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CENPL, ISG20L2, LSM4, MRPL3 
are four novel hub genes and may 
serve as diagnostic and prognostic 
markers in breast cancer
Jinbao Yin1,2, Chen Lin1, Meng Jiang1, Xinbin Tang1, Danlin Xie1, Jingwen Chen1 & 
Rongqin Ke1*

As a highly prevalent disease among women worldwide, breast cancer remains in urgent need of 
further elucidation its molecular mechanisms to improve the patient outcomes. Identifying hub 
genes involved in the pathogenesis and progression of breast cancer can potentially help to unveil 
mechanism and also provide novel diagnostic and prognostic markers. In this study, we integrated 
multiple bioinformatic methods and RNA in situ detection technology to identify and validate 
hub genes. EZH2 was recognized as a key gene by PPI network analysis. CENPL, ISG20L2, LSM4, 
MRPL3 were identified as four novel hub genes through the WGCNA analysis and literate search. 
Among these, many studies on EZH2 in breast cancer have been reported, but no studies are related 
to the roles of CENPL, ISG20L2, MRPL3 and LSM4 in breast cancer. These four novel hub genes 
were up-regulated in tumor tissues and associated with cancer progression. The receiver operating 
characteristic analysis and Kaplan–Meier survival analysis indicated that these four hub genes are 
promising candidate genes that can serve as diagnostic and prognostic biomarkers for breast cancer. 
Moreover, these four newly identified hub genes as aberrant molecules in the maintenance of breast 
cancer development, their exact functional mechanisms deserve further in-depth study.

Breast cancer is one of the most common malignant tumors that present serious and major threats to female life 
and health. Although current breast cancer therapeutic methods have been well developed and improved, latest 
data showed that breast cancer still has a high mortality rate among women worldwide. Thus, there is still an 
urgent need to explore the potential molecular mechanisms for improving the patient  outcomes1,2.

In the past decade, applications of high-throughput chip and sequencing technologies have resulted in accu-
mulation of a wealth of novel research data resource that can be analyzed by a series of bioinformatic methods, 
providing a novel approach to explore the molecular mechanism of tumorigenesis and tumor  development3. 
Among a wide range of different bioinformatics tools, weighted gene co-expression network analysis (WGCNA) 
algorithm is the most commonly used method for gene co-expression network research. By constructing co-
expression gene modules and associating external information, the key gene modules and potential hub genes 
can be  identified4–6. In general, hub genes show high connectivity in the gene co-expression network, which 
often located in the upstream of the gene regulatory network and play a predominant role in the gene network 
 coordination7,8. Therefore, identification of potential novel hub genes is of great significance for exploring the 
mechanism of tumor initiation and progression. Selection of appropriate dataset is an important prerequisite for 
screening hub genes, and multiple types of datasets that were generated from different platforms are now available 
in the public  database9. To explore the best potential of these datasets, it would be of great advantage to integrate 
them for downstream analysis. To achieve this goal, we used Robust Rank Aggregation (RRA) analysis algorithm 
for the process of breast cancer datasets. RRA is a reliable bioinformatic method that can remove substantial 
inter-study variations and statistical analysis difficulties existed in individual studies via integrating the gene 
expression profiles of different cross-platform  datasets10. It has been used in various malignant tumor studies, 
such as in hepatocellular carcinoma, colorectal cancer, lung cancer and thyroid  cancer11–14. Heterogeneity is one 
of the characteristics of tumor cells, which is reflected by different expression patterns of genes at the transcription 
 level15. Analyzing and identifying the temporal and spatial heterogeneity information of RNA expression can be 
of great value to reveal the structural relationship between tissues and cells, as well as to uncover the potential 
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functions of genes in disease state. RNA in situ detection technology can be used for studying the heterogeneity 
of RNA expression, and under the condition of maintaining tissue and cell morphology integrity, it can obtain 
the spatial localization and abundance of intracellular RNA at the single cell  level16.

In this study, we first integrated DEGs from multiple breast cancer datasets based on RRA algorithms, and 
then identify the key gene of known functions using PPI network analysis. At the same time, WGCNA algorithm 
was applied to construct a weighted gene co-expression network and screen for potential novel hub genes related 
to breast cancer. The diagnostic performance and prognostic value of these novel hub genes were evaluated and 
their possible molecular mechanisms in breast cancer were explored by bioinformatic methods. Finally, we also 
made full use of RNA in situ detection technology to detect the expression abundance and spatial localization 
of each hub gene at single cell level, and further analyzing the expression differences and correlations, such that 
to validate those results from the bioinformatic analysis mentioned above.

Results
Identification of robust DEGs in breast cancer by the RRA analysis. Differentially expressed genes 
(DEGs) of eight datasets from the GEO database were integrated to perform RRA analysis, and the characteris-
tics for each dataset are shown in Table 1. We used |log2FC|> 1 and p value < 0.05 as screening criteria to obtain 
the robust DEGs between breast cancer tissues and normal tissues. A total of 512 robust DEGs were identified, 
containing 202 up-regulated genes and 310 down-regulated genes (Supplementary Table S1). Supplementary 
Fig. S1 shows the top 20 most significant up-regulated and down-regulated robust DEGs obtained by RRA meth-
ods from these eight different datasets. Of those, COL11A1 (P = 2.47E−19, adjusted P = 6.53E−15, logFC = 2.86) 
and S100P (P = 1.24E−17, adjusted P = 3.28E−13, logFC = 3.50) were the two most significant up-regulated 
genes. Meanwhile, LEP (P = 2.68E−14, adjusted P = 7.06E−10, logFC = − 3.12) and FGF2 (P = 2.84E-14, adjusted 
P = 7.48E−10, logFC = − 1.87) were the two most significant down-regulated gene in breast cancer tissues.

GO functional enrichment analysis and KEGG pathway enrichment analysis of robust 
DEGs. To gain insight into the known biological processes and pathways involved in breast cancer, GO 
functional enrichment analysis and KEGG pathways analysis of 512 robust DEGs were performed. The results 
showed that those robust DEGs were significantly enriched in 720 GO terms and 9 KEGG pathways, respectively 
(Supplementary Table S2). Figure 1a–c show the top 20 GO terms, GO terms related to biological process includ-
ing extracellular structure organization, extracellular matrix organization, ossification, mitotic nuclear division, 
and regulation of lipid metabolic process (Fig. 1a); Cellular component GO terms were mainly distributed in 
collagen − containing extracellular matrix, extracellular matrix component, lipid drople and fibrillar collagen 
trimer (Fig.  1b). The molecular function GO terms consisting of extracellular matrix structural constituent, 
glycosaminoglycan binding, heparin binding, sulfur compound binding growth factor binding those DGEs were 
significantly enriched (Fig. 1c). What′s more, KEGG pathway enrichment analysis revealed that PI3K-AKT sign-
aling pathway, PPAR signaling pathway, ECM − receptor interaction, Relaxin signaling pathway, IL − 17 signaling 
pathway, AMPK signaling pathway were significantly associated with these robust DEGs identified. (Fig. 1d).

EZH2 as a key gene by PPI network analysis. The PPI network of the 512 DEGs, including 493 nodes 
and 2993 edges was constructed via STRING database (minimum required interaction score: 0.4). By ranking 
the PPI network nodes using 9 topological analysis methods including both local- and global-based algorithms 
from cytoHubba plugin of Cytoscape software, we found the EZH2 score ranked in the top 10 by 9 algorithms 
(Table  2). Furthermore, by performing gene module analysis using MCODE plugin in Cytoscape software, 
EZH2 gene was also found in Module 1 (Supplementary Fig. S2), which is the most important module (MCODE 
score = 31.942) among all modules. In addition, GEPIA database analysis showed that the mRNA expression 
levels of EZH2 were significantly higher in breast cancer tissues than normal breast tissues (Supplementary Fig. 
S3) and its expression level was significantly associated with the poorer prognosis of patients in breast cancer 
(Supplementary Fig. S4). GSEA demonstrated that EZH2 high expression level group was significantly enriched 
in “Cell cycle” and “DNA replication”, which are known to be tumor cell proliferation related pathways (Sup-
plementary Fig. S5).

Table 1.  Characteristics of the included GEO datasets.

Dataset ID Country Normal Tumor platform ID Number of rows per platform

GSE21422 Germany 5 14 GPL570 54,675

GSE33447 China 4 12 GPL14550 42,545

GSE42568 Ireland 17 104 GPL570 54,675

GSE14999 Italy 61 68 GPL3991 23,653

GSE65194 France 11 153 GPL570 54,675

GSE15852 Malaysia 43 43 GPL96 22,283

GSE5764 Czech Republic 20 10 GPL570 54,675

GSE3744 USA 7 40 GPL570 54,675

In total 168 444
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WGCNA. We performed WGCNA using the TCGA_BRCA dataset that incorporate 3,769 up-regulation 
DEGs (P value < 0.05) derived from the above RRA analysis to find key gene modules in breast cancer. After series 
of quality assessment for gene expression matrix, we set soft threshold as 5 (scale free  R2 = 0.97, slope =  − 1.92) 
to construct and validate the scale-free network (Fig. 2a,b). By setting minimal module size as 50 genes and 
cut height as 0.25 to merge similar modules, seven modules were obtained eventually (Fig. 2c; non-clustering 
DEGs shown in gray). From the heatmap of module–trait correlations (Fig.  2d), we identified that the blue 
module (cor = 0.44, P = 4e−55) and brown module (cor = 0.46, P = 3e−63) were most correlated to breast cancer 
(Fig. 2e,f). GO functional enrichment analysis and KEGG pathways analysis of genes in blue module and brown 

Figure 1.  GO enrichment analysis and KEGG pathways analysis of 512 DEGs. (a) GO terms of biological 
process (BP); (b) GO terms of cellular component (CC); (c) GO terms of molecular function (MF); (d) KEGG 
pathways terms.

Table 2.  Hub genes for highly expressed genes ranked by different CytoHubba methods.

category

Rank methods in CytoHubba

MCC MNC Degree BottleNeck EcCentricity Closeness Radiality Betweenness Stress

1 EZH2 FN1 FN1 FN1 FN1 FN1 FN1 FN1 FN1

2 CDK1 CDH1 CDH1 EZH2 EZH2 CDH1 CDH1 CDH1 CDH1

3 CCNB1 FGF2 FGF2 CDH1 CDH1 FGF2 FGF2 PPARG PPARG 

4 FOXM1 EZH2 EZH2 ERBB2 ERBB2 MMP9 MMP9 FGF2 MMP9

5 UBE2C MMP9 MMP9 PPARG PPARG PPARG ERBB2 ERBB2 FGF2

6 AURKA CDK1 CDK1 FGF2 FGF2 ERBB2 PPARG MMP9 ERBB2

7 CDKN3 CCNB1 PPARG IGF1 IGF1 IGF1 IGF1 EZH2 EZH2

8 RRM2 FOXM1 CCNB1 POSTN FOS EZH2 SPP1 FOS FOS

9 ASPM PPARG FOXM1 FOS DMD SPP1 FOS IGF1 IGF1

10 TOP2A AURKA ERBB2 DMD MMP9 FOS EZH2 DMD SPP1
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Figure 2.  Identification of candidate gene modules and 102 hub genes for breast cancer based on TCGA_BRCA 
dataset through WGCNA. (a) Left: analysis of the scale-free fitting indices for various soft-thresholding powers 
(β), red line indicated Scale Free Topology Model Fit, signed  R2 is 0.90. Right: mean connectivity analysis of 
various soft-thresholding powers (β value range 1–20); (b) Left: histogram shows the frequency distribution of 
the k (namely connection) when β = 5. Right: checking the scale-free topology when β = 5, the figure shows that 
log10(k) and log10(p(k)) are negatively correlated (correlation coefficient 0.97), denoting that the gene scale-
free network that we constructed is guaranteed; (c) Clustering dendrograms of genes based on dissimilarity 
topological overlap calculation formula (1—TOM) and merged gene set modules. Seven weighted gene 
co-expression network modules were constructed and shown in different colors; (d) Heatmap of the correlation 
between module eigengenes and breast cancer samples traits (Tumor). The numbers in each square of heatmap 
indicates the Pearson correlation coefficient (up) and P value (down); (e) Scatter plot of gene significance for 
“Tumor” and module membership in the blue module. The red lines indicate MM value = 0.6 and GS value = 0.3; 
(f) Scatter plot of gene significance for “Tumor” and module membership in the brow module. The red lines 
indicate MM value = 0.6 and GS value = 0.3.
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module prove our our judgement (Supplementary Table S3-4 showed the GO functional enrichment analysis 
and KEGG pathways analysis results of genes in blue module and brown module separately). The blue module 
contained 920 genes and the brown module contained 730 genes. Next, we set the filter standard of hub gene 
associated with breast cancer: module membership (MM) value > 0.6 and gene significance (GS) value > 0.3, and 
found that 64 hub genes from the blue module and 38 hub genes from the brown module meet the eligibility 
criteria (Table 3). By combining with literature searches, four hub genes (CENPL, ISG20L2, MRPL3, and LSM4) 
were obtained for further analysis. None of these four selected genes had been reported in breast cancer molecu-
lar mechanisms studies.

Correlation analysis of the four novel hub genes with clinicopathological variables in breast 
cancer. In view of the bc-GenExMiner v.4.6 contains a relatively large number of samples and rich clini-
cal information, we explored the relationships between the expression levels of the novel four hub genes and 
the clinicopathological variable in this platform. First, we found the expression levels of four novel hub genes 
(CENPL, ISG20L2, MRPL3, and LSM4) were significantly higher in the subjects aged ≤ 51  years, and high 
expression of CENPL, ISG20L2, MRPL3, and LSM4 were associated with lymph node metastasis and higher 
SBR grade (P < 0.05, Fig. 3a−c). Moreover, The TNBC and basal-like BC patients both displayed significantly 
increased expression of CENPL, ISG20L2, MRPL3, and LSM4 than the non-TNBC and non-basal-like patients, 
and the expression of CENPL, ISG20L2, MRPL3, and LSM4 were also significantly positively related to Ki67 
status (Supplementary Fig. S6). Thus, we can conclude that CENPL, ISG20L2, MRPL3, and LSM4 are closely 
related to clinicopathological variables of BC.

Validation of the expression differences of the four novel hub genes. Based on the TCGA_BRCA 
and match TCGA normal and GTEx data of GEPIA database, the mRNA expression levels of these genes 
(CENPL, ISG20L2, MRPL3 and LSM4) were also significantly higher in breast cancer tissues than normal tis-
sues (Supplementary Fig. S7). Immunohistochemistry analysis from The Human Protein Atlas database also 
showed that these four hub genes were up-regulated in protein expression level in breast lobular carcinoma 
(Supplementary Fig. S8). To elucidate the underlying mechanisms of abnormal up-regulation of these four hub 
genes in breast cancer, we first investigated the association between gene expression and their methylation lev-
els. DiseaseMeth version 2.0 analysis displayed that the mean methylation levels of CENPL, MRPL3 and LSM4 
were all significantly reduced in breast cancer compared to normal breast tissues (P < 0.05) (Fig. 4a,c,d). While 
the mean methylation levels of ISG20L2 significantly increased in breast cancer compared to normal breast tis-
sues (P < 0.05) (Fig. 4b). Additionally, genetic alterations of CENPL, ISG20L2, MRPL3, and LSM4 were further 
examined in cBioPortal database, showing these four hub genes were altered in 570 (26%) of 2173 breast cancer 
patients (Fig. 4e). CENPL and ISG20L2 showed the highest alteration levels (20%) with gene amplification as 
the main alteration type.

Identifying the diagnostic performance of each hub gene in breast cancer. To explore the diag-
nostic performance of each hub gene in breast cancer, we first performed ROC analysis to assess the diagnostic 
performances of the four hub genes for detecting breast cancer using TCGA_BRCA dataset, and their AUC 
values (CENPL AUC: 0.934, LSM4 AUC: 0.948, MRPL3 AUC: 0.891, ISG20L2 AUC: 0.918) were showed in 
Fig. 5a. These results indicate their good diagnostic performance. Subsequently, ROC analysis in GEO datasets 
further validate the diagnostic value of these four hub genes. The AUC values of CENPL, LSM4, MRPL3 and 
ISG20L2 are 0.83, 0.913, 0.841 and 0.951 respectively (Fig. 5b), meaning that the four hub genes all possess good 
diagnostic performance.

Prognostic value analysis of each hub gene in breast cancer patients. To estimate the prognostic 
value of each hub gene in BC patients, we conducted overall survival (OS) analysis using Kaplan–Meier survival 
method based on three different datasets that contains several thousand breast cancer samples. The Kaplan–
Meier curves of each hub gene showed that the difference between high expression groups and low expression 
groups were significant (all P < 0.05). And the higher expression levels of these four hub genes were significantly 
associated with the poor OS of breast cancer patients (HR ˃1, Fig. 6).

Table 3.  Hub genes identified in the blue and brown modules associated with breast tumor via WGCNA 
analysis. Four selected genes are annotated in bold.

Module Hub genes

blue

PPM1G, CDCA4, TACC3, CCNF, TIMELESS, SRSF1, CENPU, MRPL3, PSMD14, ISG20L2, ESRP1, TMEM206, SPC24, ASF1B, 
ZWINT, CDKN3, UHRF1, MIS18A, ZWILCH, MTHFD2, CKS2, CKAP2, ELAVL1, PCNA, FEN1, DTL, E2F1, H2AFZ, HDGF, 
PBK, CDC25C, ECT2, TUBA1C, SPC25, TROAP, HMMR, IQGAP3, ESPL1, UBE2T, EZH2, RACGAP1, OIP5, RAD51, CCNB1, 
LMNB1, NEK2, NUSAP1, GINS1, ERCC6L, CENPL, CENPF, DLGAP5, KIFC1, KIF11, KIF20A, CKAP2L, BUB1B, KIF23, 
PLK1, HJURP, NCAPH, NCAPG, KIF4A, TPX2

brown
TJP3, POLR3K, ATP6V0B, PAFAH1B3, DTYMK, FBXL19, VARS2, TRAF2, VAMP8, LSM4, SNRPB, WDR34, CHMP4B, 
SLC25A39, HMOX2, KCTD13, CDK5, TPRN, RUVBL2, ZDHHC12, DPM2, BAX, TSEN54, AXIN1, TBC1D10B, KIF22, 
CACFD1, PRR14, NR2F6, COPE, SNRNP25, NUDT16L1, PGP, PPP4C, PHKG2, NMRAL1, ROGDI, MRPS34
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GSEA and GSVA exhibit a tight relationship between the four hub genes and tumor cell pro-
liferation. To further elucidate the lurking biological functions of CENPL, ISG20L2, MRPL3 and LSM4 in 
breast cancer occurrence and development, we conducted GSEA and GSVA using METABRIC dataset. The 
results of GSEA were shown in Fig. 7, the genes in high expression groups of CENPL, ISG20L2, MRPL3, and 
LSM4 were all significantly enriched in tumor cell proliferation related pathways such as “cell cycle” and “DNA 
replication”. Meanwhile, GSVA results substantiated that these cell proliferation-associated gene sets were sig-
nificantly up-regulated in the high-expression groups of CENPL, ISG20L2, MRPL3 and LSM4 (Supplementary 
Fig. S9).

RNA in situ detection. We measured the expression abundance and spatial localization of the five hub 
genes by RNA in situ detection technology. The results indicate that the expression of these five hub genes were 
mainly distributed in the cytoplasm and nucleus, and the amount of signal originates from hybridization to each 
probe varied greatly. Among these five genes, ISG20L2 showed the highest expression level, while CENPL and 
LSM4 have fewer signal (Fig. 8a–d). Compared to normal mammary epithelial cell (MCF10A), the RCPs of each 
hub gene in both breast cancer cell lines (MCF7 and MDA-MB-231) showed a significant increase (p < 0.05), but 
the RCPs of ISG20L2 were reduced and the LSM4 were similar as observed in SKBR3 cell (Fig. 8e–i). Consider-
ing the five hub genes, which were identified based on PPI networks and WGCNA, share the same signaling 
pathways during breast cancer progression, we conducted correlation analysis between the four novel hub genes 
(CENPL, ISG20L2, LSM4 and MRPL3) and EZH2. As shown in Table 4, the expression levels of each hub gene 
(CENPL, ISG20L2, MRPL3, and LSM4) was correlated with EZH2 in three different breast cancer cell lines 
(p < 0.01). Furthermore, we also performed the correlations analysis in GEPIA database to assess the four hub 
genes correlation with EZH2 in breast cancer and the results remained satisfactory (Supplementary Fig. S10, 
P < 0.0001).

Figure 3.  Relationship between four novel key genes expression levels and clinicopathological variables in 
breast cancer based on bc-GenExMiner platform.
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Discussion
As a highly prevalent tumor disease worldwide, the complex mechanism involved in the development of breast 
cancer has not been fully elucidated so far. Thus, identifying potential hub genes involved in breast cancer is not 
only helpful to elucidating the molecular mechanisms, but also possessing great potentials for the searching of 
an effective diagnostic biomarkers and prognosis predictors. Previously, hub genes were mainly produced by 
using a small-scale dataset in most research and showed distressing inconsistent results. In this paper, we applied 
10 breast cancer datasets to identify and validate potential novel hub genes so as to guarantee the credibility of 
the results.

First, 512 robust DEGs between breast tumor tissues and normal breast tissues were identified using RRA 
method. Functional annotation analysis revealed that the robust DEGs significantly enriched in GO terms were 
associated with proliferation and energy metabolism, such as extracellular matrix organization, extracellular 
structure organization, mitotic nuclear division, regulation of lipid metabolic process, and glycosaminoglycan 
binding, which are implicated in the progression of tumor  cell17–19. Meanwhile, the KEGG pathway enrichment 
analysis showed that 22 genes from those robust DEGs were most associated with PI3K—AKT signaling pathway, 
which serves as a pivotal intracellular signaling path that plays a crucial role in cell cycle regulation and thus 
involved in breast cancer  development20. In addition, we also found that those robust DGEs were significantly 
enriched in PPAR signaling pathway, EC—receptor interaction, AMPK signaling pathway, and multiple studies 
have shown these pathways activation are participated in the development and progression of breast cancer and 
affect the final  outcomes21–23. Based on the PPI networks analysis of robust DEGs, EZH2 was found to be a key 
gene in the development of breast cancer, and this has been shown in various breast cancer-related  studies24,25.

Subsequently, a total of 104 hub genes associated with breast cancer were found using the “WGCNA” 
approach. Among those 104 hub genes, we chose four significantly up-regulated genes, including CENPL, 

Figure 4.  Methylation level analyses and genetic alteration of novel hub genes for breast cancer. (a–d) the 
methylation levels of CENPL, ISG20L2, LSM4, and MRPL3 in breast cancer and normal tissues were examined 
using DiseaseMeth 2.0 databaset based on 450 k (Illumina Infinium HumanMethylation450 BeadChip) 
platform; (e) Genetic alterations of CENPL, ISG20L2, MRPL3, and LSM4 were examined in cBioPortal database.
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Figure 5.  The diagnostic value analysis and validation of four novel hub genes in breast cancer. ROC curves 
analysis for CENPL, ISG20L2, LSM4 and MRPL3 based on (a) TCGA dataset, (b) GEO_BRCA dataset. 
Abbreviation: ROC receiver operating characteristic, AUC area under the ROC curve.

Figure 6.  The prognostic value analysis of four novel hub genes in breast cancer based on (a) TCGA_GEO 
BRCA dataset, (b) METABRIC dataset, (c) bc-GenExMiner v4.6 Platform. Expression levels of CENPL, 
ISG20L2, LSM4 and MRPL3 are significantly associated with the OS of patients in breast cancer (all P < 0.05, 
HR˃1).
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Figure 7.  Gene set enrichment analysis (GSEA) of potential hub genes in the METABRC dataset. Tumor cell 
proliferation related gene-sets were significantly enriched in the high-expression group of each hub gene.

Figure 8.  RNA in situ detection of five hub genes in different cell lines. (a–d) Demonstration of the expression 
abundance and spatial localization for each mRNA imaging in single cells. (a) five hub genes detection in 
MCF10A cell; (b) five hub genes detection in MDA-MB-231 cell; (c) five hub genes detection in MCF7 cell; (d) 
five hub genes detection in SKBR3 cell. (e–i) Distribution of RCPs/cell of each probe in four cell lines (MCF10A, 
MCF7, MDA-MB-231 and SKBR3). NS. Denotes P ˃0.05; * denotes P < 0.05; *** denotes P < 0.001.
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ISG20L2, MRPL3, and LSM4 as hub genes of interest due to the reason that they have rarely been studied in 
breast cancer and closely related to clinicopathological variables of BC patients. Centromere Protein L (CENPL) 
is a component of the CENPA-CAD (nucleosome distal) complex, which participated in the assembly process 
of kinetochore proteins, mitotic progression and chromosome  segregation26. Interferon stimulated exonuclease 
gene 20 Like 2 (ISG20L2) encodes a 3’–5’ exoribonuclease that involved in the 12S pre-rRNA processing, as a 
target gene of miR-139-3p, has been reported to take part in the pathogenesis of hepatocellular  carcinoma27,28. 
Mitochondrial ribosomal protein L3 (MRPL3), which belongs to the L3P ribosomal protein family, encodes a 
39S subunit protein, and plays a regulatory role in the process of Combined Oxidative  Phosphorylation29. Small 
nuclear ribonucleoprotein Sm-like4 (LSM4) encodes a member of the LSM family of RNA-binding proteins, has 
an important role in pre-mRNA splicing by mediating U4/U6 snRNP formation, and this gene has been reported 
involved in the pathogenesis of pancreatic  cancer30,31. Interestingly, Joseph S. Baxter et al32 have also identified 
that LSM4 is one of 110 target genes at 33 breast cancer risk loci based on Capture Hi-C technology, which sup-
ports the conclusions of the present study. In this study, our data not only showed the expression level of CENPL, 
ISG20L2, LSM4 and MRPL3 were strongly associated with age, lymph node metastasis and higher SBR grade, 
but also significantly upregulated in triple negative breast cancer patients compared to non-triple negative breast 
cancer. Furthermore, they are also correlated with the expression of the tumor cell proliferative marker MKI67 
(Ki-67), indicating that these four genes may play vital roles in the pathogenesis and progression of breast cancer.

Next, ROC analysis revealed that the mRNA expression levels of these four hub genes had excellent diagnostic 
performance for breast cancer. Prognosis analysis showed that these hub genes were high risk genes, and the 
higher expression levels were related to poorer prognosis for breast cancer patients. Early diagnosis and accu-
rate evaluation of prognosis play an important role in improving the prognosis of breast cancer patients. thus, 
these four hub genes also have potentials to serve as promising candidate diagnostic biomarkers and prognosis 
predictors for breast cancer.

Alternatively, we have also undertaken a preliminary analysis of up-regulation mechanism of these four hub 
genes refer to DiseaseMeth 2.0 and cBioPortal Database. In DiseaseMeth 2.0 database, the correlation analysis of 
DNA methylation patterns of hub genes with mRNA expression revealed that CENPL, MRPL3 and LSM4 were 
hypomethylated in breast cancer samples compared with adjacent normal ones, while ISG20L2 was hypermeth-
ylated in breast cancer sample. Generally speaking, the DNA methylation patterns negatively correlates with 
mRNA expression, which is consistent with the observed up-regulation of CENPL, MRPL3 and LSM4 in breast 
cancer, while the latest research suggested DNA hypermethylation can lead to mRNA  upregulation33. Moreover, 
in cBioPortal database, we found that the abnormal expression of the above hub genes in breast cancer were 
associated with genetic alterations. In Summary, we think that the gene regulation complexity and up-regulation 
mechanism of the four hub genes should be further studied.

In addition, we used GSEA to further explore the biological functions of the four hub genes in breast cancer 
and the results showed that the high-expression groups of CENPL, ISG20L2, MRPL3 and LSM4, were signifi-
cantly enriched in pathways related to cell proliferation such as “cell cycle” pathway. The results of GSVA were 
in accordance with the GSEA results. Cell-cycle dysregulation is one of the hallmarks of cancer and several 
researches have reported that cell cycle disturbance is the most important mechanism for cancer occurrence and 
 progression34. Given that the specific functions of those novel hub genes remain unclear, additional research are 
required to investigate the underlying molecular mechanisms in breast cancer.

Finally, RNA in situ detection technology was applied to detect the five hub genes obtained based on bioin-
formatics methods, and the results showed that the expression of those five hub genes are different but the spatial 
localization are similar. While verifying the expression differences of each gene, the correlation analysis showed 
that the CENPL, ISG20L2, MRPL3 and LSM4 was correlated with EZH2 expression. Since EZH2 are currently 
more studied in breast cancer, and the four novel hub genes (CENPL, ISG20L2, MRPL3, LSM4) and EZH2 are 
involved in similar signaling pathways derive from GSEA results, we speculate that each novel hub gene has 

Table 4.  correlation analysis between novel four hub genes (CENPL, ISG20L2, LSM4 and MRPL3) and EZH2 
based on RNA in situ detection. Cor: Pearson correlation coefficient.

Breast cancer cell lines Gene

EZH2

PCor

MCF7 CENPL 0.16 4.99e-09

ISG20L2 0.38 2.34e-46

LSM4 0.38 1.68e-46

MRPL3 0.63 2.53e-143

MDA-MB-231 CENPL 0.23 4.64e − 17

ISG20L2 0.39 1.11e − 46

LSM4 0.25 2.72e − 18

MRPL3 0.55 3.84e − 106

SKBR3 CENPL 0.09 9.64e-04

ISG20L2 0.46 1.85e-62

LSM4 0.12 3.63e-05

MRPL3 0.56 4.84e-114
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correlation with EZH2 expression, which were verified by the RNA in situ detection results. As an oncogene, 
growing evidence has identified EZH2 was closely related to breast cancer development and progression through 
multiple molecular  mechanisms35,36, but no studies are related to the roles of CENPL, ISG20L2, MRPL3 and 
LSM4 in breast cancer. Thus, these four novel hub genes as aberrant molecules in the maintenance of breast 
cancer progression, their exact functional mechanisms deserve further in-depth study.

Methods
Collection of breast cancer-related gene expression profile datasets. Thirteen different data-
sets comprising eleven datasets from GEO database, one dataset from TCGA database (TCGA_BRCA data-
set) and one METABRIC dataset, thousands of breast cancer samples and 280 normal breast tissues samples, 
were included in our study. The eight series matrix files and corresponding platform annotation information 
files in RRA analyses were downloaded from Gene Expression Omnibus (GEO) database (http:// www. ncbi. 
nlm. nih. gov/ geo/), and processed using R package “GEOquery”37. The RNA sequencing data normalized by 
FPKM method, which contains 1066 breast cancer samples and 112 adjacent normal breast tissues samples, 
were downloaded from The Cancer Genome Atlas (TCGA) data portal (https:// portal. gdc. cancer. gov/) (up to 
May 01, 2020). At the same time, survival time and vital status of each breast cancer sample in TCGA_BRCA 
dataset were also extracted and used for subsequent overall survival (OS) analysis. The mRNA expression data 
and clinicopathological characteristics of 1,904 breast cancer samples in METABRIC dataset were acquired from 
the cBioPortal website (https:// www. cbiop ortal. org/), of which the mRNA expression levels were determined by 
Illumina Human v3 microarray and normalized by  logarithm38. In addition, the raw data of three breast cancer 
related datasets (GSE21422, GSE42568, and GSE65194) derived from the same microarray platform (GPL570 
Affymetrix human genome U133A U133 Plus 2.0 array) were collected separately, then merged and preliminar-
ily cleaned using the “GEOquery” package. The SVA function and Combat function were used to standard and 
remove the batch effect of three different  datasets39,40. The merged dataset (GEO_BRCA dataset) was used to 
validate the diagnostic performance of single hub genes in breast cancer. Furthermore, Breast cancer samples 
microarray gene expression data from three datasets (GSE20685, GSE20711 and GSE58812) and concomitant 
follow-up information were also acquired from the Gene Expression Omnibus (GEO) database using “GEO-
quiry” package and merged with TCGA_BRCA dataset using the “ComBat” function, which served as TCGA_
GEO BRCA dataset (including 1596 breast cancer patients) to explore the prognostic value of novel hub genes.

RRA analysis and identification of robust DEGs. To discern the DEGs between breast cancer and 
normal breast tissue in each dataset from GEO database. The “limma” package in R was adopted to normalize 
the gene expression data and conduct differential gene expression  analysis41. The differentially expressed genes 
(DEGs) in each dataset were sorted by their fold change value. subsequently, R package “RobustRankAggreg” 
10was applied to integrate the ranked DEGs of 8 datasets from GEO database so that to find the most important 
and robust DEGs. Finally, those robust DEGs were determined according to the thresholds: |log2fold change|≥ 1 
and P < 0.05.

Pathways and GO function enrichment analyses. To identify the biological functions and pathways 
of those robust DEGs, Gene Ontology (GO) Function and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were conducted using the “clusterProfiler” R  package42. The GO terms or KEGG 
pathways with Adjusted P values less than 0.01 indicated statistical significance. Plus, bubble plots were used for 
visualizing the top 20 enrichment results of GO terms and KEGG pathways.

PPI network construction and analysis of modules. To identify the key gene of known functions in 
breast cancer, 512 robust DEGs were mapped to STRING database (STRING, https:// string- db. org/, database 
version 11.0) to construct a PPI  network43. Nine topological algorithms in Plug-in  CytoHubba44, consisting of 
“MCC”, “MNC”, “Degree”, “BottleNeck”, “EcCentricity”, “Closeness”, “Radiality”, “Betweenness” and “Stress” were 
selected to identify the hub genes in PPI, and the top 10 genes in each topological algorithm were viewed as most 
stable key gene in PPI analysis. Moreover, the plug-in Molecular Complex Detection (MCODE) 45in Cytoscape 
software was also applied to analyze and recognize the modules in the PPI network. All parameters of the above 
analysis procedure used were set at default values.

WGCNA and potential hub genes identification. To screen potential novel hub genes related to breast 
cancer, the WGCNA  algorithm46 was used to construct weighted gene co-expression network and identify gene 
modules that are highly associated with breast cancer. First, gene expression data of the top 3776 up-regulated 
DEGs obtained by RRA analysis (according to P < 0.05) was extracted from TCGA breast cancer dataset and 
associated with sample information to construct a sample clustering tree. Second, appropriate soft threshold 
value (5, scale free  R2 = 0.97) was selected to convert the correlation matrix into adjacency matrix. Subsequently, 
the resulting adjacency matrix was further converted to topological overlap matrix (TOM) by the TOM similar-
ity algorithm. Referring to the TOM‐based dissimilarity calculation formula, these 3776 genes were classified 
into different gene modules marked by different colors. Third, the minimal module size was set as 50 genes and 
the height cut-off as 0.25 to merge the highly similar gene modules. Meanwhile, the correlation value between 
each module’s module eigengene (ME) and samples information were calculated using Pearson correlation coef-
ficient. The candidate gene modules were identified based on the degree of correlation between the module’s ME 
values and samples traits. Genes with gene significance (GS) value greater than 0.3 and module membership 
(MM) value greater than 0.6 in candidate modules were defined as hub genes for breast cancer. These genes may 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
https://string-db.org/


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15610  | https://doi.org/10.1038/s41598-021-95068-6

www.nature.com/scientificreports/

have stronger association with the progression and development of breast cancer. Finally, these hub genes were 
further filtered out based on bioinformatics analyses and literature searches.

Correlation analysis of each hub gene with Clinicopathological Parameters using Breast Can-
cer Gene-Expression Miner v4.6 (bc-GenExMiner v4.6) online tool. Bc-GenExMiner v4.6 (http:// 
bcgen ex. ico. unica ncer. fr) 47is a widely used statistical mining online tool for exploring the "correlation", "expres-
sion" and "prognostic" analyses of genes of interest in breast cancer by incorporating published annotated breast 
cancer transcriptomic data (DNA microarrays [n = 11 359] and RNA-seq [n = 4 712]). In this part of the study, 
the association of each hub genes expression with clinicopathological features in breast cancer was assessed 
using the "expression" analysis functionalities in bc-GenExMiner v4.6, and the clinicopathological parameters 
used in this study mainly contained nodal status (N), Age status, Pathological tumor stage, Scarff Bloom & Rich-
ardson grade status (SBR), Ki67 status and Basal-like (PAM50) & triple-negative breast cancer status, etc. A p 
value less than 0.05 was considered statistically significant.

Validation of differential expression of novel hub gene. The Gene Expression Profiling Interactive 
Analysis (GEPIA, http:// gepia. cancer- pku. cn/) database and The Human Protein Atlas (HPA; http:// www. prote 
inatl as. org/) database were used to validate the differential expression of each hub gene between breast cancer 
tissue and normal breast tissue from gene expression and protein levels separately.

Diagnostic performance analyses. With the aid of R package “pROC”48, the receiver operating charac-
teristic (ROC) curves analysis was used to evaluate the diagnostic value of each hub gene using in TCGA_BRCA 
dataset and GEO_BRCA dataset respectively.

Prognostic value analyses. To assess the prognostic value of each hub gene, both the samples in META-
BRIC dataset and TCGA_GEO_BRCA dataset were divided into high-expression group and low-expression 
group based on each hub gene’s best separation cut-off values. Using built-in “survminer” package and “sur-
vival” package in R software, the overall survival (OS) rates were calculated via the Kaplan–Meier method, and 
the difference in the OS rates between high expression group and low expression group of each hub gene was 
compared by the log-rank test, P < 0.05 was considered as difference significant. In parallel, hazard ratio (HR) 
value at 95% confidence interval (95% CI) of each hub gene was also calculated. HR greater than 1 suggested that 
the gene increase the risk of breast cancer, and HR less than 1 indicated that the gene was a beneficial factor for 
breast cancer. Moreover, the prognostic value of each novel hub gene was further assessed using the "prognostic" 
analysis functionalities in bc-GenExMiner v4.6 Platform.

Correlation analysis of methylation level and gene expression of hub genes. The human disease 
methylation database (DiseaseMeth, version 2.0, http:// bioin fo. hrbmu. edu. cn/ disea se meth/) is a database that 
integrates massive methylation data from microarray and sequencing results, providing the methylation status 
annotation information of human  diseases49. This web database was used to compare the difference of methyla-
tion levels of each hub gene between breast cancer and normal breast tissues.

Association analysis of genetic alteration and gene expression of hub genes. The genetic altera-
tion data for each hub gene in the METABRIC dataset samples at the cBioPortal website (http:// www. cbiop ortal. 
org/) was used to investigate the correlation of genetic alteration and gene expression in breast cancer.

Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) for single hub 
genes. To find the potential biological functions of single hub genes in breast cancer, R package “clusterpro-
filer” was chosen to conduct GSEA using METABRAC dataset. Refer to the split-group approach of OS analysis, 
the samples were divided into “high-expression group” and “low-expression group” based on each hub gene’s best 
expression separation cut-off value. Gene differential expression analysis between each hub gene’s “high-expres-
sion group” and “low-expression group” was carried out using the “limma” R package. Subsequently, based on 
the ordered list of all genes according to the logFC value, we performed GSEA using the “clusterProfiler” R pack-
age, p. adjust < 0.05 was regarded as statistically significant. Moreover, the GSVA was implemented to verify the 
differential KEGG pathways of high-expression group and low-expression group via R package “GSVA”50. The 
reference gene set “c2.cp.kegg. v7.0. symbols” were obtained from the Molecular Signature Database (MSigDB,

http:// softw are. broad insti tute. org/ gsea/ msigdb/ index. jsp). Cutoff value of differential KEGG pathways was 
set |logFC|˃0.2, and P < 0.01 was regarded as statistically significant.

RNA in situ detection technology and image analysis. RNA in situ detection technology was used 
to determine each hub gene expression at the cellular level. Specific operations were performed referring to 
literature reported by Ruijie Deng et al51 and the main steps include: Design of padlock probe complementary 
to the target RNA, after the padlock probe hybridize to its target and the padlock probe is connected into a 
ring through specific Splint R DNA ligase, the rolling-circle amplification (RCA) is initiated under the action 
of primer and Phi29 DNA polymerase, and Finally, fluorescently labeled probes were added to achieve signal 
detection. For high detection efficiency, three padlock probes were designed for each hub gene in this study 
(Supplementary Materials: The padlock probe designed for five hub genes). The cell lines used in this study 
include: MCF10A, MCF7, MD-MB-231 and SKBR3. Image analysis and quantification of signal intensity from 
each probe was performed in CellProfiler software. A minimum of 1000 cells was counted for each cell line probe 

http://bcgenex.ico.unicancer.fr
http://bcgenex.ico.unicancer.fr
http://gepia.cancer-pku.cn/
http://www.proteinatlas.org/
http://www.proteinatlas.org/
http://bioinfo.hrbmu.edu.cn/disease
http://www.cbioportal.org/
http://www.cbioportal.org/
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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set, and wilcox—test was conducted to compare the rolling circle products (RCPs) of each hub genes between 
human breast epithelial cell line (MCF10A) and breast cancer cell lines (MCF7, MD-MB-231 or SKBR3). The 
expression correlation of these hub genes in breast cancer cell lines were analyzed with pearson method. P-value 
less than 0.05 was considered statistically significant.

Ethical concerns. Not applicable.

Data availability
Gene expression microarray datasets were downloaded from Gene Expression Omnibus (GEO) database (http:// 
www. ncbi. nlm. nih. gov/ geo/). RNA-seq data and corresponding clinical of TCGA_BRCA was acquired from The 
Cancer Genome Atlas (TCGA) data portal (https:// portal. gdc. cancer. gov/) (up to May 01, 2020). The mRNA 
expression data and clinicopathological characteristics of METABRIC dataset was obtained from the cBioPortal 
website (https:// www. cbiop ortal. org/).
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