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Abstract: In this paper, we introduce a new chaotic system that is used for an engineering application
of the signal encryption. It has some interesting features, and its successful implementation and
manufacturing were performed via a real circuit as a random number generator. In addition,
we provide a parameter estimation method to extract chaotic model parameters from the real data of
the chaotic circuit. The parameter estimation method is based on the attractor distribution modeling in
the state space, which is compatible with the chaotic system characteristics. Here, a Gaussian mixture
model (GMM) is used as a main part of cost function computations in the parameter estimation
method. To optimize the cost function, we also apply two recent efficient optimization methods:
WOA (Whale Optimization Algorithm), and MVO (Multi-Verse Optimizer) algorithms. The results
show the success of the parameter estimation procedure.

Keywords: chaotic systems; circuit design; parameter estimation; optimization methods; Gaussian
mixture model

1. Introduction

A chaotic system has been considered with great potential in engineering applications, in which
many chaotic systems with different properties have been studied. Specifically, some systems have the
properties of amplitude control and offset boosting [1–4]. In this paper, we use a new three-dimensional
(3D) chaotic system in random number generation and signal encryption, which are important
engineering applications of chaotic systems [5–10]. To do this, an electronic design of the system is
implemented as a real electronic circuit to generate random numbers. Finally, the one-dimensional (1D)
and two-dimensional (2D) parameter estimation of the system is reported based on a non-traditional
parametric model cost function and two new optimization methods.

The topic of self-excited and hidden attractors is a new attractive topic in dynamical systems [11–13].
Recent studies have classified dynamical attractors as self-excited or hidden [14–17]. A self-excited
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attractor has a basin of attraction which intersects with at least one unstable equilibrium. If that is
not the case, the attractor is hidden [18–21]. According to the above definition, most of the classical
chaotic attractors are self-excited [22,23]. It has been demonstrated that the attractors in dynamical
systems with no equilibria [24–32], with stable equilibria [33,34], with lines [35,36] and curves of
equilibria [37–41], and with plane [42] or surface of equilibria [43] are hidden attractors. Even some
systems can belong to more than one category [3,44–47]. Hidden attractors cannot simply be located.
There have been some efforts in literature to solve this problem [18,48,49].

As we know, modeling of the real world chaotic systems has received great attention in recent
decades [50–55]. Choosing proper values for model parameters is essential in chaotic systems, since
they are very sensitive, both to model parameters and initial conditions. A slight change in the
parameters of the chaotic system may cause important bifurcation in its behavior, because of the
butterfly effect of the chaotic system [56]. Therefore, the parameter estimation problem of chaotic
system models is a complex problem [57–59].

There are some widely used methods for the parameter estimation of the chaotic systems which are
based on optimization methods [60–62]. In these methods, the problem of the parameter estimation is
generally formulated as a cost function based on an error function between a time series obtained from
a real system and a time series obtained from a known model with unknown parameters of that system.
The goal of the parameter estimation method will then be to find the best values of the unknown
parameters of the model which minimize the cost function. In addition, the optimization approaches
have been used algorithms for this problem to find the best values of the unknown parameters
as quickly as possible. They are algorithms such as genetic [63], particle swarm optimization [64],
and evolutionary programming [65]. However, approaches that utilize cost function based on the error
function seem to bear major limitations because of the butterfly effect of the chaotic systems [57–59].

It was remarked that the state space would be a proper domain to analyze the chaotic systems
rather than the time-domain. The time series generated by the chaotic systems have random-like
behavior in the time-domain, but they are ordered in the state space. They can show specific topologies
in the state space named strange attractors. In this paper, we use a non-conventional metric as a useful
cost function for the parameter estimation method. Accordingly, we model the attractor distribution
of a real chaotic system by a parametric model named the Gaussian mixture model (GMM). It can
provide flexible and probabilistic modeling for data distributions. GMM is also a commonly used
parametric model in the pattern recognition and machine learning domain [66]. For example, in the
speech recognition field, a set of GMMs was introduced to model phone attractors in a reconstructed
phase space (RPS) in which the RPS is a time-independent domain similar to the state space [67–69].
The phone classification results showed that the GMM could be a useful model to capture the structure
and topology of the speech attractors in the RPS. In addition, models of Gaussian mixture were recently
used as the parameter identification method for some chaotic systems [70–72].

Here, to optimize the cost function, two recent efficient optimization methods are applied,
including the WOA (Whale Optimization Algorithm), and MVO (Multi-Verse Optimizer) algorithm.
Also, for testing the parameter estimation method in the chaotic systems, a real circuit is utilized based
on a new chaotic system in this paper. All the data (time series) are obtained from the circuit that is
designed based on the new chaotic system.

The contributions of this paper are described as:

• A new 3D chaotic system with saddle equilibriums is proposed by a set of ordinary
differential equations.

• Dynamical properties of the 3D chaotic system are then reported that exhibit its dynamics.
• The electronic circuit implementation of the 3D chaotic system is studied and used to present

a random number generator (RNG), and its signal encryption is then introduced as an
engineering application.

• 1D and 2D parameter estimation of the electronic circuit is done by a GMM based cost function.
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• The cost function is optimized using two new efficient optimization methods called the WOA
and the MVO algorithms.

• By comparing the experimental data with numerically generated time series, the best-fitting
parameters are found because the circuit had (almost) the same dynamics as the 3D chaotic system.

The structure of the paper is organized as follows: in the next section we introduce and analyze
the new chaotic system with saddle equilibriums. In Section 2, we investigate it carefully through
bifurcation analysis, spectrum of Lyapunov exponents, and its entropy. Section 3 deals with the circuit
implementation of this new system and a real circuit application based on mobile RNG design. In the
next section, the cost function based on the GMM is introduced. Two meta-heuristic optimization
algorithms (WOA and MVO) are presented in Section 5. Results of the cost function and the parameter
estimation of the new chaotic system using the WOA and MVO methods are available in Section 6.
Finally, Section 7 is the conclusion of the paper.

2. A New Chaotic System and Its Analysis

In this section we introduce a new 3D system which can show chaotic behavior. Consider a system
described with the following ordinary differential equations:

.
x = gz

.
y = dx2 + ey2 − f

.
z = −ax− bx2 + cy2

(1)

This system is in the chaotic state when a = 4.0, b = 1.0, c = 1.0, d = 1.0, e = 1.0, f = 4.0 and g = 1.0.
Different projections of the phase portrait for this system are plotted in Figure 1, which shows its
strange attractor in 2D state spaces. System (1) is a new offset-boostable one [1–4] in which the variable
z can be boosted with a direct constant in the first dimension.
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(−1.8, −1.5, −2.5).

This system has fixed-points in every (x∗, y∗, z∗) which satisfy the following equation,
.
x = 0
.
y = 0
.
z = 0

→


0 = z
0 = x2 + y2 − 4
0 = −4x− x2 + y2

(2)

According to Equation (2), the system (1) has two equilibria in A = (0.7321, 3.4641, 0) and
B = (0.7321,−3.4641, 0). The Jacobian matrix of the system (1) is

J =

 0 0 1
2x 2y 0

−4− 2x 2y 0

 (3)
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and the corresponding eigenvalues for A and B are

A :

{
λ1 = 3.9784
λ2,3 = −0.12798± i2.5428

B :

{
λ1 = −3.9784
λ2,3 = 0.12798± i2.5428

(4)

Therefore, both equilibria are saddle-foci. Thus, the attractor is self-excited.

3. Bifurcation and Entropy Analysis

3.1. Bifurcation Analysis

In this part, we investigate the behaviors of the system (1) with respect to changing parameter g.
In part (A) of Figure 2 the bifurcation diagram of the system is shown and in part (B) of this figure
Lyapunov exponents can be observed. It is important to be careful about numerical calculation of
Lyapunov exponents, since improper use of usual methods may cause some issues [14,15,73–77].
We have used the algorithm of [78] for computation of Lyapunov exponents.
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As can be seen in Figure 2A, changing parameter g causes a familiar period doubling route to
chaos. In addition, positive values of the Lyapunov exponents in Figure 2B show that the underlying
system is the chaotic system.

3.2. Entropy Analysis

There are many techniques to evaluate the system complexity from data. One of the most famous
method which had been used since 1991 is Approximate Entropy (ApEn) [79]. ApEn can be applied
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to short and noisy data with outliers [80]. Therefore, many systems can be categorized by means
of complexity [81]. Consider the N data sample u(1), u(2), . . . , u(N) with the vector sequence
x(1), x(2), . . . , x(N −m + 1) ∈ Rm which can be defined as:

x(i) = [u(i), u(i + 1), . . . , u(i + m− 1)] (5)

where m is an integer and determines the dimension of x(i) as the length of compared run of data.
Then, for each i in the 1 ≤ i ≤ N −m + 1, the following equation is defined:

cm
i (r) =

J
N −m + 1

(6)

d[x(i), x(j)] ≤ r , 1 ≤ j ≤ N −m + 1 (7)

d[x(i), x(j)] = max
k=1,2,...,D

(|u(i + k− 1)− u(j + k− 1)|) (8)

where J is the number of correct vectors in Equation (7), the number of vectors that the distance (infinity
norm or maximum norm) between them and x(i) is lower than r, and r is also a tolerance threshold
that is defined by the product of a constant C to the standard deviation of data.

r = C× std(u(t)) 0.1 ≤ C ≤ 0.2 (9)

Then, the ApEn can be written as:

φm(r) =
∑N−m+1

i=1 logCm
i (r)

N −m + 1
(10)

ApEn(m, r) = lim
N→∞

[
φm(r)−φm+1(r)

]
(11)

The estimation of Equation (11) for N data sample is as follows,

ApEn(m, r, N) = φm(r)−φm+1(r) (12)

It can be derived that the ApEn values determine the similarity between chosen window and the
sliding window of the data. Therefore, m determines the length of the window to be compared, and r
is the tolerance threshold for accepting similar pattern between two windows. Figure 3 represents the
ApEn diagram of the system (1) with respect to parameter g.
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4. Real Circuit Design of the New Chaotic System as a Mobile RNG and Its Application for
Signal Encryption

Random number generator (RNG) algorithms produce a sequence of numbers with properties of
randomness and they are a research subject since a few decades. Chaotic systems are commonly used
in the random numbers generation algorithms because they are complex and very sensitive. In this
section, a mobile RNG design is implemented based on the introduced chaotic system (1) and then
signal encryption application is realized with the RNG.

The micro-computer based mobile RNG can be used in many fields especially in encryption
studies with low cost and high performance. It is aimed at encryption of multimedia data (audio,
image, video, text etc.) with the realized mobile RNG to be flexible and user friendly.

As far as we know, random number generators require high cost hardware like computers
and FPGA in order to successfully pass the universal tests [82–86]. In this paper, the design of a
microcomputer-based mobile RNG and a signal encryption application with the designed RNG is
realized without needing hardware such as FPGA, computers, etc. Therefore, “Raspberry Pi 3” is used
here as hardware which supports 64-bit processing capability. Since the “Raspberry Pi 3” card has
64-bit processing capability, it can generate very sensitive decimal numbers; thus, randomness of these
generated numbers is very high. BCM2837 SoC (system-on-chip) 64-bit ARMv8 quad core Cortex
A53 processor running @1.2GHz produced by Broadcom is available on the card. The general view of
“Raspberry Pi 3” is as given as in Figure 4.
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Our proposed circuit is used as an entropy source for RNG. Then, the NIST-800-22 tests are
performed on random numbers to evaluate the performance of the designed RNG. In the next
step, a signal encryption application is realized as an example application in “Raspberry Pi 3”.
Also, an electronic circuit implementation of the chaotic circuit is done in OrCAD-PSpice and on
the oscilloscope.

4.1. Micro-Computer-Based Mobile RNG Design

As before mentioned, the “Raspberry Pi 3” board is used as a micro-computer for RNG design
and encryption application. The chaotic system of (1) is also utilized in the RNG design. The RNG
design steps are given in Algorithm 1 as a pseudo code.
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Algorithm 1. Mobile RNG design algorithm pseudo code.

1: Start
2: Entering parameters and initial condition of the chaotic system
3: Determination of the value of ∆h
4: Sampling with determination ∆h value
5: while (least 1 M. Bit data) do
6: Solving the chaotic system with RK4
7: Convert float to binary number (32 bit)
8: Select the bits (LSB-16 bit) from 32 bit binary number
9: end while
10: The implementation of NIST Tests for 1 M. Bit data
11: if test results == pass then
12: Successful results (Ready tested 1 M. Bit data)
13: RNG applications (Cryptology, data hiding, watermarking, etc.)
14: else (test results == false)
15: return the previous steps and generate bits again
16: end if
17: End

After entering parameters and initial condition of the system (1), the outputs are discretized with
the RK4 differential equation solving method. Then, float numbers are obtained and converted into
32 bits binary numbers. Later, the RNG design is executed with obtained binary numbers. The last
16 bits of the outputs (x, y and z variables) are used in the design. The NIST-800-22 statistical tests are
also used to prove the success of the RNG design [87]. The NIST-800-22 tests consist of 16 different
tests such as monobit, serial and discrete Fourier transform tests. The p-values of the test should be
greater than 0.001 in order to be counted as successful in NISTS-800-22 tests.

Our experiments show that the random numbers generated from x, y and z outputs successfully
passed all the tests with the last 16 bits. The NIST-800-22 tests results are given in Table 1. The ready
tested random numbers that pass all of the NIST-800-22 tests can be used in applications that require
high security such as cryptology, data hiding, watermarking, etc.

Table 1. RNG NIST-800-22 tests for x, y and z outputs.

Statistical Tests p-Value-x
(X_16bit)

p-Value-y
(Y_16bit)

p-Value-z
(Z_16bit) Result

Frequency (Monobit) Test 0.5741 0.2209 0.9904 Successful
Block-Frequency Test 0.5692 0.2711 0.4011 Successful

Cumulative-Sums Test 0.6255 0.1218 0.4619 Successful
Runs Test 0.7012 0.1846 0.5313 Successful

Longest-Run Test 0.6207 0.1881 0.6901 Successful
Binary Matrix Rank Test 0.4378 0.9036 0.9755 Successful

Discrete Fourier Transform Test 0.0796 0.5819 0.6931 Successful
Non-Overlapping Templates Test 0.1685 0.0011 0.0803 Successful

Overlapping Templates Test 0.8824 0.1699 0.5441 Successful
Maurer’s Universal Statistical Test 0.5665 0.3602 0.8932 Successful

Approximate Entropy Test 0.1364 0.7072 0.6264 Successful
Random-Excursions Test (x = −4) 0.9005 0.3467 0.6683 Successful

Random-Excursions Variant Test (x = 9) 0.5249 0.9845 0.5880 Successful
Serial Test-1 0.1784 0.6299 0.5716 Successful
Serial Test-2 0.5467 0.4709 0.7633 Successful

Linear-Complexity Test 0.7039 0.3601 0.2000 Successful
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To obtain the random numbers, the pins x, y, and z GPIO (General purpose input/output) are
utilized as shown in Figure 5. They are the 37th pin for x output, the 35th pin for y output, and the
38th pin for z output from “Raspberry Pi 3”.
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The generated x, y and z outputs (first 50 bits) are shown in Figure 6 as real-time oscilloscope
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4.2. Signal Encryption Application Using “Raspberry Pi 3”

In this section, a signal encryption application with RNG that was generated from the proposed
chaotic system is realized in “Raspberry Pi 3”. The steps of the encryption and decryption process
are given in Algorithm 2. In the encryption application, a signal that consists of 512 bits is used and
shown (first 50 bits) in Figure 7 as the real-time oscilloscope outputs.
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Algorithm 2. Chaos based encryption and decryption algorithm pseudo code.

1: Start
2: Getting ready to test random numbers for keys
3: Getting signal data to be encrypted
4: for i = 1 for all original data
5: random number bit xor original data bit
6: end
7: Encrypted data
8: for i = 1 for all encrypted data
9: random number bit xor encrypted data bit
10: end
11: Decrypted data
12: End

For the encryption process, the ‘XOR’ operator is used. Figure 8 shows the first 50 bits of the
encrypted signal as real-time oscilloscope outputs. Since the encryption process is performed for each
bit, the size of the encrypted data is also 512.
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The same keys generated from the chaotic system are needed for decryption. With these keys,
the original data can be obtained, again. The first 50 bits of the decrypted signal are shown in Figure 9
as the real-time oscilloscope outputs. As can be seen, comparing Figures 7 and 9, for the first 50 bits,
there is no deformation.

In the implemented method, a cryptoanalyser who wants to crack the encrypted data must know
exactly all of the parameters and initial values of the chaotic system used in the encryption. Also,
encrypted data will be not decrypted without “Raspberry Pi 3”.
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Figure 9. Decrypted Signal Data (first 50 bits).

4.3. Electronic Circuit Implementation of the Chaotic System in OrCAD-PSpice and on the Oscilloscope

In this part, we design an electronic circuit based on system (1) in OrCAD-PSpice (Figure 10) and
on the board (Figure 11). The circuit includes simple electronic elements such as resistors, multipliers,
capacitor, and opamps. Note that PSPICE simulation of chaotic circuits is quite trivial. In the literature,
such systems are implemented with integrated circuit technology [88].
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Figure 10. The electronic circuit schematic of system (1).
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Figure 11. The experimental circuit of the chaotic circuit and the phase portraits of system (1) on
the oscilloscope.

The OrCAD-PSpice simulation outputs, which are two-dimensional phase portraits of the chaotic
system, are seen in Figures 12 and 13, respectively. As can be seen from the ORCAD-PSpice outputs in
Figure 12 and oscilloscope outputs in Figure 13, the results are similar.
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5. Parameter Estimation of the Chaotic System

In this section, we introduce the parameter estimation method used for the chaotic circuit.
This method utilizes a cost function which was adopted for the chaotic systems. The cost function of
the parameter estimation method is based on a similarity metric using a parametric model of strange
attractors in the state space. It was shown that this cost function could yield better results than the
conventional error-based cost function over the time-domain [71]. The time-independent property of
the state space is a sufficient reason to use this cost function because the state space can show complex
behaviors of the strange attractor of chaotic systems [89].
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As before mentioned, the utilized cost function is based on the attractor modeling; therefore,
we need a model to represent the distribution of the attractor points in the state space. As a smooth
parametric model, a Gaussian mixture model (GMM) can model the chaotic attractor geometry in the
state space [67]. The GMM is a parametric probability density function represented by a weighted sum
of Gaussian component densities [90]. It can model the distribution of the attractor points in the state
space based on its powerful characteristics [91]. So far, metrics such as Kullback–Leibler divergence
(also called relative entropy) were defined to measure distance between GMMs [90]. In addition,
similarity-based metrics such as likelihood functions have been used to measure distance between a
time series and a GMM. This idea was recently used as phone classification methods by parametric
models of the distribution points of the speech signal in a high-dimension domain named RPS [67–69].

The GMMs have also been used for parameter estimation of some chaotic systems [70,71].
They were utilized similar to the task of the phone classification method. Suppose we have a chaotic
system with a known model and its trajectory was recorded. We can then generate a GMM for
the strange attractor of the chaotic system in the state space. Utilizing a distance-like metric over a
likelihood function, we can compute dissimilarity between the learned GMM model of the real system
attractor (with unknown parameters) and a distribution of a new attractor obtained by a system’s
model (with known parameters) in the state space to complete the parameter estimation method.
Therefore, the score of the distance-based metric will be equal to the cost function of the parameter
estimation method.

5.1. The GMM Computation as a Cost Function

A GMM with M mixtures is a weighted sum of M individual Gaussian densities. Each Gaussian
density as a component of the GMM is represented by three main factors, mixture weight, mean vector,
and covariance matrix. Therefore, they can be shown by a set of parameters, λ, as follows,

λ = {wm,µm, Σm}, m = 1, . . . , Mp(v|λ ) =
M
∑

m=1
wm

1
(2π)D/2

1
|Σm |1/2 exp

{
−1
2 (v− µm)

TΣm
−1(v− µm)

}
(13)

and p(v|λ ) is the conditional probability of a D-dimensional single observation vector v given
the GMM of λ. The p(v|λ ) can show a likelihood score. It expresses how probable the observed
vector v is for the GMM of λ. In Equation (13) |.| is the determinant operator, exp(.) denotes the
exponential function, and M is the number of mixtures (Gaussian components). In addition, for m-th
mixture, wm ∈ [0, 1] is an scalar and named m-th mixing coefficient or mixture weight, µm is the m-th
D-dimensional mean vector, and Σm is the m-th D × D covariance matrix. The mean vector and
covariance matrix of a Gaussian component can show the center and the shape of points distribution
around those of the component. It should be noted that the mixing coefficients wm are constrained to
sum to 1, i.e., ∑M

m=1 wm = 1.
As a problem which depends on the complexity of the data distribution, there is no analytical

solution to determine the optimum number of GMM mixtures, M, needed for modeling of the
attractors. Therefore, it is common to use a trial-and-error method to choose an adequate value
of M. In our attractor modeling problem, to obtain a proper GMM model of the attractor in the state
space, we evaluate some values of M. Generally, we need a higher value of M for attractor modeling
if it has a very complex dynamic in the state space. One should note that while a higher number of
mixtures can increase the performance of the cost function, it also increases the computational cost.

To find the similarity score between the attractor of a real system and the state space points of a
specific model obtained from a chaotic system with known parameters (for example chaotic system
(1)), the likelihood score can be calculated. Therefore, the parameter estimation of a known chaotic
system with unknown parameters can be performed using the following two phases; a learning phase,
here named “phase A”, which includes fitting the GMM to the attractor of the real system, and an
evaluation phase, named “phase B”, to select the best values of parameters for the known chaotic
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model which causes the maximum similarity score or equally minimum distance score (cost function)
over the learned GMM. Following are those phases in details:

5.2. Phase A

The first phase of the parameter estimation approach is the learning phase to find the GMM
parameters, λ in Equation (13). The GMM learns the attractor’s distribution of a real system, e.g., a chaotic
circuit. Suppose S = {s1, s2, . . . , sN} is an N × D matrix consisting of N-samples of the time series of
the real data in the D-dimensional state space. Therefore, each sample is a D-dimensional observation
vector. To find the GMM parameters, an iterative expectation-maximization (EM) algorithm is utilized
as follows:

5.2.1. Initialization Step

Initialize the mean vector µm, covariance matrix Σm and mixing coefficients wm in Equation (13)
and evaluate the initial value of the logarithm of the likelihood score obtained from the input time
series as follows,

logp(S|λ ) =
N

∑
n=1

log(p(sn|λ)) (14)

5.2.2. Expectation Step

Evaluate values of r(si, m), named responsibility of i-th sample of S given the m-th Gaussian
component, using the current values of the GMM parameters:

r(si, m) =
wm

1
(2π)D/2

1
|Σm |1/2 exp

{
−1
2 (si − µm)

TΣm
−1(si − µm)

}
∑M

j=1 wj
1

(2π)D/2
1

|Σj|1/2 exp
{
−1
2

(
si − µj

)T
Σj
−1
(

si − µj

)} (15)

5.2.3. Maximization Step

Re-estimate the parameters of the GMM utilizing the estimated values of the responsibilities
as follows:

Nm =
N

∑
i=1

r(si, m) (16)

µm =
1

Nm

N

∑
i=1

r(si, m)si (17)

Σm =
1

Nm

N

∑
i=1

r(si, m)(si − µm)(si − µm)
T (18)

wm =
Nm

N
(19)

5.2.4. Likelihood Computation Step

Evaluate the logarithm of the likelihood score in Equation (14) and check for convergence criterion.
If the convergence criterion is not satisfied, return to Section 5.2.2.

5.3. Phase B

The second phase is finding the best parameters of the known model of the chaotic system
(with unknown parameters) using the learned GMM in the phase A. Here, the search space will be
formed from a set of acceptable values of the model parameters. Now we suppose that the values of
the parameters a&b of the system (1) are unknown. Then, for each pair of parameters (a, b), the chaotic
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system of (1) will be simulated, and a trajectory T(a, b) = (t1, t2, t3, . . . , tK|a, b ) with K samples will be
obtained where each tK is D-dimensional measured data in the state space. Finally, using an average
point-by-point log-likelihood score obtained from the learned GMM, λ, a similarity-based score is
computed as follows,

log
(

p(T(a,b)|λ)
)
=

1
K

K

∑
K=1

log(p(tk|λ)) (20)

where T(a,b) is a matrix whose rows are composed from the state space vectors of the system trajectory
with the model’s parameters (a, b), and K is the number of the state space point. The parameter
estimation method of the model is accomplished by computing Equation (20) and selecting the
parameters of the model that can obtain the best similarity-based score, which here means the
maximum score. If we use the negative of the similarity-based score, then the parameter estimation
becomes a cost function minimization. Therefore, the best parameter selection, (a, b)∗, would be
conducted by the following criteria, J(.), based on the negative of mean log-likelihood score,

(a, b)∗ = argmin{J((a, b))}& J((a, b)) = −p
(

T(a,b)
∣∣∣λ) (21)

Equation (21) shows the utilized cost function and (a, b) is the set of the system parameters (1).
Here, λ is the learned GMM of the real system attractor obtained from the phase A. The objective of
the parameter estimation method is to determine the parameters of the system, (a, b) when the cost
function is minimized to result in the minimum value of J((a, b)). The minimum value of the cost
function guarantees the best solution with the proper parameters.

5.4. The GMM of Chaotic Circuit

Based on the observation vector v of the chaotic circuit, in this work, D = 3 is selected for
the dimension of the state space according to system (1). Using the prepared real training data
for the attractor by the chaotic circuit as a real system, the GMM will be specialized in order to
model the geometry of that attractor. Figure 14 shows the attractor of the chaotic system in a
three-dimensional state space with its GMM modeling using 256 Gaussian components, M = 256,
where every three-dimensional ellipsoid corresponds to one of the Gaussian components.
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maximum score. If we use the negative of the similarity-based score, then the parameter estimation 

becomes a cost function minimization. Therefore, the best parameter selection,(𝑎, 𝑏)∗ , would be 

conducted by the following criteria, 𝐽(. ), based on the negative of mean log-likelihood score, 

(𝑎, 𝑏)∗ = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐽((𝑎, 𝑏))}&       𝐽((𝑎, 𝑏)) = −𝑝(𝑇(𝑎,𝑏)|𝜆) (21) 
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6. Optimization Algorithm

There are four major categories to which different kinds of optimization methods belong:
Enumerative methods, Calculus-Based methods, Heuristic methods, and Meta-heuristic methods [62].
Meta-heuristic optimization algorithms, which cover a wide range of problems, are becoming more and
more popular in engineering applications [92,93]. Nature can be named as one of the most important
sources of inspiration for new meta-heuristic algorithms. On this subject, black and white holes in
cosmology and Humpback whales in the sea aid in constructing the MVO (Multi-Verse Optimizer)
and WOA (Whale Optimization Algorithm) meta-heuristic algorithm [94,95]. We now introduce
these methods:

6.1. The Whale Optimization Algorithm

The WOA algorithm is based on the hunting behavior of Humpback whales which can encircle
the recognized location of prey. The WOA algorithm assumes that the current best candidate solution
is the target prey or is close to the optimum. The next step is about the attacking strategy which is the
bubble-net strategy. Putting it all together, the proposed WOA method includes three major steps in
the simulation: the search for prey, encircling prey, and the bubble-net foraging behavior of humpback
whales. For complete details see [94].

6.2. Multi-Verse Optimizer: A Nature-Inspired Algorithm for GlobalOptimization

Another novel nature-inspired algorithm is Multi-Verse Optimizer (MVO). Cosmology (white
hole, black hole, and wormhole) is the main inspiration of this algorithm. As mentioned before, every
search process in the optimization algorithm consists of two phase: exploration and exploitation.
The MVO supports this by white and black holes in order to respond to the exploration phase and
wormholes for the exploitation phase. Further details are described in [95].

6.3. Experimental Results

In this section, some simulations are done to investigate the acceptability of the parameter
estimation method of the chaotic circuit. We have used a fourth-order Runge-Kutta method with a step
size of 10 ms and a total of 30, 000 samples corresponding to a time of 300 s. Here, we assume that the
original chaotic system of (1) should be estimated by minimization of the GMM-based cost function.

First, using some 1D parameter estimation methods, different number of the GMM’s components,
M = (64, 96, 128, 192, 256), are used to show the sufficiency of the cost function. The experimental
results of the cost function versus the values of the parameters a&b are depicted in Figures 15
and 16, respectively.
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Figure 16. Cost function versus parameter b, with different number of GMM components (M) for the
1D parameter estimation method.

As can be seen, all of the cost functions show convex functions around the desired point. Therefore,
they are acceptable for the parameter estimation methods. Specifically, they show the effect of changing
the parameter of the model as a monotonically trend along with a global minimum at the exact expected
value of the desired parameters (a = 4.00, b = 1.00). Therefore, the GMM—based cost function has
the desired ideal properties for the parameter estimation problem. Moreover, Figures 15 and 16 show
the effect of increasing the number of GMM components, M, used in the GMM modeling. In this case,
M = 256 represents better performance to identify the parameters a&b.

In Figures 17 and 18, a contour plot of the cost function and its “cost surface” are respectively
shown for the chaotic system (1) with M = 256 along with variation in the parameters, a&b. They show
dissimilarity between the real system attractor and each model attractor for a 2D parameter estimation
problem. The minimum value of the point on those plots gives the parameters for the best model.
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Figure 17. The contour plot of the GMM-based cost function for the introduced chaotic system
(M = 256) along with variations in the parameters, a&b.
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Figure 18. The “cost surface” of the GMM-based cost function for the introduced chaotic system
(M = 256) along with variations in the parameters, a&b.

As can be seen in Figures 17 and 18, the global minimum of the cost function is in the right place
(a = 4.00 and b = 1.00). Furthermore, the surface of the cost function is almost convex near the best
parameters, which makes it an easy case for any optimization approach that moves downhill.

In order to examine the efficiency of the cost function in the parameter estimation, two mentioned
meta-heuristic optimization methods are applied. All the basic parameters, such as maximum number
of iterations (50) and number of search agent (25), are the same in both algorithms. For further details
about the algorithms and their particular parameters, see [96]. Comparison between the performances
of MVO and WOA optimization algorithm is shown in Figure 19.
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Figure 19. Comparison between the performances of the MVO and WOA optimization algorithm.

Based on the results of Figure 19, the MVO optimization method showed a superior performance
in comparison with the WOA algorithms. In addition, Figure 20 represents the process of finding the
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best parameters using the WOA algorithm performed once for every 10 iterations. As can be seen,
the individuals converge to the optimum area (a = 4.00 and b = 1.00).Entropy 2018, 20, x  18 of 22 
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7. Conclusions

In this paper, a new chaotic system has been investigated carefully through bifurcation, the largest
Lyapunov exponent, ApEn, and stability analysis. Then, an engineering application of that system
was proposed using a random number generator and its signal encryption application. After that,
a GMM-based cost function was utilized in the parameter estimation of the chaotic circuit designed
from the chaotic system. The cost function was based on the minimization of dissimilarity between the
phase portrait obtained from the real system and that obtained from the model of the chaotic system.
In order to minimize the cost function and to obtain the correct parameters, we used two new efficient
optimization methods, the Whale Optimization Algorithm (WOA), and Multi-Verse Optimizer (MVO)
algorithm. The MVO optimization method showed superior performance in comparison with the
WOA algorithm.
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