possess
anti-metabolic disorder are generally low molecular weight (500–800 Da) [145]. Peptide sequence
also plays an important role in anti-diabetic and anti-obesity effects. Generally, anti-diabetic and
anti-obesity peptides are hydrophobic. Such a hydrophobic peptide is envisaged to be able to cross
(biological) membranes. Vernaleken et al. (2007) described that specific functional tripeptide fragments
(i.e., “Gln-Cys-Val” and “Gln-Cys-Pro”) are potent inhibitors of monosaccharide-dependent exocytotic
pathway of Na+-D-Glucose co transporter SGLT1. The specific peptide sequence may influence
negatively specific nutrient transporters/receptors in vivo which further lead to posttranscriptional
down regulation of nutrient transporters and reduction of body weight [146]. It was also reported that
high amounts of Gly amino acids in marine-derived proteins could contribute to an increase in fecal
cholesterol and/or bile acid excretion, thus contributing to improvement in plasma lipid variables [147].
In addition, low molecular weight peptides derived from Salmon rich in Gly significantly alleviated
obesity-linked inflammation. Many studies have shown that pro-inflammatory mediators including
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) are increased during
obesity and diabetes. The suppression of these pro-inflammatory mediators may decrease the risk of
developing metabolic disorders-associated inflammation and insulin [148].

Hyperlipidemia, particularly hypercholesterolemia, is an obesity related condition common in
diabetic patients, and also one of the most important risk factors contributing to the development
of NCD. Natural extracts with cholesterol-lowering effect have been explored for their potential
in prevention and treatment of hypercholesterolemia. In vivo study showed that protein derived
from microalgae (Spirulina platensis) c-phycocyanin, plays a crucial role in the hypocholesterolemic
activities [149]. In addition, Colla et al. (2008) demonstrated that Spirulina platensis when added
in rabbit feed for 30–60 days reduced the levels of total cholesterol, high-density lipoprotein and
triacylglycerols [150].

Current food environments are unhealthy which dominated by energy-dense, nutrient-poor
processed food products which are widely available and relatively inexpensive [151]. These seem to
create a supply-side “push” effect on unhealthy diets which is the prevailing driver of population
unhealthy weight gain and NCD. To reduce hypercholesterolemic, diabetes, and other diet-related
NCD, there needs to be a central focus on creating “healthy food environments” which shift population
diets, especially those of socially disadvantaged populations, towards healthy diets. Marine-derived
bioactive peptides have excellent potential as functional food ingredients to reduce NCD as they
possess advantageous physiological effects, with medicinal characteristics and added health benefits
such as anti-diabetic and hyocholesterolemic activities.

6. Future Perspectives of Marine-Derived Bioactive Peptides

Successful characterization of marine-derived bioactive peptides and investigations of their
cardio protective, antihypertensive, anticancer, anti-diabetic, and anti-oxidative effects suggest their
promising future for NCD. However, current marine peptides are still unable to meet the design
parameters for drugs for NCD due to their low metabolic stability, low membrane permeability,
and their high costs of manufacture [152]. Therefore, marine-derived bioactive peptides can be
administered using different delivery vehicles such as functional food and or nutraceuticals. In order
to be used as ingredients in food products, different studies should be carried out to determine if
bioactivity of marine peptides is maintained after manufacturing and cooking processes. For example,
wheat bread containing the hydrolysate from red algae retained renin inhibitory bioactivity after the
baking process [19]. Furthermore, biological effect of marine-derived peptides is strongly influenced
by their bioavailability, which is predominantly determined by their susceptibility to degradation into
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inactive fragments by digestive enzymes peptidase and intestinal absorption. Bioavailability should be
taken into account when developing food and beverages products containing marine-derived bioactive
peptides for the prevention and treatment of NCD.

Bioavailability of peptides can be defined as the quantity that passes through the cell membranes
in the intestine and is available for action within the cells [153]. Bioavailability of peptides are generally
affected by physicochemical properties of the peptides such as molecular size, charge, sequence,
and solubility; smaller peptides are transported across the enterocytes through intestinal-expressed
peptide transporters, whereas oligopeptides may be absorbed by passive transport through
hydrophobic regions of membrane epithelia or tight junctions [154]. Many studies demonstrated
that marine-derived peptides are mostly peptides of small molecular weights, especially tripeptides
from marine algae and small oligopeptides. These small molecular weight peptides are too small
for the substrates of digestive proteases, and therefore they have high resistance to gastrointestinal
digestion and are easily to be absorbed. In addition, small molecular weight peptides are convenient
and cheaper to be synthesized through chemical method. Thus, chemical synthesis can be used to
produce large quantities of marine-derived bioactive peptides to be used in functional foods and
pharmaceuticals to meet the needs for NCD remedy.

Several studies have demonstrated the bioavailability of marine-derived bioactive peptides
for the treatment of NCD using both animal models and human volunteers. For example,
long-term oral administration of peptides derived from jellyfish reduced systolic blood pressure
and diastolic blood pressure of the renovascular hypertension rats [155]. Interestingly, these bioactive
peptides affected the production of Angiotensin II only in kidney but not in plasma. In addition,
Lee et al. (2010) demonstrated that oral administration of peptide-derived from tuna frame
significantly reduced systolic blood pressure and diastolic blood pressure in spontaneously
hypertensive rats. That information provides basic information that peptide-derived from tuna
frame show stability against gastrointestinal proteases and original peptide sequences that displayed
anti-hypertensive activity are delivered to the cellular sites of action. These provide evidence that
marine-derived bioactive peptides can be used for the preparation of oral treatment for blood pressure
homeostasis which further protects cardiovascular system.

Up to now, many marine peptides are unable to meet the requirements for food (e.g., taste,
bioavailability, or stability). Bitterness of some marine-derived peptides is an undesirable property,
which should be reduced during food, beverages and or pharmaceuticals production. Marine-derived
bioactive peptides hosting residues with hydrophobic side chains have a distinct bitter taste.
Therefore, further studies on controlling these properties are needed. These can be achieved by
several methods including chemical or physical modifications of the peptides (i.e., microencapsulation,
and quantitating the bitter taste relationship). Microencapsulation not only increases consumer’s
acceptance, but also ensures that the marine-derived peptide sequences that displayed bioactivity
are conserved and delivered to the cellular sites of action in NCD. Further, microencapsulation will
enhance their stability and absorption.

In order to develop food and beverages product containing marine-derived bioactive peptides,
methods must be developed to enhance their availability and bioactivity. Bioactive peptides can
be obtained from marine organisms by organic solvent extraction, fermentation and enzymatic
hydrolysis by proteolytic enzymes. In food industries, the last methods are more preferred due
to the lack of residual organic solvents or toxic chemicals in the products and or microbial residue.
Notably, physico-chemical conditions of the reaction media, such as temperature and pH of the protein
solution, must then be adjusted in order to optimize the activity of the enzyme used. Further, to obtain
desired molecular weight and functional properties of marine-derived bioactive peptides, a suitable
method is the use of an ultrafiltration membrane system. This system has the main advantage that the
molecular weight distribution of the desired peptide can be controlled by adoption of an appropriate
ultrafiltration membrane.
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The number of marine organism’s consumption is estimated to rise each year due to the increasing
consumer knowledge about their health benefit effects. Marine organisms are viewed as “natural
and healthy” by consumers, and this promotes a positive response in consumers, who often regard
natural entities. Therefore, marine organisms may be considered a consumer friendly source of
functional foods which may use to prevent and treat NCD. Last but not least, scientists should work
out sustainable ways to refine bioactive peptides derived from marine organisms, and develop food
and pharmaceuticals products to alleviate NCD.

7. Conclusions

Many studies have shown that marine-derived bioactive peptides possess remarkable activities
relevant to the prevention and treatment of NCD. The possibilities of designing new functional
foods, nutraceuticals, and pharmaceuticals derived from marine bioactive peptides for the prevention
and treatment of NCD are promising. While much information is available on biological activities
of marine-derived bioactive peptides, future studies should be directed towards evaluation of
bioavailability in human subjects as well as clinical trials. In addition, safety and quality standards of
marine-derived peptides-based products should be evaluated prior to commercialization.
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ACE Angiotensin converting enzymes
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DPPH 2,2-diphenyl-1-picrylhydrazyl
FAO Food and Agriculture Organization
FOSHU foods for specified health uses
IC50 half maximal inhibitory concentration
IL-6 interleukin-6
IL-1β interleukin-1β
MCP marine collagen peptide
MW Molecular weight
NCD Non communicable diseases
PUFA polyunsaturated fatty acids
RAS renin-angiotensin system
ROS reactive oxygen species
SHR spontaneously hypertensive rat
SBP systolic blood pressure
TNF-α tumor necrosis factor-α
WHO World Health Organization
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