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Objective. In this study, machine learning was utilized to classify and predict pulse wave of hypertensive group and healthy group
and assess the risk of hypertension by observing the dynamic change of the pulse wave and provide an objective reference for
clinical application of pulse diagnosis in traditionalChinesemedicine (TCM).Method.Thebasic information from450hypertensive
cases and 479 healthy cases was collected by self-developed H20 questionnaires and pulse wave information was acquired by self-
developed pulse diagnostic instrument (PDA-1). H20 questionnaires and pulse wave information were used as input variables to
obtain different machine learning classificationmodels of hypertension.This method was aimed at analyzing the influence of pulse
wave on the accuracy and stability of machine learning model, as well as the feature contribution of hypertension model after
removing noise by K-means. Result. Compared with the classification results before removing noise, the accuracy and the area
under the curve (AUC) had been improved. The accuracy rates of AdaBoost, Gradient Boosting, and Random Forest (RF) were
86.41%, 86.41%, and 85.33%, respectively. AUC were 0.86, 0.86, and 0.85, respectively. The maximum accuracy of SVM increased
from 79.57% to 83.15%, and the AUC stability increased from 0.79 to 0.83. In addition, the features of importance on traditional
statistics and machine learning were consistent. After removing noise, the features with large changes were h1/t1, w1/t, t, w2, h2,
t1, and t5 in AdaBoost and Gradient Boosting (top10). The common variables for machine learning and traditional statistics were
h1/t1, h5, t, Ad, BMI, and t2. Conclusion. Pulse wave-based diagnostic method of hypertension has significant value in reference. In
view of the feasibility of digital-pulse-wave diagnosis and dynamically evaluating hypertension, it provides the research direction
and foundation for Chinese medicine in the dynamic evaluation of modern disease diagnosis and curative effect.

1. Introduction

Hypertension is a clinical syndrome whose principal char-
acteristic is an increase in systemic arterial pressure and
it is the one of the most common cardiovascular diseases
in the world [1–3]. According to 2017 Chinese guidelines
for the management of hypertension [4], the prevalence
of hypertension has been increasing in China for decades,
reaching 23.2%, which has greatly affected the health status
of people. In addition, hypertension and other cardiovascular
diseases, whose prevention cannot be ignored, possess the

characteristics of high incidence, high mortality, and heavy
medical burden.

At present, the data on the classification and prediction of
hypertension mainly come from inpatient electronic medical
records, environmental and genetic factors, and gene expres-
sion data [5]. Zhiyong Pei [6] used support vector machine
(SVM) to classify and predict by inputting environmental
factors, genetic factors variables, and environmental and
genetic factors for 559 hypertensive patients and 641 healthy
people. It was found that the combination of environmental
variables and genetic factors would improve the prediction
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accuracy, reaching 80.1%. Sherif Sakr [7] used cardiorespira-
tory fitness data and combined the differentmachine learning
methods with the SMOTE algorithm to achieve the higher
prediction accuracy of hypertension at 81.69% with AUC of
0.93. In short, there are some achievements on studies in
the classification and prediction of hypertension, but these
researches have some limitations to some extent. On one
hand, they focus on the prediction of a certain stage of
data and the preconditions are relatively numerous. On the
other hand, the subjectivity of the data is relatively strong.
Most of all, data features rarely involve the pulse wave-based
hypertension prediction studies.

As one of the methods of traditional Chinese medicine
(TCM) diagnosis, pulse diagnosis has always played an
important role in clinical diagnosis and treatment and sub-
health recuperation [8]. Since the 1950s, the integration of
biomedicine, mathematics, physics, biomechanics, bioengi-
neering, computer science, and traditional Chinese medicine
has made great progress in the objective study of pulse
diagnosis. The pulse wave reflects the shape of the pulse
beats and pulse graph is used as the objective image for
recording the pulse wave. By combining with the medi-
cal history, lab-test diagnosis, and four-combined Chinese
medicine diagnosis, and analyzing the correlation of pulse
graph with the disease and syndrome, the study gradually
establishes the clinical standard diagnosis of pulse graph,
which further provides the objective diagnostic method for
clinical practice in Chinese medicine. Pearson’s correlation
coefficient and t-test are often applied for analysis of time
domain or frequency domain features, either of which is the
classical analysis method in pulse wave [9]. In addition, Hu
[10] used KNN to undertake the classification prediction of
the pulse wave of the elderly people with different blood
pressure segments, but in this article she did not conduct
the modelling prediction for multiple age groups. The age
of the samples is mostly elderly, and the model has certain
limitations. Zhang [11] used genetic algorithm to screen fea-
tures, and then SVM predicted the time domain information
of pulse wave, which obtained accurate rate and ROC of
76.0% and 0.83, respectively. Many studies have suggested
that pulse waves have strong correlation with hypertension
[12–15].

The research of pulse wave digital processing also has
obtained better results and has been applied to the objectifi-
cation of pulse diagnosis in TCM [16–18]. Based on this, some
machine learning methods such as support vector machine,
neural network, and random forest [19] have been used
in pulse wave recognition or classification. Although some
achievements have been made in pulse wave recognition
and classification, there are still some problems, such as
poor prediction accuracy and model stability, and fuzzy
characteristic contribution in the hypertension model. The
reason for this may be some deficiencies in model building
and the impact of data noise.

Clustering analysis [20] is a classical method of unsuper-
vised learning, and its most representative algorithm is K-
means. We attempt to classify different samples into different
groups based on K-means clustering analysis method and
sort out the contribution of clustering according to the

sample characteristics, and then make further analysis after
removing the low-quality samples. Additionally, cardiovas-
cular monitoring commonly relies on sphygmomanometers
and less on the risk prediction of chronic cardiovascular
disease. The assessment of cardiovascular dynamic risk is
more comprehensive by combining pulse wave and H20 scale
[8, 19, 21] with symptom assessment.

The main purposes of this paper are as follows: (1)
to remove the noise of pulse wave by K-means, so as to
further improve the accuracy and stability of the model;
(2) to identify the feature variable which is of the highest
contribution to hypertension.

2. Materials and Methods

2.1. Subjects. A total of 929 subjects were collected from the
outpatient department and the medical examination center
of Shanghai Shuguang Hospital attached to Shanghai Chinese
Medicine University affiliated to Shanghai University of Tra-
ditional Chinese Medicine. Among them, 450 (356males and
94 females, average age: 44.73 ± 8.73) were diagnosed with
hypertension and 479 (337 males and 142 females, average
age: 44.49 ± 9.18) with no hypertension.

2.2. Inclusion and Exclusion Criteria. Inclusion criteria for
hypertensive group were as follows: patients who met the
diagnosis standards of hypertension [4] with the age ranging
from 18 to 70, male or female.

Inclusion criteria for healthy group were as follows: (1)
the examination results of B-ultrasound, electrocardiogram,
biochemistry, imaging, and other subjects in physical exami-
nation indicate no disease; (2) the age ranged from 20 to 70,
and gender is not limited; (3)H20 score is greater than 80with
no positive items; (4) systolic blood pressure of 90-140mmHg
and diastolic pressure 60-90mmHg.

Exclusion criteria include (1) those diagnosed with other
serious medical conditions, such as cardiovascular and cere-
brovascular diseases, urinary tract diseases, tumors, and
immune and hematological diseases; (2) those who suffered
from mental illness; (3) those who refused to sign the
informed consent; (4) those whose later screening data are
not qualified.

2.3. Pulse Image Collection and Analysis Methods

2.3.1. Collection Instrument. In this study, a pulse diagnosis
instrument (PDA-1) (Figure 1(a)) was developed by “Tradi-
tional Chinese Medicine Diagnosis Information Intelligent
Processing Research Team” in Shanghai University of Tradi-
tional Chinese Medicine (SHUTCM). The device consists of
a pulse wave transducer, an A/D analog-to-digital transducer,
and a computer.Themain technical parameters are sensitivity
(0.5mV/gram force; linear range: 0-250 grams force; output
impedance: 1 K special symbol), AC amplifier loop (input
dynamic range: 0-25mV; full-scale output ±5V), and DC
amplifier loop (input dynamic range: 0-125mV; full-scale
output ±5V).
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Figure 1: Collection instrument. (a) Pulse diagnosis instrument (PDA-1). (b) Interface of pulse diagnosis and analysis system.
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Figure 2: The main measurement parameters of pulse wave cycle.

2.3.2. Collection Methods. The pulse diagnosis instrument
(PDA-1) was used to collect the pulse wave of radial artery on
the left hand and the patients were asked to sit still or rest for
at least 5minutes before the acquisition.During the collecting
process, patients were required to sit or stay supine, relax, not

talk, and breathe normally. If the above requirements were
not satisfied, second collection was needed.

In order to obtain the pulse wave parameters, the
Intelligent Information Processing Laboratory of Chinese
Medicine Diagnostics of Shanghai University of TCM has
developed the method into a pulse diagnosis and analysis
system (PDAS) (Figure 1(b)).The systemmenu has “General”
and “Analysis.” “General” includes “Open Port,” “New,” and
“Acquisition.” “Analysis” includes “Generate Report,” “Calcu-
lateCharacteristicValue,” “ExportHValue,” and “BatchAnal-
ysis.” The data view window shows pulse wave information.
The section at the lower right shows the pulse wave of the
patient with hypertension (Figure 1(b)).The software outputs
the information parameters of pulse for subsequent analysis.
Time domain features of the pulse wave [10, 22, 23] including
6 duration features (t, t1, t2, t3, t4, and t5), 5 amplitude features
(h1, h2, h3, h4, h5, h1/t1, h3/h1, and h4/h1), 4 width features
(w1, w2, w1/t, and w2/t), and 2 area features (As, Ad) were
extracted by Shannon energy envelope andHilbert transform
[24]. The meaning of the features is listed in Table 1 and
Figure 2.

2.4. Study Design and Setting. Features such as age, BMI,
pulse wave parameters, and H20 score of the hypertension
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Table 1: TD features.

No. Features Meaning

1 h1 Main wave amplitude. It reflects the compliance of the aorta and the cardiac ejection function of
the left ventricular

2 h2 Main isthmus wave amplitude. Same physiological significance as h3.

3 h3 Heavy wave front wave amplitude. It reflects the elasticity of arterial vessels and its peripheral
resistance.

4 h4 Dicrotic notch amplitude. It reflects the peripheral resistance of arterial vessels and the closure of
aortic valve.

5 h5 Gravity wave amplitude. It reflects the compliance of the aorta and the function of aortic valve.

6 t1 Left ventricular rapid ejection period. The time value from the start point to the crest point of the
main wave on the pulse graph.

7 t2 The duration of the beginning of the tidal wave.
8 t3 The duration of the crest of the tidal wave.

9 t4 Left ventricular systolic duration. The time value from the start point to the dicrotic notch on the
pulse graph.

10 t5 Left ventricular diastolic duration.The time value from the dicrotic notch to the end point on the
pulse graph.

11 t Includes left ventricular systolic and diastolic duration. The time value from the start point to the
end point on the pulse graph.

12 w1 main wave 1/3 height.The duration of maintaining high intravascular pressure.
13 w2 main wave 1/5 height. The duration of maintaining high intravascular pressure.

14 w1/t The ratio of the width of the main wave at its 1/3 height to the entire pulse cycle. It reflects the
proportion of the duration time of continuous high pressure in the aorta in the entire pulse cycle.

15 w2/t The proportion of the duration time of continuous high pressure in the aorta in the entire pulse
cycle.

16 h1/t1 cardiovascular function
17 As Systolic area. The area on the pulse graph is related to cardiac output.
18 Ad Diastolic area.

and healthy groups were inputted as independent variables
in the pretreatment. Subjects were categorized according to
whether they have hypertension (dependent variable). 60%
of the samples were for training examples and 40% were for
testing examples. See flow chart (Figure 3).

2.4.1. Noise Reduction. TheK-means algorithm is a partition-
based clustering algorithm. A dataset is divided into several
groups or classes. Data with higher similarity is in the same
group while dissimilar data is in different group. Cluster
analysis can help to find abnormal data because similarity
and dissimilarity are based on the attribute of data. Similar
or neighboring data are aggregated to form each cluster
set, and those data, outside these cluster sets, are to be
excluded. During the process of data collection, human
factors interfered with the data inevitably. Clustering analysis
is used to cluster the input feature variables to obtain different
levels of clustering results. In a word, cluster analysis is
clustered based on different feature variables, and similar
samples are gathered into one group.

Firstly the K-means algorithm determines the reference
value k and then divides the N data again in the k clusters, so
that clusters with a similar degree in each cluster are classified
into one and clusters with a low degree of similarity are
classified into another. Specific steps: First, any number of k

data in the dataset were found. The original centroid of each
cluster was represented by these data. Second, the remaining
datasets were divided into each cluster according to the
minimization principle, which was based on the distance
between each dataset and its cluster centroid. Finally, the
centroid of each cluster was calculated again. The above
operationwas repeated and the calculationwas stoppedwhen
the value of the objective function was minimum [25].

2.4.2. Feature Normalization. Owing to the differences in the
magnitude of the parameters, it has a negative effect on the
classification and prediction. The range is scaled and mapped
from 0 to 1 (or -1 to 1 if there are negative values).

The formula of MinMaxScaler is

𝑥
𝑖
−min (𝑥)

max (𝑥) −min (𝑥)
(1)

where min(x) is the minimum value, max(x) is the
maximum value, and 𝑥

𝑖
is the value for each feature.

2.4.3. Classifier. Random Forest (RF), Support Vector
Machine (SVM), AdaBoost, Gradient Boosting (GBT), and
K-Neighbor (KNN) are classical machine learning models.
SVM, AdaBoost, and RF are widely used as classification
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predictions. Support vector machine is a sparse kernel
machine, which is a model that only relies on data subset
(support vector) to predict unknown class labels [26, 27].
Based on the support vector machine theory, it is pointed
out that, for a nonlinear separable dataset containing two
classes of points, there are many hyper planes used to
classify the classes. And a common radial basis function
was chosen. SVM is used to classify training samples to
separate and optimize two classes of hyper planes (i.e.,
decision boundaries). The optimal decision boundary
between support vectors is chosen by the distance of the
maximum boundary M [28]. Support vector machines
have good generalization capabilities. In other words, the
decision surface is seen as linear in the high-dimensional
space, while it is considered as nonlinear in low-dimensional
feature space, which means that SVM could be applied to
nonlinear separation data. In addition, in terms of overfitting
problems, support vector machine is of robustness for
high-dimensional data [29]. The main drawback is that it
is more difficult to interpret the generated model and has a
certain sensitivity to appropriate parameter adjustments.

K-nearest neighbor (KNN) is one of the easiest methods
to predict classification in pattern recognition [29]. To obtain
the nearest neighbor for each dataset, KNN uses measure-
ment to calculate the distance between data pairs. In general,
the measurement used is Euclidean distance. Since each new
data point is classified differently, KNN can establish a local
approximation of the objective function [30]. While a test
example is classified, it will use a similarity function based
on the Euclidean distance to find training examples of the
K most recent query points [29]. Since high k results in
overfitting and model instability, the appropriate values must
be specifically chosen [28]. Another advantage of KNN is its

simplicity. In spite of this, the forecasting time is usually very
expensive because all the training data must be reexamined
[30].

Random Forest (RF) uses a majority vote to predict
categories based on data partitions from multiple decision
trees [28]. In each decision tree, data points fall into specific
leaves according to their characteristics and are assigned a
forecast. Then the data points are averaged. The maximum
number of voting categories will provide the final forecast
[26]. The Gini index is used to determine the “best split”
threshold for a given category of input values. Comparedwith
the parent node, the Gini index returns the measure of the
heterogeneity of the child nodes [28].

AdaBoost is a supervised learning algorithm for solving
classification problems [31]. In each sequence, misclassified
instances are given more weight for the next sequence while
correctly classified instances are given lower weight.The final
model is a linear combination of all the models created in
the previous sequence [32]. In addition, GBDT has very
few limitations and assumptions on the input data, so it is
very flexible to deal with complex nonlinear relationships
[33]. In some problems, it is more stable than other learning
algorithms and is less susceptible to be affected by overfitting
problems. Each learning algorithm has its advantages and
tends to be more suitable for certain types of problems than
other types of problems, and there are usually many different
parameters and configurations that need to be adjusted
before achieving the best performance of the dataset [34].
Gradient Boosting could strategically combine some simple
tree models to obtain optimized predictive performance
while the result model could be interpreted by identifying key
variables [33]. The core is that the learning objective of each
subtree is the residual of the previous subtree. The sum of all
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Figure 4: k-means clustering analysis. The x-axis represents the number of clusters while the y-axis represents the variable h1/t1. Red points
include noise pulse wave. Blue points include normal pulse wave.

subtrees can be used as the final result of the model. GBT can
handle different types of predictors and missing data. At the
same time, it does not need to eliminate outliers and perform
previous data transformations [35].

SVM is used mainly to establish a classification hyper
plane as the decision surface andmaximize the isolated edges
of the positive and negative instances and then construct
and solve the optimization problem by selecting appropri-
ate kernel functions and appropriate penalty parameters.
AdaBoost is an iterative algorithm, whose core objective is to
train different classifiers for the same training set (i.e., weak
classifiers) and then combine weak classifiers into a stronger
classifier. Besides, K-Neighbors uses the distance calculation
method. According to the new data calculated by all features
and categorical distance of data point in the dataset, it will
operate classification prediction by sorting them in ascending
order of distance.

2.4.4. Parameters Optimization and Evaluation Criteria. Due
to the different performances of different models, differ-
ent classification models of hypertension were constructed,
respectively. At the same time, different machine learning
was performed by grid search and 10-fold cross-validation
to optimize the parameters. The optimal parameters were
selected to establish the model.

In order to assess the feasibility of the above methods,
analysis was performed using common evaluation criteria
[36], including accuracy rate (ACC), area under the ROC
curve (AUC), sensitivity (ST), and specificity (SP). AUC [37],
an evaluation binary model, is one of the popular methods.
AUC is used in the range from 0 to 1. Moreover, the four
basic statistical definitions which describe the process of
classification are TP (true positive, number of positives),
FP (false positive, number of negatives), TN (true negative,
number of negatives), and FN (false negative, number of
positives).

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
× 100% (2)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (3)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
× 100% (4)

2.5. Development Platform. Statistical analysis was per-
formed using SPSS 22.0 software. The BMI, age, and pulse
wave parameters were analyzed in two groups by an inde-
pendent samples t-test. The data were shown as mean and
standard deviation. P <0.05 indicates a statistical difference.

The data was collected and analyzed by python3.5 and
sklearn [38] to achieve machine learning. Orange3.11 [39]
was used for cluster analysis and removing unqualified pulse
wave.

3. Result

3.1. Noise Reduction. Studies [40, 41] have shown that h1/t1
can reflect the ability of cardiac ejection and aortic com-
pliance; then elasticity and compliance of vascular directly
affect blood pressure. According to the results of the k-means
in Figure 4, the points in the red circle below could be
considered as the group with the most noise, which indicates
that the pulse wave of hypertensive population was better
for noise recognition. After clustering, it was found that one
group contains more noise and the other group contains less
noise. Pulse waves whose noise was removed are classified
into one group and those whose noise was not removed are
in the other group to conduct the comparative analysis. h1/t1
had greater difference in different pulsewaves.Thepulsewave
with greater similarity was gathered into one group, whereas
the pulse wave with the large noise was collected into another
group in the red circle shown in Figure 4.
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Figure 5:TheROC curve in differentmodel. (a)Data without noise reduction. (b) Data with noise reduction.The x-axis denotes false positive
rate.The y-axis is true positive rate. In Figure 5, the dark blue line represents Random Forest (RF). The green line represents support vector
machine (SVM). The red line represents Adaboost. The light blue line represents Gradient Boosting. The purple line represents K-nearest
neighbor (KNN).

3.2. Between Hypertension and Healthy Group of the Pulse
Graph Characteristics. The results of pulse wave parameter
between the healthy group and the hypertension group after
noise reduction are shown in Table 2. Compared with the
healthy group, the hypertension group has higher BMI, h1,
h2, h3, t2, t5, h1/t1, w1/t, and HR and lower h5, t, w2/t, H20
score, and Ad (P<0.05).

3.3. Five Data Mining Algorithms Classification. The study
used RF, SVM, AdaBoost, Gradient Boosting, and K-
Neighbors to establish a hypertension identification model
based on pulse wave features and results were shown in
Table 3. Through the comparison of different machine learn-
ing algorithms, it could be seen that the accuracy of the
four kinds of machine learning models had been improved
in comparison to the result of the pulse wave analysis after
noise removal, and SVM had the largest increase. Although
the accuracy rate of K-Neighbors had also greatly improved,
the accuracy rate of prediction was the lowest. At the same
time, in terms of classifier performance, the biggest increase
in AUC was SVM and AdaBoost. By observing the accuracy
and stability, AdaBoost, Gradient Boosting, and RF had
better result, and K-Neighbors classifier had unsatisfactory
result.

The ROC curve is a graph that describes the performance
of the binary classifier system. In other words, the ROC
curve is plotted based on true positive rate and false positive
rate. Sensitivity is also known as TPR, which means that the
possibility of high blood pressure is truly judged. Specificity
is equal to the true negative rate, which means that there is
no possibility of disease. The area under the ROC curve is

most commonly used as an accurate index. If the sensitivity
and specificity reach 1, the area under the ROC curve
reaches the desired accuracy. The best prediction method
generates a point in the upper left corner (0, 1) of the ROC
space, representing 100% sensitivity (no false negatives) and
100% specificity (no false positives). In this study, sensitivity,
specificity, and ROC (AUC) are used to evaluate the classifier
performance. As shown in Figure 5, the ROC curve in the
figure is a classifier result using a noise reduction and no
noise reduction dataset, respectively. Different colored lines
represented the ROC curve of different machine learning
models. Among them, AdaBoost and Gradient Boosting had
the most significant changes in the noise reduction and non-
noise reduction curves, which indicates that the AdaBoost
and Gradient Boosting classifiers have higher sensitivity and
specificity after noise reduction.

3.4. Feature Importance. Thevariables output by the machine
learning model were compared and analyzed to obtain the
degree of contribution of the model. The results on the three
models are shown in Figure 6.

Compared with the results of classification after reducing
noise, the features of the hypertensive classification model
varied greatly among different machine learning. AdaBoost
and Gradient Boosting had the most significant changes,
and RF had the smallest. After removing the noise in the
AdaBoost and Gradient Boosting models, the importance of
h1/t1, w1/t, t, w2, h2, t1, and t5 variables (top10) had increased.
Among them, AdaBoost had the most prominent changes in
w2, w1/t, t, h1/t1, h2, t5, and Ad. In RF, only BMI, t5, h2, and
h1/t1 variables had increased.
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Note that “yes” represents that K-means is used to reduce noise in this model and vice versa.
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Table 2: Comparison of the variables between hypertension group and healthy group (X ± S).

Feature Healthy group hypertension group p value
Age 44.44 ± 9.204 44.7 ± 8.706 0.37

BMI 23.91 ± 2.961 25.55 ± 3.306 0.0 ∗ ∗

w1 0.18 ± 0.035 0.18 ± 0.033 0.55

w2 0.13 ± 0.034 0.14 ± 0.034 0.05

As 0.22 ± 0.029 0.22 ± 0.028 1

Ad 0.11 ± 0.035 0.1 ± 0.036 0.0 ∗ ∗

h1 116.0 ± 35.992 126.11 ± 44.893 0.0 ∗ ∗

h2 84.98 ± 32.215 93.18 ± 40.319 0.02∗

h3 78.02 ± 29.356 85.73 ± 36.019 0.01 ∗ ∗

h4 44.78 ± 15.047 47.55 ± 18.016 0.09

h5 12.8 ± 4.455 12.16 ± 4.056 0.04∗

t1 0.14 ± 0.021 0.14 ± 0.022 0.31

t2 0.24 ± 0.037 0.24 ± 0.041 0.0 ∗ ∗

t3 0.27 ± 0.033 0.27 ± 0.038 0.08

t4 0.36 ± 0.03 0.36 ± 0.034 0.23

t5 0.41 ± 0.023 0.41 ± 0.028 0.0 ∗ ∗

t 0.85 ± 0.119 0.83 ± 0.128 0.01 ∗ ∗

h1/t1 838.82 ± 276.686 919.03 ± 355.812 0.0 ∗ ∗

h3/h1 0.67 ± 0.128 0.68 ± 0.133 0.36

h4/h1 0.39 ± 0.082 0.38 ± 0.082 0.11

w1/t 0.21 ± 0.036 0.22 ± 0.033 0.0 ∗ ∗

w2/t 0.16 ± 0.036 0.16 ± 0.035 0.0 ∗ ∗

HR 77.08 ± 9.613 80.4 ± 11.839 0.0 ∗ ∗

H20 score 85.74 ± 4.868 76.38 ± 10.331 0.0 ∗ ∗

Compared with healthy group. ∗ P <0.05, ∗∗ P <0.01.

Table 3: Results on the classification of machine learning model.

Model ACC AUC SP ST
RF 0.841 0.832 0.936 0.728
RF∗ 0.853 0.848 0.905 0.792
Gradient Boosting 0.852 0.843 0.941 0.746
Gradient Boosting∗ 0.864 0.859 0.920 0.798
SVM 0.796 0.792 0.833 0.752
SVM∗ 0.832 0.828 0.865 0.792
AdaBoost 0.839 0.830 0.921 0.740
AdaBoost∗ 0.864 0.858 0.925 0.792
KNeighbors 0.729 0.716 0.852 0.580
KNeighbors∗ 0.736 0.728 0.830 0.625
Models with an asterisk ∗mean that K-means is applied before using these models.

Furthermore, compared with the features of signifi-
cant difference in traditional statistics, machine learning
AdaBoost and Gradient Boosting had significant difference
in the common feature rankings. Therefore, AdaBoost and
Gradient Boosting were selected to analyze the important
features. The variables of the top 12 are listed in Table 4. In
Figure 7, the common variables among the three are h5, t,
Ad, BMI, h1/t1, and t2, which indicates that hypertension may
play an important role in cardiac output.

4. Discussion

Previous studies showed [12–15] that hypertension and pulse
waves had a strong correlation, and statistical description of
this study also confirmed this phenomenon.The comparative
results of the pulse wave characteristics showed that the
values such as h1/t1, h1, h3, and w1/t were higher than those in
the healthy group.Therefore, the differences of characteristics
in pulse wave between hypertensive and healthy group made
it possible to further classify them using machine learning.
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Figure 7: The analysis of the importance on the features of
traditional statistics and machine learning.

Table 4: Selected (top 12) features in model.

model Feature variable Feature importance

Adaboost

t 0.126
BMI 0.109
HR 0.083
h1/t1 0.066
Ad 0.057
w2 0.051
t2 0.049
t3 0.049
w1/t 0.040
h5 0.034

h3/h1 0.034
As 0.034

Gradient Boosting

H20 score 0.128
BMI 0.075
t 0.065

h1/t1 0.055
t3 0.048
h5 0.042
t5 0.042
Ad 0.041
t2 0.041
t1 0.039
h4 0.039
w2/t 0.039

However, in terms of the analysis of raw data, filtering
pulse wave lacks the methods of quality control. At present,
there are human interference factors in the acquisition
process of pulse wave, so it is necessary to reduce the
noise. Taking advantage of pulse waves after noise reduction
as the input variables of the machine learning, the study
suggests that themachine learning accuracy and stability have
significantly improved.

Figure 4 shows clustering analysis of data. Different sam-
ple clustering had found a certain degree of regularity. Pulse

waves with higher heat values were grouped together (typical
hypertension pulse wave); pulse waves within middle-ranged
heat values were collected together (mixed part of hyperten-
sion pulse wave and healthy pulse wave); pulse waves with
low heat values were gathered together. Further observation
revealed that the pulse wave with a lower heat value was
mixed with more noise. This part of the noise was in line
with the pulse wave neither in hypertensive group nor in
healthy group. This noise primarily derives from respiration
and muscle tension. On the one hand, the respiration can
lead to abnormalities in the pulse wave. On the other hand,
subjects who have the high muscle tension are likely to cause
tremor of the pulse wave. Therefore, the elimination of such
pulse wave is necessary.

Table 3 shows the classification results of pulse waves
with noise reduction.The classifications were obtained by the
RF, SVM, AdaBoost, Gradient Boosting, and K-Neighbors
algorithms, respectively. Meanwhile, 10-fold cross-validation
and grid optimization were performed to measure the classi-
fication performance. Evaluation indicators pointed out that,
compared with the results of pulse wave classification without
noise reduction, AdaBoost and Gradient Boosting had the
better classification effect after noise reduction, and SVMhad
the larger increase.

Significant features obtained from traditional statistical
analysis are specific, such as h1, h2, h3, t2, t5, h1/t1, w1/t, h5,
t, w2/t, Ad, H20 score, and BMI, but traditional statistical
analysis is weak in linking nonlinear relationships. Machine
learning methods, however, have advantages in this regard.
Through traditional analysis and machine learning analysis,
the prediction results are relatively satisfactory, but machine
learning cannot see the specific operation mechanism of
“black box.” With the development of technology over the
years, some machine learnings become valuable reference on
practical use. The results showed that there were significant
differences in the importance ranking on features among
three different machine learnings before and after noise
reduction. Among them, AdaBoost and Gradient Boosting
had the better changes in feature importance.The importance
of variables features in t, t1, h2, h1/t1, t5, w1/t, and w2 had
ascended to some extent. Therefore, the result suggests that
the wave of wiry pulse is more obvious after noise reduction
and this is consistent with the theory of traditional Chinese
medicine [10].

The application of the combination of TCM diagnostic
technology and modern information technology is promis-
ing.The development of thewearable Chinesemedicine pulse
wristband represented by the pulsemodernization research is
based on the traditional Chinesemedicine theories combined
with modern information technology, artificial intelligence,
and other technologies. In addition, it also retains the char-
acteristics of pulse diagnosis in TCM, including miniaturiza-
tion, wearable, wireless transmission, and intelligence, and it
can be widely used in Chinese medicine teaching, scientific
research, medical care, health care, and many other fields,
with broad domestic and international market prospects.
Currently, there is a wearable health assessment technology
based on pulse evaluation, which provides a new method for
further disease prevention and evaluation [40]. The effective
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development of wearable Chinese medicine pulse diagnosis
bracelets and the transformation into products will greatly
promote the development and application ofmodernChinese
medical diagnosis and treatment technologies and bring
many positive social and economic benefits. On one hand,
portable pulse acquisition provides objective results and data
indicators for clinical diagnosis and therapeutic evaluation.
On the other hand, it provides technical basis for the modern
clinical research of TCM with Chinese characteristics and
conforms to the connotation of TCM. Finally, pulse diagnosis
is a TCM diagnostic technology information. This study
lays a foundation for further exploration on wearable pulse
diagnostic equipment.

5. Conclusion

Based on the pulse wave, this paper used cluster analysis
to eliminate noise and machine learning to establish a
classification model for hypertension. It shows good classi-
fication effect and indicates that removing noise has great
significance in improving accuracy and stability of model. It
also illustrates that it is feasible to use computer technology to
conduct TCMdiagnosis. Besides, it is also part of establishing
the classification model to identify the factors that affect
hypertensiondiagnosis.The results of traditional analysis and
machine learning imply that the variables of h1/t1, h5, t, Ad,
BMI, and t2 are likely to connect with hypertension.

Through collecting and analyzing the information of
hypertension, this study explores the information and appli-
cation of traditional Chinese medicine and provides a refer-
ence for the design of a more effective classification model
of hypertension. In addition, combined with the symptoms
and signs of the patients and the information of tongue and
pulse diagnosis in Chinese medicine, the development of a
more convenient and wearable pulse diagnostic instrument
provides a more real-time, convenient, and quick method for
further study in the prevention and prediction of hyperten-
sion.
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