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Recognition accuracy and response time are both critically essential ahead of building the
practical electroencephalography (EEG)-based brain–computer interface (BCI). However,
recent approaches have compromised either the classification accuracy or the responding
time. This paper presents a novel deep learning approach designed toward both
remarkably accurate and responsive motor imagery (MI) recognition based on scalp
EEG. Bidirectional long short-term memory (BiLSTM) with the attention mechanism is
employed, and the graph convolutional neural network (GCN) promotes the decoding
performance by cooperating with the topological structure of features, which are estimated
from the overall data. Particularly, this method is trained and tested on the short EEG
recording with only 0.4 s in length, and the result has shown effective and efficient
prediction based on individual and groupwise training, with 98.81% and 94.64%
accuracy, respectively, which outperformed all the state-of-the-art studies. The
introduced deep feature mining approach can precisely recognize human motion
intents from raw and almost-instant EEG signals, which paves the road to translate the
EEG-based MI recognition to practical BCI systems.

Keywords: brain–computer interface (BCI), electroencephalography (EEG), motor imagery (MI), bidirectional long
short-term memory (BiLSTM), graph convolutional neural network (GCN)

1 INTRODUCTION

Recently, the brain–computer interface (BCI) has played a promising role in assisting and
rehabilitating patients from paralysis, epilepsy, and brain injuries via interpreting neural
activities to control the peripherals (Bouton et al., 2016; Schwemmer et al., 2018). Among the
noninvasive brain activity acquisition systems, electroencephalography (EEG)-based BCI has gained
extensive attention recently given its higher temporal resolution and portability. Hence, it has been
popularly employed to assist the recovery of patients from motor impairments, e.g., amyotrophic
lateral sclerosis (ALS), spinal cord injury (SCI), or stroke survivors (Daly and Wolpaw, 2008; Pereira
et al., 2018). Specifically, researchers have focused on the recognition of motor imagery (MI) based
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on EEG and translating brain activities into specific motor
intentions. In such a way, users can further manipulate
external devices or exchange information with the
surroundings (Pereira et al., 2018). Although researchers have
developed several MI-based prototype applications, there is still
space for improvement before the practical clinical translation
could be promoted (Schwemmer et al., 2018; Mahmood et al.,
2019). De facto, to achieve effective and efficient control via only
MI, both precise EEG decoding and quick response are eagerly
expected. However, few existing works of literature are competent
in both perspectives. In this study, we explore the possibility of a
deep learning framework to tackle the challenge.

1.1 Related Work
Lately, deep learning (DL) has attracted increasing attention in
many disciplines because of its promising performance in
classification tasks (LeCun et al., 2015). A growing number
of works have shown that DL will play a pivotal role in the
precise decoding of brain activities (Schwemmer et al., 2018).
Especially, recent works have been carried out on EEG motion
intention detection. A primary current focus is to implement the
DL-based approach to decode EEG MI tasks, which have
attained promising results (Lotte et al., 2018). Due to the
high temporal resolution of EEG signals, methods related to
the recurrent neural network (RNN) (Rumelhart et al., 1986),
which can analyze time-series data, were extensively applied to
filter and classify EEG sequences, i.e., time points (Güler et al.,
2005; Wang P et al., 2018; Luo et al., 2018; Zhang T et al., 2018;
Zhang X et al., 2018). In reference to Zhang T et al. (2018), a
novel RNN framework with spatial and temporal filtering was
put forward to classify EEG signals for emotion recognition and
achieved 95.4% accuracy for three classes with a 9-s segment as a
sample. Yang et al. also proposed an emotion recognition
method using long short-term memory (LSTM) (Yang J
et al., 2020). Wang et al. and Luo et al. performed LSTM
(Hochreiter and Schmidhuber, 1997) to handle signals of
time slices and achieved 77.30% and 82.75% accuracy,
respectively (Wang P et al., 2018; Luo et al., 2018). Zhang X
et al. (2018) presented attention-based RNN for EEG-based
person identification, which attained 99.89% accuracy for eight
participants at the subject level with 4-s signals as a sample.
LSTM was also employed in some medical fields, such as seizure
detection (Hu et al., 2020), with the recorded EEG signals.
However, it can be found that in these studies, signals over
experimental duration were recognized as samples, which
resulted in a slow responsive prediction.

Apart from RNN, the convolutional neural network (CNN)
(Fukushima, 1980; LeCun et al., 1998) has been performed to
decode EEG signals as well (Dose et al., 2018; Hou et al., 2020).
Hou et al. proposed ESI and CNN and achieved competitive
results, i.e., 94.50% and 96.00% accuracy at the group and
subject levels, respectively, for four-class classification. What is
more, by combining CNN with the graph theory, the graph
convolutional neural network (GCN) (Bruna et al., 2014;
Henaff et al., 2015; Duvenaud et al., 2015; Niepert et al.,
2016; Defferrard et al., 2016) approach was presented lately,
taking consideration of the functional topological relationship

of EEG electrodes (Wang XH et al., 2018; Song et al., 2018;
Zhang T et al., 2019; Wang et al., 2019). In reference to Wang
XH et al. (2018) and Zhang T et al. (2019), a GCN with a broad
learning approach was proposed and attained 93.66% and
94.24% accuracy, separately, for EEG emotion recognition.
Song et al. and Wang et al. introduced dynamical GCN
(90.40% accuracy) and phase-locking value-based GCN
(84.35% accuracy) to recognize different emotions (Song
et al., 2018; Wang et al., 2019). A highly accurate prediction
has been accomplished via the GCN model. Few researchers
have investigated the approach in the area of EEG MI
decoding.

1.2 Contribution of This Paper
Toward accurate and fast MI recognition, an attention-based
BiLSTM–GCNwas introduced to mine the effective features from
raw EEG signals. The main contributions were summarized as
follows:

i) As far as we know, this work was the first that combined
BiLSTM with the GCN to decode EEG tasks.

ii) The attention-based BiLSTM successfully derived relevant
features from raw EEG signals. Followed by the GCN model,
it enhanced the decoding performance by considering the
internal topological structure of features.

iii) The proposed feature mining approach managed to decode
EEG MI signals with stably reproducible results yielding
remarkable robustness and adaptability that deals with the
considerable intertrial and intersubject variability.

1.3 Organization of This Paper
The rest of this paper was organized as follows. The preliminary
knowledge of the BiLSTM, attention mechanism, and GCN was
introduced in the Methodology section, which was the
foundation of the presented approach. In the Results and
Discussion section, experimental details and numerical results
were presented, followed by the conclusion in the Conclusion
section.

2 METHODOLOGY

2.1 Pipeline Overview
The framework of the proposed method is presented in Figure 1.

i) The 64-channel raw EEG signals were acquired via the BCI
2000, and then the 4-s (experimental duration) signals were
sliced into 0.4-s segments over time, where the dimension of
each segment was 64 channels × 64 time steps.

ii) The attention-based BiLSTM was put forward to filter 64-
channel (spatial information) and 0.4-s (temporal
information) raw EEG data and derived features from the
fully connected neurons.

iii) The Pearson, adjacency, and Laplacian matrices of overall
features were introduced sequentially to represent the
topological structure of features, i.e., as a graph. Followed
by the features and its corresponding graph representation as
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the input, the GCN model was performed to classify four-
class MI tasks.

2.2 Bidirectional Long Short Term Memory
With Attention
2.2.1 Bidirectional Long Short Term Memory Model
RNN-based approaches have been extensively applied to analyze
EEG time-series signals. An RNN cell, though alike a feedforward

neural network, has connections pointing backward, which sends
its output back to itself. The learned features of an RNN cell at
time step t are influenced by not only the input signals x(t) but also
the output (state) at time step t − 1. This design mechanism
dictates that RNN-basedmethods can handle sequential data, e.g.,
time point signals, by unrolling the network through time. The
LSTM and gated recurrent unit (GRU) (Cho et al., 2014) are the
most popular variants of the RNN-based approaches. In
theProposed approachsection, the paper compared the

FIGURE 1 | The schematical overview consisted of the 64-channel raw electroencephalography (EEG) signal acquisition, the bidirectional long short-term memory
(BiLSTM) with the attention model for feature extraction, and the graph convolutional neural network (GCN) model for classification.

FIGURE 2 | Presented BiLSTM with the attention mechanism for feature extraction.
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performance of the welcomed models experimentally, and the
BiLSTM with attention displayed in Figure 2 outperformed
others due to better detection of the long-term dependencies
of raw EEG signals.

i t( ) � σ WT
xi · x t( ) +WT

hi · h t−1( ) + bi( ) (1)
f t( ) � σ WT

xf · x t( ) +WT
hf · h t−1( ) + bf( ) (2)

o t( ) � σ WT
xo · x t( ) +WT

ho · h t−1( ) + bo( ) (3)
g t( ) � tanh WT

xg · x t( ) +WT
hg · h t−1( ) + bg( ) (4)

c t( ) � f t( ) ⊗ c t−1( ) + i t( ) ⊗ g t( ) (5)
y t( ) � h t( ) � o t( ) ⊗ tanh c t( )( ) (6)

As illustrated in Figure 2, three kinds of gates manipulate
and control the memories of EEG signals, namely, the input
gate, forget gate, and output gate. Demonstrated by the i(t),
the input gate partially stores the information of x(t) and
controls which part of it should be added to the long-term
state c(t). The forget gate controlled by the f(t) decides which
piece of the c(t) should be overlooked. The output gate,
controlled by o(t), allows which part of the information
from c(t) should be outputted, denoted as y(t), known as
the short-term state h(t). Manipulated by the above gates,
two kinds of states are stored. The long-term state c(t) travels
through the cell from left to right, dropping some memories
at the forget gate and adding something new from the input
gate. After that, the information passes through a nonlinear
activation function, tanh activation function usually, and
then it is filtered by the output gate. In such a way, the
short-term state h(t) is produced.

Eqs. 1–6 describe the procedure of an LSTM cell, whereW and
b are the weights and biases for different layers to store the
memory and learn a generalized model, and σ is a nonlinear
activation function, i.e., sigmoid function used in the
experiments. For bidirectional LSTM, BiLSTM for short, the
signals x(t) are inputted from left to right for the forward
LSTM cell. What is more, they are reversed and inputted into
another LSTM cell, the backward LSTM. Thus, there are two
output vectors, which store much more comprehensive
information than a single LSTM cell. Then they are
concatenated as the final output of the cell.

2.2.2 Attention Mechanism
The attention mechanism, imitated from the human vision, has a
vital part to play in the field of computer vision (CV), natural
language processing (NLP), and automatic speech recognition
(ASR) (Bahdanau et al., 2014; Chorowski et al., 2015; Xu et al.,
2015; Yang et al., 2016). Not all the signals contribute equally
toward the classification. Hence, an attention mechanism s(t) is
jointly trained as a weighted sum of the output of the BiLSTM
with attention based on the weights.

u t( ) � tanh Wwy t( ) + bw( ) (7)

α t( ) �
exp u⊤

t( )uw( )
∑t exp u⊤

t( )uw( ) (8)

s t( ) � ∑
t

α t( )y t( ) (9)

u(t) is a fully connected (FC) layer for learning features of y(t),
followed by a softmax layer which outputs a probability
distribution α(t). Ww, uw, and bw denote trainable weights and
biases, respectively. It selects and extracts the most significant
temporal and spatial information from y(t) by multiplying α(t)
with regard to the contribution to the decoding tasks.

2.3 Graph Convolutional Neural Network
2.3.1 Graph Convolution
In the graph theory, a graph is presented by the graph Laplacian
L. It is computed by the degree matrix D minus the adjacency
matrix A, i.e., L =D − A. In this work, Pearson’s matrix P was
utilized to measure the inner correlations among features.

PX,Y � E X − μX( ) Y − μY( )( )
σXσY

(10)

where X and Y are two variables regarding different features, ρX,Y
is their correlation, σX and σY are the standard deviations, and μX
and μY are the expectations. Besides, the adjacency matrix A is
recognized as:

A � |P| − I (11)
where |P| is the absolute of Pearson’s matrix P, and I ∈ RN×N is
an identity matrix. In addition, the degree matrixD of the graph is
computed as follows:

Dii � ∑N
j�1

Aij (12)

Then the normalized graph Laplacian is computed as:

L � D − A � IN −D−1/2AD−1/2 (13)
It is then decomposed by the Fourier basis

U � [u0, . . . , uN−1] ∈ RN×N. The graph Laplacian is described
as L = UΛUT, where Λ � diag([λ0, . . . , λN−1]) ∈ RN×N are the
eigenvalues of L. The graph convolution is defined as:

y � gθ L( )x � gθ UΛUT( )x � Ugθ Λ( )UTx (14)
in which gθ is a nonparametric filter. Specifically, the operation

is as follows:

yk
: ,j � σ ∑fk−1

i�1
Ugθ Λ( )UTxk−1

: ,i
⎛⎝ ⎞⎠ (15)

in which xk−1 ∈ RN×fk−1 denotes the signals, N is the number
of vertices of the graph, fk−1 and fk are the numbers of input and
output channels, respectively, and σ denotes a nonlinearity
activation function. What is more, gθ is approximated by the
Chebyshev polynomials because it is not localized in space and
very time-consuming (Hammond et al., 2011). The
Chebyshev recurrent polynomial approximation is described as
Tk(x) = 2xTk−1(x) − Tk−2(x), T0 = 1, T1 = x. The filter can be
presented as gθ(Λ) � ∑K−1

k�0 θkTk(~Λ), in which θ ∈ RK is a set
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of coefficients, and Tk(~Λ) ∈ RK is the kth-order polynomial at
~Λ � 2Λ/λmax − In, and In ∈ (−1, 1) is a diagonal matrix of the
scaled eigenvalues. The convolution can be rewritten as:

y � ∑K−1
k�0

θkL
kx (16)

2.3.2 Graph Pooling
The graph pooling operation can be achieved via the Graclus
multilevel clustering algorithm, which consists of node clustering
and one-dimensional pooling (Dhillon et al., 2007). A greedy
algorithm was implemented to compute the successive coarser of
a graph and minimize the clustering objective, from which the
normalized cut was chosen (Shi andMalik, 2000). Through such a
way, meaningful neighborhoods on graphs were acquired.
Defferrard et al. (2016) proposed to carry out a balanced

binary tree to store the neighborhoods, and a one-dimensional
pooling was then applied for precise dimensionality reduction.

2.4 Proposed Approach
The presented approach was a combination of the attention-
based BiLSTM and the GCN, as illustrated in Figure 1. The
BiLSTM with the attention mechanism was presented to derive
relevant features from raw EEG signals. During the procedure,
features were obtained from neurons at the FC layer. In Figure 3,
we demonstrated the topological connections of the Subject
Nine’s features via the Pearson Matrix, Absolute Pearson
Matrix, Adjacency Matrix, and Laplacian Matrix. The GCN
was then applied to classify the extracted features. It was the
combination of two models that promoted and enhanced the
decoding performance by a significant margin compared with
existing studies. Details were provided in the following.

FIGURE 3 | The Pearson, absolute Pearson, adjacency, and Laplacian matrices for subject nine. (A) Pearson matrix for subject nine. (B) Absolute Pearson matrix
for subject nine. (C) Adjacency matrix for subject nine. (D) Laplacian matrix for subject nine.
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First of all, an optimal RNN-based model was explored to
obtain relevant features from raw EEG signals. As shown in
Figure 4, in this work, the BiLSTM with the attention model was
best performed, which achieved 77.86% global average accuracy
(GAA). The input size x(t) of the model was 64, denoting 64
channels (electrodes) of raw EEG signals. The maximum time t
was chosen as 64, which was a 0.4-s segment. According to
Figures 4A, B, higher accuracy has been obtained while
increasing the number of cells of the BiLSTM model. It
should, however, be noted in Figure 3F that when there were
more than 256 cells, the loss showed an upward trend, which
indicated the concern of overfitting due to the increment of the
model complexity. As a result, 256 LSTM cells (76.67% GAA)
were chosen to generalize the model. Meanwhile, it was apparent
that, in Figure 4C, as for the linear size of the attention weights,
the majority of the choices did not make a difference. Thus, eight
neurons, with 79.40% GAA, were applied during the experiments
empirically. Comparing Figures 4D, H, it showed that a
compromise solution should be applied, which took into
consideration both performance and input size of the GCN.
As a result, a linear size of 64 (76.73% GAA) was utilized at
the FC layer.

Besides, to prevent overfitting, a 25% dropout (Srivastava et al.,
2014) for the BiLSTM and FC layer was implemented. The model
carried out batch normalization (BN) (Ioffe and Szegedy, 2015)
for the FC layer, which was activated by the softplus function
(Hahnloser et al., 2000). The L2 norm with the 1 × 10−7

coefficient was applied to the Euclidean distance as the loss
function. A total of 1,024 batch sizes were used to maximize
the usage of GPU resources. The 1 × 10−4 learning rate was
applied to the Adam optimizer (Kingma and Ba, 2014).

Furthermore, the second-order Chebyshev polynomial was
applied to approximate convolutional filters in the experiments.
The GCN consisted of six graph convolutional layers with 16, 32,
64, 128, 256, and 512 filters, respectively, each followed by a graph
max-pooling layer, and a softmax layer derived the final
prediction.

In addition, for the GCN model, before the nonlinear softplus
activation function, BN was utilized at all of the layers except the
final softmax. The 1 × 10−7 L2 norm was added to the loss
function, which was a cross-entropy loss. Stochastic gradient
descent (Zhang, 2004) with 16 batch sizes was optimized by the
Adam (1 × 10−7 learning rate).

All the experiments above were performed and implemented
by the Google TensorFlow (Abadi et al., 2016) 1.14.0 under
NVIDIA RTX 2080ti and CUDA10.0.

3 RESULTS AND DISCUSSION

3.1 Description of the Dataset
The data collected from the EEG Motor Movement/Imagery
Dataset (Goldberger et al., 2000) was employed in this study.
Numerous EEG trials were acquired from 109 participants
performing four MI tasks, i.e., imagining the left fist (L), the
right fist (R), both fists (B), and both feet (F) (21 trials per
task). Each trial is a 4-s experiment duration (160 Hz sample
rate) with one single task (Hou et al., 2020). In this work, a 0.4-
s temporal segment of 64 channel signals, i.e., 64
channels × 64 time points, was regarded as a sample. In the
Groupwise prediction section, we used a group of 20 subject
data (S1 − S20) to train and validate our method. The 10-fold

FIGURE 4 | Comparison of models and hyperparameters w.r.t. the recurrent neural network (RNN)-based methods for feature extraction. (A) Global average
accuracy (GAA) w.r.t. RNN-based models. (B) GAA w.r.t. BiLSTM cell size. (C) GAA w.r.t. attention size of the BiLSTM. (D) GAA w.r.t. the number of the extracted
features. (E) Loss w.r.t. RNN-based models. (F) Loss w.r.t. BiLSTM cell size. (G) Loss w.r.t. attention size of the BiLSTM. (H) Loss w.r.t. the number of the extracted
features.
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cross-validation was carried out. Further, 50 subjects
(S1 − S50) were selected to verify the repeatability and
stability of our approach. In the Subject-specific adaptation
section, the dataset of individual subjects (S1 − S10) was
utilized to perform subject-level adaptation. For all the
experiments, the dataset was randomly divided into 10
parts, where 90% was the training set, and the remaining
10% was regarded as the test set. In the Groupwise prediction

section, the above procedure has been carried out 10 times.
Thus, it left us 10 results of 10-fold cross-validation.

3.2 Groupwise Prediction
It was suggested that intersubject variability remains one of the
concerns for interpreting EEG signals (Tanaka, 2020). First, a
small group size (20 subjects) was adopted for groupwise
prediction. In Figure 4A, 63.57% GAA was achieved by the

FIGURE 5 | Box plot and confusion matrix for 10-fold cross-validation. (A) Box plot for repetitive experiments. (B) Confusion matrix for test one.

FIGURE 6 | GAA and receiver operating characteristic curve (ROC curve) for 20 and 50 subjects, separately. (A) GAA w.r.t. groupwise prediction. (B) ROC curve
w.r.t. groupwise prediction.
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BiLSTM model. After applying the attention mechanism, it
enhanced the decoding performance, which accomplished
77.86% GAA (14.29% improvement). Further, we employed
an attention-based BiLSTM–GCN model in this work. It
attained 94.64% maximum GAA (Hou et al., 2020)
(31.07% improvement compared with the BiLSTM model)
and 93.04% median accuracy from 10-fold cross-validation.
Our method promoted the classification capability under
subject variability and variations by taking the topological
relationship of relevant features into consideration.
Meanwhile, as illustrated in Figure 5A, the median values
of GAA, kappa, precision, recall, and F1 score were 93.04%,
90.71%, 93.02%, 93.01%, and 92.99%, respectively. To the
knowledge of the authors, the proposed method has achieved
the best state-of-the-art performance in group-level
prediction. Besides, remarkable results of 10-fold cross-
validation have verified the repeatability and stability.
Furthermore, the confusion matrix of test one (94.64%
GAA) was given in Figure 5B. Accuracies of 91.69%,
92.11%, 94.48%, and 100% were obtained for each task. It
can be observed that our method was unprecedentedly
effective and efficient in detecting human motion intents
from raw EEG signals.

By grouping signals from additional 30 subjects (in total 50
subjects), the robustness of the method has been validated in
Figure 6.

Toward practical EEG-based BCI applications, it is
essential to develop a robust model to counter serious
individual variability (Tanaka, 2020). Figure 6A illustrates
the GAA of our method through iterations. As listed in
Figure 6B, we can see that 94.64% and 91.40% GAA were
obtained with regard to the group of 20 and 50 subjects,
respectively. The area under the curves (AUCs) were 0.964
and 0.943. Indicated by the above results, the presented
approach can successfully filter the distinctions of signals,
even though the dataset was extended. In other words, by
increasing the intersubject variability, the robustness and
effectiveness of the method were evaluated.

The comparison of groupwise evaluation was demonstrated,
measured by the maximum of GAA (Hou et al., 2020) during
experiments (Ma et al., 2018; Hou et al., 2020). Here, we
compared the performance of several state-of-the-art methods
in Table 1.

Table 1 lists the performance of related methods. Hou et al.
achieved competitive results. However, our method obtained
higher performance (0.14% accuracy improvement) even with
doubling the number of subjects. It can be found that our

approach has outperformed those by giving the highest
accuracy of decoding EEG MI signals.

3.3 Subject-Specific Adaptation
The performance of individual adaptation has witnessed a
flourishing increment (Dose et al., 2018; Amin et al., 2019;
Zhang R et al., 2019; Ji et al., 2019; Ortiz-Echeverri et al.,
2019; Sadiq et al., 2019; Taran and Bajaj, 2019; Hou et al.,
2020). The results of our method on subject-level adaptation
have been reviewed in Table 2, and we compared the results in
Table 3.

Results are given in Table 2, from which the highest GAA was
98.81% achieved by subjects S7 and S9, and the lowest was 90.48%
by S4. On average, the presented approach can handle the
challenge of subject-specific adaptation. It achieved
competitive results, with an average accuracy of 95.48%.
Moreover, Cohen’s kappa coefficient (kappa), precision, recall,
and F1 score were 93.94%, 95.50%, 95.61%, and 95.35%,
respectively. The promising results above indicated that the
introduced method filtered raw EEG signals and succeeded in
classifying MI tasks.

As can be seen from Figure 7A, the model has been shown to
converge for the subject-specific adaptation. The receiver
operating characteristic curve (ROC curve) with its
corresponding AUC is visible in Figure 7B.

The comparison of subject-level prediction was put forward
between the presented approach and the competitive models
(Dose et al., 2018; Amin et al., 2019; Zhang R et al., 2019; Ji et al.,
2019; Ortiz-Echeverri et al., 2019; Sadiq et al., 2019; Taran and
Bajaj, 2019; Hou et al., 2020). The attention-based BiLSTM–GCN
approach has achieved highly accurate results, which suggested

TABLE 1 | Comparison on groupwise evaluation.

Related work Max. global average accuracy (GAA) (%) Approach Number of subjects Database

Ma et al. (2018) 68.20 Recurrent neural networks (RNNs) 12 PhysioNet database
Hou et al. (2020) 94.50 ESI + convolutional neural networks (CNNs) 10

92.50 14
This work 94.64 Attention-based bidirectional long short-term memory

(BiLSTM)–graph convolutional neural network (GCN)
20

TABLE 2 | Subject-level evaluation.

No. of
subject

GAA (%) Kappa (%) Precision (%) Recall (%) F1 score
(%)

1 94.05 92.06 94.20 94.32 94.16
2 96.43 95.19 96.06 96.06 96.06
3 97.62 96.79 97.33 97.08 97.18
4 90.48 87.34 91.30 91.11 90.42
5 95.24 93.61 95.96 95.06 95.38
6 94.05 92.02 93.40 94.96 93.66
7 98.81 98.40 98.81 99.07 98.92
8 95.24 93.60 95.39 95.04 95.19
9 98.81 98.39 99.11 98.68 98.87
10 94.05 91.98 93.39 94.70 93.61
Average 95.48 93.94 95.50 95.61 95.35
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robustness and effectiveness toward EEG signal processing, as
shown in Table 3.

The presented approach has improved classification accuracy
and obtained state-of-the-art results. The reason for the
outstanding performance was that the attention-based BiLSTM
model managed to extract relevant features from raw EEG signals.
The followed GCN model successfully classified features by
cooperating with the topological relationship of overall features.

4 CONCLUSION

To address the challenge of intertrial and intersubject variability
in EEG signals, an innovative approach of attention-based
BiLSTM–GCN was proposed to accurately classify four-class
EEG MI tasks, i.e., imagining the left fist, the right fist, both
fists, and both feet. First of all, the BiLSTM with the attention
model succeeded in extracting relevant features from raw EEG
signals. The followed GCN model intensified the decoding

performance by cooperating with the internal topological
relationship of relevant features, which were estimated from
Pearson’s matrix of the overall features. Besides, results
provided compelling evidence that the method has converged
to both the subject-level and groupwise predictions and achieved
the best state-of-the-art performance, i.e., 98.81% and 94.64%
accuracy, respectively, for handling individual variability, which
were far ahead of existing studies. The 0.4-s sample size was
proven effective and efficient in prediction compared with the
traditional 4-s trial length, which means that our proposed
framework can provide a time-resolved solution toward fast
response. Results on a group of 20 subjects were derived by
10-fold cross-validation, indicating repeatability and stability.
The proposed method is predicted to advance the clinical
translation of the EEG MI-based BCI technology to meet the
diverse demands, such as of paralyzed patients. In summary, the
unprecedented performance with the highest accuracy and time-
resolved prediction were fulfilled via the introduced feature
mining approach.

TABLE 3 | Comparison of current studies on subject-level prediction.

Related work Max. GAA (%) Approach Database

Ortiz-Echeverri et al. (2019) 94.66 Sorted-fast ICA-CWT + CNNs Brain–computer interface (BCI) Competition IV-a dataset
Sadiq et al. (2019) 95.20 EWT + LS-SVM
Taran and Bajaj (2019) 96.89 TQWT + LS-SVM
Zhang R. et al. (2019) 83.00 CNNs–long short-term memory (LSTM) BCI Competition IV-2a dataset
Ji et al. (2019) 95.10 SVM
Amin et al. (2019) 95.40 MCNNs
Dose et al. (2018) 68.51 CNNs PhysioNet database
Hou et al. (2019) 96.00 ESI + CNNs
This work 98.81 Attention-based BiLSTM–GCN

FIGURE 7 | Loss and ROC curve for subject-level evaluation. (A) Loss w.r.t. subject-level validation. (B) ROC curve w.r.t. subject-level validation.
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In addition, the proposed method in this paper could be
potentially applied in relevant practical directions, such as
digital neuromorphic computing to assist movement disorder
(Yang et al., 2018; Yang et al., 2019; Yang S et al., 2020; Yang et al.,
2021).
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