
Brain and Behavior. 2020;10:e01493.	 		 	 | 	1 of 10
https://doi.org/10.1002/brb3.1493

wileyonlinelibrary.com/journal/brb3

1  | INTRODUC TION

Individuals choose to regulate their emotions in response to stress-
ors in a variety of ways. Two common emotion regulation strategies 

are cognitive reappraisal and expressive suppression (Gross, 2002). 
Expressive suppression is an avoidance-based regulation strategy 
characterized by masking outward emotional responses (Gross, 
2002; Gross & John, 1998). Conversely, cognitive reappraisal 
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Abstract
Introduction: Previous research has identified specific brain regions associated with 
regulating emotion using common strategies such as expressive suppression and cog-
nitive reappraisal. However, most research focuses on a priori regions and directs 
participants how to regulate, which may not reflect how people naturally regulate 
outside the laboratory.
Method: Here, we used a data-driven approach to investigate how individual differ-
ences in distributed intrinsic functional brain connectivity predict emotion regulation 
tendency	outside	the	laboratory.	Specifically,	we	used	connectome-based	predictive	
modeling to extract functional connections in the brain significantly related to the dis-
positional use of suppression and reappraisal. These edges were then used in a predic-
tive model and cross-validated in novel participants to identify a neural signature that 
reflects individual differences in the tendency to suppress and reappraise emotion.
Results: We found a significant neural signature for the dispositional use of suppres-
sion, but not reappraisal. Within this whole-brain signature, the intrinsic connectiv-
ity of the default mode network was most informative of suppression tendency. In 
addition, the predictive performance of this model was significant in males, but not 
females.
Conclusion: These findings help inform how whole-brain networks of functional con-
nectivity characterize how people tend to regulate emotion outside the laboratory.

K E Y W O R D S

biomarker, emotion regulation, functional connectivity, predictive modeling

www.wileyonlinelibrary.com/journal/brb3
mailto:￼
https://orcid.org/0000-0001-9149-6053
http://creativecommons.org/licenses/by/4.0/
https://publons.com/publon/10.1002/brb3.1493
mailto:daisy.a.burr@gmail.com


2 of 10  |     BURR et al.

involves reframing the meaning of a stimulus to change the associ-
ated emotional response (Buhle et al., 2013; Gross & John, 1998).

A	 major	 goal	 of	 emotion	 regulation	 research	 has	 been	 to	
identify how individuals vary in their tendency to suppress and 
reappraise. For example, research has illustrated that increased 
use of suppression is associated with negative health outcomes, 
such	as	anxiety	(Amstadter,	2008;	Cisler	&	Olatunji,	2012;	Gross,	
2002;	 Gross	 &	 Levenson,	 1997;	 Troy,	 Wilhelm,	 Shallcross,	 &	
Mauss, 2010), though increased use of reappraisal is associated 
with lower levels of anxiety (Denny, Inhoff, Zerubavel, Davachi, 
&	 Ochsner,	 2015;	 Jamieson,	 Mendes,	 Blackstock,	 &	 Schmader,	
2010). In addition, research has demonstrated sex differences in 
the dispositional use of suppression and reappraisal. Women re-
port	using	a	wider	range	of	regulation	strategies	than	men	(Aldao	
&	Nolen-Hoeksema,	2013;	Nolen-Hoeksema	&	Aldao,	2011)	and	
men report using suppression more than reappraisal (Gross & 
John, 2003).

Emotion regulation research has aimed to characterize bio-
markers associated with suppression and reappraisal (Cutuli, 2014; 
Dennis & Hajcak, 2009; Gross & John, 2003; Kalisch, Wiech, 
Herrmann,	&	Dolan,	2006;	Kanske,	Heissler,	Schönfelder,	&	Wessa,	
2012;	 Urry	 et	 al.,	 2006).	 For	 example,	 studies	 have	 linked	 reap-
praisal with increased activity in the dorsolateral and ventrome-
dial prefrontal cortices (Buhle et al., 2013; Goldin, McRae, Ramel, 
& Gross, 2008), and both reappraisal and suppression have been 
associated with decreased activity in the amygdala (Buhle et al., 
2013;	 Chen,	 Chen,	 Yang,	 &	 Yuan,	 2017).	 Similarly,	 research	 has	
identified how patterns of intrinsic functional connectivity differ 
between suppression and reappraisal. Decreased coupling between 
the amygdala and medial prefrontal cortex has been associated with 
reappraisal, whereas increased coupling between the amygdala and 
dorsal anterior cingulate cortex has been associated with suppres-
sion (Pan et al., 2018; Picó-Pérez et al., 2018; Uchida et al., 2015). 
Globally, intrinsic activity within the default mode network, which 
supports self-referential processes, has been associated with sup-
pression	(Pan	et	al.,	2018)	and	reappraisal	(Gao,	Chen,	Biswal,	Lei,	
&	Yuan,	2018;	Martins	&	Mather,	2016;	Sripada	et	al.,	2013;	Xie	et	
al.,	2016).

Although	 these	 findings	have	 informed	 the	brain	basis	 of	 sup-
pression and reappraisal, they have been limited in several key areas. 
First, most emotion regulation research often relies on instructing 
individuals to regulate in specific ways (Buhle et al., 2013; McRae et 
al., 2010; McRae, Misra, Prasad, Pereira, & Gross, 2012). However, 
this may not reflect how individuals tend to regulate outside the 
laboratory.	Second,	existing	studies	have	largely	focused	on	a	priori	
regions of interest, though evidence has rapidly accrued that com-
plex cognitive processes are more likely supported by distributed 
networks of brain regions (Chang, Gianaros, Manuck, Krishnan, & 
Wager, 2015; Pan et al., 2018). Third, existing research that explores 
whole-brain maps of cognitive processes is often subject to extreme 
issues	of	multiple	comparisons	and	based	on	overfit	models	 (Shen	
et	al.,	2017).	Fourth,	most	existing	studies	have	smaller	sample	sizes	
and amounts of data, which limits reliability and the ability to map 

individual differences on to the dispositional use of suppression and 
reappraisal (Bennett & Miller, 2010; Elliott et al., 2019).

Here, we attempt to address these limitations by using a da-
ta-driven approach to identify patterns of distributed intrinsic func-
tional connectivity predictive of dispositional use of suppression and 
reappraisal. In order to increase reliability and benefit from the most 
amount of data, we collapsed across task and resting-state scans into 
general functional connectivity (GFC; Elliott et al., 2019). We em-
ployed	 connectome-based	 predictive	 modeling	 (CPM;	 Shen	 et	 al.,	
2017)	to	select	the	most	informative	features	(functional	connections)	
from GFC matrices and predict individual differences in the disposi-
tional use of suppression and reappraisal without overfitting the data. 
In light of the pronounced sex differences in the dispositional use of 
suppression	and	reappraisal	(Aldao	&	Nolen-Hoeksema,	2013;	Gross	
&	John,	2003;	Nolen-Hoeksema	&	Aldao,	2011),	we	examined	how	
the predictive performance of this model varied based on sex.

2  | METHODS

2.1 | Participants

Data	 were	 available	 from	 1,316	 participants	 (age	
range = 18–22 years old; 43% men) who completed the Duke 
Neurogenetics	 Study	 between	 January	 2010	 and	 July	 2014	
(Table 1). This study was approved by the Duke University Medical 
Center Institutional Review Board. The authors assert that all pro-
cedures contributing to this work also complied with the ethical 
standards of the relevant national and institutional committees 
on human experimentation and with the Helsinki Declaration of 
1975,	as	revised	in	2008.

All	 participants	 provided	 informed	 consent	 before	 participa-
tion and were excluded in the present sample if they met any of 
the following criteria: (a) medical diagnoses of cancer, stroke, dia-
betes	requiring	insulin	treatment,	chronic	kidney	or	liver	disease,	
or lifetime history of psychotic symptoms, (b) use of psychotropic, 
glucocorticoid, or hypolipidemic medication, (c) conditions affect-
ing cerebral blood flow and metabolism (e.g., hypertension), or (d) 
failed	 quality	 control	 criteria	 for	 functional	 magnetic	 resonance	
imaging	(fMRI)	data.	Diagnosis	of	any	past	or	current	DSM-IV	Axis	
I	disorder	or	select	Axis	 II	disorders	 (antisocial	personality	disor-
der and borderline personality disorder) were assessed with struc-
tured	 clinical	 interviews	 (Sheehan	 et	 al.,	 1998).	 Such	 diagnoses	
were,	however,	not	exclusion	criteria,	as	the	Duke	Neurogenetics	
Study	sought	to	establish	broad	variability	 in	multiple	behavioral	
phenotypes	related	to	psychopathology.	Of	the	1,316	participants	
included	in	our	analyses,	66	met	criteria	for	major	depressive	dis-
order	(MDD),	35	for	bipolar	disorder,	26	for	panic	disorder,	12	for	
social	anxiety	disorder,	24	for	generalized	anxiety	disorder	(GAD),	
15 for obsessive compulsive disorder (OCD), two for post-trau-
matic	 stress	 disorder	 (PTSD),	 142	 for	 alcohol	 abuse,	 48	 for	 sub-
stance abuse, 11 for eating disorder (bulimia or anorexia), and 
three experienced psychotic symptoms.
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2.2 | Self-report questionnaires

Individual differences in dispositional emotion regulation prac-
tices and negative affect were assessed with the following self-
report	 questionnaires.	 The	 Emotion	 Regulation	 Questionnaire	
(ERQ),	a	10-item	self-report	questionnaire,	was	used	 to	measure	
individual differences in suppression and reappraisal (Gross & 
John,	 2003).	 The	 ERQ	 has	 two	 subscales—ERQ-Suppression,	 in-
cluding items such as “I control my emotions by not expressing 
them.”	and	ERQ-Reappraisal,	including	items	such	as	“I	control	my	
emotions by changing the way I think about the situation I'm in.” 
All	items	are	rated	on	a	7-point	scale	from	1	(strongly	disagree)	to	
7	 (strongly	agree)	and	summed	within	each	subscale	to	generate	
overall	scores	for	suppression	and	reappraisal.	The	ERQ	has	been	
consistently shown to be a valid and reliable index of regulation 
tendency (Gross & John, 2003).

2.3 | MRI data acquisition

Each participant was scanned using one of two identical research-ded-
icated	GE	MR750	3T	scanners	equipped	with	high-power	high-duty-
cycle 50-mT/m gradients at 200 T m-1 s-1 slew rate, and an eight-channel 
head coil for parallel imaging at high bandwidth up to 1 MHz at the 
Duke-UNC	 Brain	 Imaging	 and	 Analysis	 Center.	 A	 semi-automated	

high-order shimming program was used to ensure global field homo-
geneity.	A	series	of	34	interleaved	axial	functional	slices	aligned	with	
the	anterior	 commissure–posterior	 commissure	plane	were	acquired	
for	 full-brain	 coverage	using	 an	 inverse-spiral	 pulse	 sequence	 to	 re-
duce	susceptibility	artifacts	(TR/TE/flip	angle	=	2,000	ms/30	ms/60;	
FOV	=	240	mm;	3.75	×	3.75	×	4	mm	voxels;	interslice	skip	=	0).	Four	
initial	 radiofrequency	excitations	were	performed	 (and	discarded)	 to	
achieve	steady-state	equilibrium.	For	each	participant,	functional	MRI	
was collected during various combinations of a single resting-state and 
four task scans. Due to the multiphasic nature of the study, while all 
participants completed some fMRI scanning, not all participants had 
the	same	fMRI	scans.	See	Figure	S1	for	a	breakdown	of	the	specific	
scans available for each participant.

2.4 | MRI preprocessing

Anatomical	images	for	each	participant	were	skull-stripped,	inten-
sity-normalized, and nonlinearly warped to a study-specific aver-
age template in the standard stereotactic space of the Montreal 
Neurological	 Institute	 template	 using	 the	ANTs	 SyN	 registration	
algorithm	 (Avants,	Epstein,	Grossman,	&	Gee,	2008;	Klein	et	 al.,	
2009). Time-series images for each participant were despiked, 
slice-time-corrected, realigned to the first volume in the time 
series	 to	 correct	 for	 head	motion	 using	 AFNI	 tools	 (Cox,	 1996),	
coregistered	to	the	anatomical	image	using	FSL's	Boundary	Based	
Registration	 (Cox,	1996;	Greve	&	Fischl,	2009),	 spatially	normal-
ized	 into	 MNI	 space	 using	 the	 nonlinear	 ANTs	 SyN	 warp	 from	
the anatomical image, resampled to 2 mm isotropic voxels, and 
smoothed to minimize noise and residual difference in gyral anat-
omy	with	a	Gaussian	filter	set	at	6-mm	full-width	at	half-maximum.	
All	transformations	were	concatenated	so	that	a	single	interpola-
tion was performed.

Time-series images for each participant were furthered pro-
cessed	 to	 limit	 the	 influence	of	motion	and	other	artifacts.	Voxel-
wise signal intensities were scaled to yield a time series mean of 100 
for each voxel. Motion regressors were created using each partic-
ipant's six motion correction parameters (three rotation and three 
translation)	and	their	first	derivatives	(Jo	et	al.,	2013;	Satterthwaite	
et al., 2013) yielding 12 motion regressors. White matter and ce-
rebrospinal fluid nuisance regressors were created using CompCorr 
(Behzadi,	Restom,	Liau,	&	Liu,	2007).	Images	were	bandpass	filtered	
to	 retain	 frequencies	between	0.008	and	0.1	Hz,	and	volumes	ex-
ceeding 0.25 mm frame-wise displacement or 1.55 standardized 
DVARS	(Nichols,	2017;	Power	et	al.,	2014)	were	censored.	Nuisance	
regression, bandpass filtering, and censoring for each time series 
were	performed	in	a	single	processing	step	using	AFNI's	3dTproject.

2.5 | General functional connectivity

We	 combined	 all	 available	 BOLD	 data	 (task	 and	 resting-state)	
for each participant into a single time series. Using our recently 

TA B L E  1   Participant demographics

 
Total 
(N = 1,316)

Women 
(n = 755)

Men 
(n = 561)

Age	(years) 19.70	±	1.25 19.66	±	1.23 19.75	±	1.27

ERQ	Reappraisal	
(1–7)

5.18	±	0.89 5.26	±	0.85 5.07	±	0.92

ERQ	Suppression	
(1–7)

3.79	±	1.16 3.63	±	1.16 4.01	±	1.13

Any	diagnoses	(n) 268 134 134

MDD (n) 66 44 22

Bipolar disorder 
(n)

35 19 16

Panic disorder (n) 26 20 6

Social	anxi-
ety disorder (n)

12 5 7

GAD	(n) 24 15 9

OCD (n) 15 7 8

PTSD	(n) 2 1 1

Alcohol	abuse	(n) 142 61 81

Substance	abuse	
(n)

48 21 27

Eating disorder 
(n)

11 8 3

Scanner

Scanner	1	(n) 1,089 625 464

Scanner	2	(n) 227 130 97
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developed methods (Elliott et al., 2019), we extracted measures of 
GFC	for	each	participant	using	a	264-region	parcellation	scheme	de-
rived	in	a	large	independent	dataset	(Power	et	al.,	2011).	BOLD	time	
series were averaged within 5-mm spheres surrounding each of the 
264	coordinates	in	the	parcellation	and	extracted	time	series	were	
concatenated. Importantly, we regressed out the task structure from 
each time series to reduce the effect of task-related activation on 
estimates of functional connectivity (Elliott et al., 2019). Correlation 
matrices were derived from these time series using Pearson cor-
relation,	 resulting	 in	34,716	edges	 in	 the	Power	et	al.	parcellation.	
Sensitivity	analyses	excluding	participants	with	fewer	than	400	TRs	
(Elliott et al., 2019) did not change our findings reported below.

2.6 | Connectome-based predictive modeling

Dispositional use of suppression and reappraisal was independently 
predicted	 from	patterns	of	GFC	using	CPM	 (Shen	et	al.,	2017).	This	
framework provides a general method to predict any measure from in-
trinsic connectivity matrices. Functional connections in the brain that 
had a p < .01 correlation with self-reported suppression and reappraise 
tendency were selected and used as features in a predictive model. 
Three	 linear	regression	predictive	models	were	then	built—one	from	
the positive features (edges positively correlated with the measure of 
interest), one from the negative features (edges negatively correlated 
with the measure of interest) and one from the combination of positive 
and	negative	features	(Shen	et	al.,	2017).	Here,	we	discuss	the	com-
bined model that predicts dispositional regulation styles from positive 
and	negative	features	in	the	brain	(Shen	et	al.,	2017).

Models were trained using a leave-one-out cross-validation 
scheme wherein data from all participants except one were used to 
predict the measure in the left-out participant. This was repeated 
until	all	participants	had	been	left	out.	The	Spearman	correlation	be-
tween predicted and true scores was adopted as an unbiased effect 
size measure of predictive utility. Model predictions of suppression 
and reappraisal tendency were assessed for significance using a 
parametric	test	for	significance	of	correlations.	All	p values from cor-
relations with suppression and reappraisal tendency were corrected 
for multiple comparisons using the false discovery rate (Benjamini 
&	 Hochberg,	 1995).	 All	 confidence	 intervals	 for	 CPM	 prediction	
estimates	were	generated	with	bootstrap	resampling,	using	AFNI's	
1dCorrelate tool.

To first establish and then separate between- and within-net-
work GFC, significant positive and negative edges for each of the 
264	nodes	were	independently	sorted	into	seven	established	neu-
ral networks (Yeo et al., 2011) based on predefined network assig-
nations	of	each	node.	Any	node	that	did	not	fall	 into	one	of	these	
established networks was assigned to an “other” category. The num-
ber of edges within and between networks was then assessed for 
significance using random-sorted permutation testing to establish 
null distributions for comparison and determine how many connec-
tions would be expected by chance (p < .001; after correcting for 
multiple comparisons [0.05/38 total within and between compari-
sons = 0.001]). In order to examine sex differences in the predictive 
performance of the models, we correlated the true and predicted 
dispositional regulation measures (i.e., the output of the CPM model) 
separately for males and females. Based on previous behavioral and 
neuroimaging literature noting that men use suppression more than 

F I G U R E  1   Correlation between 
actual and predicted Emotion Regulation 
Questionnaire-Reappraisal	subscale	
scores from the connectome-based 
predictive model (rmale = .039, p	=	.36;	
rfemale	=	−.009,	p = .8)
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females	 (Aldao	&	Nolen-Hoeksema,	2013;	Cai,	Lou,	Long,	&	Yuan,	
2016;	 Gross	 &	 John,	 2003;	 McRae,	 Ochsner,	 Mauss,	 Gabrieli,	 &	
Gross,	 2008;	Nolen-Hoeksema	&	Aldao,	 2011),	we	 predicted	 that	
this correlation would be stronger in males.

3  | RESULTS

3.1 | Self-report measures

Means	 and	 standard	 deviations	 for	 the	 self-report	 questionnaires	
were	as	follows:	ERQ-Suppression	(3.79	±	1.16,	range	=	7)	and	ERQ-
Reappraisal	(5.18	±	0.89,	range	=	7).	There	were	significant	sex	dif-
ferences (t(1223.7)	=	6.05,	p	<	.001)	in	ERQ-Suppression	subscores,	
with	men	 (4.01	 ±	 1.13)	 scoring	 higher	 than	women	 (3.63	 ±	 1.16).	
There were significant sex differences (t(1159.2)	=	−3.78,	p < .001) in 
ERQ-Reappraisal	subscale	scores	as	well,	with	women	(5.26	±	0.86)	
scoring	higher	 than	men	 (5.07	±	0.92).	ERQ-Reappraisal	and	ERQ-
Suppression	 subscales	 were	 not	 significantly	 correlated	 (r	 =	 −.04,	
p	=	.97).

3.2 | Connectome-based predictive modeling

We investigated whether there was a whole-brain signature for the 
dispositional use of suppression and reappraisal using a predictive 
and cross-validated model. There was no pattern of distributed func-
tional connectivity in the brain that predicted individual differences 
in the dispositional use of reappraisal (r = .02, p	=	.37).	We	compared	
the	 correlations	 between	 actual	 and	 predicted	 ERQ-Reappraisal	
scores (i.e., the output and predictive utility of the CPM models) in 
men and women and found no sex difference (rmale	=	−.009,	p = .8; 
rfemale = .039, p	=	.36;	Figure	1).

In contrast, there was a whole-brain signature for the disposi-
tional use of suppression (r = .135, p	<	 .001).	A	total	of	176	func-
tional connections were positively correlated and 123 functional 
connections	 were	 negatively	 correlated	 with	 ERQ-Suppression	
(Table 2). Within-network analyses revealed that the visual net-
work had the most (41) positive predictive edges (Figure 2a) and 
the somatomotor network had the most (25) negative predictive 
edges (Figure 2b). The most (35) between-network positive con-
nections were across frontoparietal and default mode networks, 
and the most (32) between-network negative connections were 
across somatomotor and default mode networks (Figure 2a,b). 
Random sampling permutation tests of within-network patterns 
confirmed significant positive associations for visual, default mode, 
and frontoparietal networks, and significant negative associations 
for the somatomotor network. The only between-network connec-
tions expected above chance were across default mode and fron-
toparietal networks (positive) and default mode and somatomotor 
networks (negative).

When examining sex differences in the neural signature of 
dispositional suppression, we found that the predictive perfor-
mance of the model (the correlation between actual and predicted 
ERQ-Suppression	 scores)	was	 only	 significant	 in	men	 (rmale	 =	 .17,	
p < .001; rfemale = .05, p = .09; Figure 3). Moreover, the correlation 
coefficients between men and women were significantly different 
(z	=	1.96,	p = .049). In addition, we reran our CPM model with past 
or present psychiatric diagnosis as a covariate, which confirmed the 

TA B L E  2   Predictive edges

Network

Direction

Positive Negative

Within

Visual	(VisN) 41* 0

Default	mode	(DMN) 27* 1

Frontoparietal	(FPN) 7* 0

Dorsal	attention	(DAN) 2 0

Somatomotor	(SMN) 0 25*

Ventral	attention	(VAN) 0 1

Limbic	(LimN) 0 0

Other (Othr) 0 0

Between

FPN	-	DMN 35* 2

VisN	-	DAN 12 0

VAN	-	DMN 9 10

Othr	-	SMN 8 4

LimN	-	FPN 5 1

VAN	-	FPN 5 0

VisN	-	DMN 3 12

VisN	-	LimN 3 4

SMN	-	FPN 3 3

DAN	-	FPN 3 0

Othr	-	VAN 3 0

VisN	-	FPN 3 0

Othr	-	DMN 2 2

Othr	-	VisN 1 3

SMN	-	VAN 1 3

VisN	-	SMN 1 3

LimN	-	DMN 1 0

Othr	-	LimN 1 0

SMN	-	DMN 0 32*

VisN	-	VAN 0 8

SMN	-	DAN 0 5

SMN	-	LimN 0 2

DAN	-	DMN 0 1

VAN	-	LimN 0 1

DAN	-	LimN 0 0

DAN	-	VAN 0 0

Othr	-	DAN 0 0

Othr	-	FPN 0 0

Total 176 123

*Denotes networks that are significantly (p <. 001; based on Bonferroni 
multiple comparisons correction) above the null distritbuion. 
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neural signature associated with suppression was not driven by di-
agnosis (r = .13, p < .001). Because not all data were collected on 
the same scanner (Table 1), we conducted a final sensitivity anal-
ysis included scanner as a covariate, which confirmed the neural 
signature associated with suppression was not driven by scanner 
differences (r = .11, p < .001).

4  | DISCUSSION

In	a	large	sample	of	1,316	participants,	we	used	a	data-driven	and	
theory-free approach to examine whether there is a neural signa-
ture for how people tend to regulate their emotions. Instead of 

limiting patterns of functional connectivity to the typical 5–10 min 
of resting-state scans (Elliott et al., 2019), we used GFC to lever-
age shared features of task and resting-state fMRI and generate 
more reliable estimates of intrinsic functional connectivity. Most 
available research investigating individual differences in intrinsic 
connectivity is based on resting-state scans. However, most rest-
ing-state scans are typically not sufficiently long enough to gener-
ate reliable estimates of intrinsic functional connectivity. GFC has 
been shown to be a reliable measure of stable, trait-like individual 
differences in behavior, such as dispositional regulation tendency 
(Elliott et al., 2019). By adopting GFC, we increased our ability to 
investigate neural signatures of individual differences in emotion 
regulation tendency.

F I G U R E  2   (a) The number of predictive positive edges within each network (i) and the number of predictive positive edges between each 
network that predict typical use of expressive suppression (ii). (b) The number of predictive negative edges within each network (iii) and the 
number of predictive negative edges between each network that predict typical use of expressive suppression (iv). *Denotes networks that 
are significantly (p < .001; based on Bonferroni multiple comparisons corrections) above the null distribution. Glass brain figures created by 
http://bisweb.yale.edu/connv	iewer/		(Shen	et	al.,	2017)

http://bisweb.yale.edu/connviewer/
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In addition to benefiting from using all available functional 
data, our findings begin to address other limitations often pres-
ent in emotion regulation research. For example, existing research 
often finds overlapping patterns of neural activity for suppression 
and reappraisal, confounding the ability to distinguish between 
them.	As	our	approach	is	wholly	data-driven,	we	are	able	to	ana-
lyze distributed patterns for each strategy separately. In addition, 
existing neuroimaging research that explores brain-behavior re-
lationships is often biased toward specific regions of interest or 
explores whole-brain maps that may overfit and be vulnerable to 
false	positives	(Shen	et	al.,	2017).	Using	CPM,	we	circumvent	these	
limitations and generate a predictive model that is cross-validated 
in novel samples.

As	with	prior	research	on	whole-brain	networks	associated	with	
suppression, our results indicate that functional connectivity be-
tween the frontoparietal and default mode networks is positively 
correlated with the tendency to suppress negative emotion (Pan et 
al., 2018). The default mode network, initially named so because 
it is active in the absence of an explicit goal or task, is commonly 
implicated in self-reflection, mind wandering, and self-generated 
thought	 (Andrews-Hanna,	 2012;	 Andrews-Hanna,	 Smallwood,	 &	
Spreng,	2014).	The	default	mode	network	has	been	 implicated	 in	
suppression in prior studies employing a univariate analysis ap-
proach as well (Goldin et al., 2008). This dual recruitment of default 
mode and frontoparietal networks is consistent with prior research 
indicating that the default mode network may support emotional 
processing and reflection, and the frontoparietal network may sup-
port	emotional	control—abilities	that	align	to	primary	descriptions	
of suppression as the conscious inhibition of emotional expression 
(Gross	&	Levenson,	1993).

Consistent with demonstrated sex differences in emotion reg-
ulation, the neural signature of dispositional use of suppression 
identified in our current study was specific to men who tend to ha-
bitually use and are more successful at implementing suppression 
(Cai	et	al.,	2016;	Gross	&	John,	2003).	Similarly,	electromyography	
findings have shown that men show reduced emotional expres-
sions when viewing negative emotional stimuli (Grossman & Wood, 
1993). Prior research has shown that men are socialized to refrain 
from expressing emotion and therefore have more developmental 
experience with suppressing negative emotion (Brody & Hall, 2010; 
Katkin	&	Hoffman,	1976;	Williams	&	Best,	1990).	Such	differences	
may contribute to our sex-specific effects. Future work is necessary 
to replicate this sex difference.

Importantly, the neural signature of dispositional suppression 
remained significant after excluding participants with psychiatric 
diagnoses, suggesting that clinical manifestations associated with 
suppressing emotion are not driving the predictive relationship 
between patterns of functional connectivity and suppression ten-
dency.	Although	the	tendency	to	suppress	negative	emotion	is	one	
characteristic	of	depression	and	anxiety	(Amstadter,	2008;	Cisler	&	
Olatunji,	 2012;	Gross,	 2002;	Gross	&	 Levenson,	 1997;	 Troy	 et	 al.,	
2010), healthy adults may also use suppression in certain situations 
(Doré,	Silvers,	&	Ochsner,	2016;	Suri	et	al.,	2018).	Thus,	the	use	of	
suppression is likely not categorically maladaptive and, indeed, may 
be	adaptive	in	particularly	stressful	situations	(Doré	et	al.,	2016).

We found a pronounced whole-brain signature of the tendency 
to suppress negative emotion, but found no comparable signature 
for	 reappraisal.	 Specifically,	 despite	 prior	 research	 implicating	 the	
default mode network in the reappraisal of negative emotion, we 
found no such signature. However, these findings typically come 

F I G U R E  3   Correlation between 
actual and predicted Emotion Regulation 
Questionnaire-Suppression	subscale	
scores from the connectome-based 
predictive model (rmale	=	.17,	p < .001; 
rfemale	=	.062,	p = .09)
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from studies with small sample sizes, which increase the likelihood 
of false positives (Gao et al., 2018). Moreover, emotion regulation 
research typically involves instructing participants to employ an ex-
plicit strategy (Cutuli, 2014; Dennis & Hajcak, 2009; Gross & John, 
2003;	Kalisch	et	al.,	2006;	Kanske	et	al.,	2012;	Urry	et	al.,	2006).	But	
how individuals regulate in the laboratory may not reflect how they 
regulate	 in	 the	 real	 world	 (Aldao,	 Nolen-Hoeksema,	 &	 Schweizer,	
2010; Gross & John, 2003; Moore, Zoellner, & Mollenholt, 2008).

One possibility for not identifying a neural signature for reap-
praisal could be that reappraisal is a more heterogeneous construct 
with	numerous	 subtypes	 than	 suppression	 (Doré	et	 al.,	 2016).	For	
example, although reappraisal is predominantly thought to be im-
plemented in the service of reframing a stimulus to be less negative, 
individuals may use reappraisal to reframe a stimulus to be more 
positive	(Doré	et	al.,	2016).	In	addition,	people	can	reappraise	stimuli	
to feel less personal and more detached (Ossenfort, Harris, Platzek, 
& Isaacowtiz, 2018). In contrast, suppression is a more homogenous 
strategy	with	less	variability	in	how	it	can	be	implemented.	As	op-
posed to having numerous possible goals and subtypes, expressive 
suppression	is	a	less	complicated	technique	that	invariably	involves	
trying to mask your feelings from the outside world (Gross, 2002; 
Gross & John, 1998). Therefore, it may be more difficult to capture 
a stable neural signature of something as variable and multifaceted 
as reappraisal in comparison with suppression. Relatedly, the behav-
ioral	 phenotypes	predicted	by	our	models	 are	based	on	 the	ERQ-
Suppression	and	ERQ-Reappraisal	subscales.	The	heterogeneity	of	
reappraisal may be adding too much noise for the scale to be signifi-
cantly predicted from patterns of functional connectivity. Relatedly, 
it may be difficult to self-report on a cognitively demanding and 
multifaceted	technique	such	as	reappraisal,	making	it	difficult	for	a	
brain–behavior relationship to be identified.

Our	 study	 is	 not	 without	 limitations.	 Although	 GFC	 explicitly	
removes task-related activation from estimates of functional con-
nectivity, such connectivity may nevertheless be affected by the 
inherent	task	performed	during	data	acquisition	(Elliott	et	al.,	2019).	
Future research could investigate how functional connectivity es-
timated only from resting-state data maps onto the dispositional 
use of reappraisal and suppression. Future studies may also aim to 
include a more diverse sample, as our sample was comprised of rel-
atively	high-functioning	university	students.	Similarly,	our	data	were	
cross-sectional, which limited our ability to determine whether GFC 
patterns drive the use of suppression or whether the use of suppres-
sion	drives	changes	in	GFC.	Lastly,	the	ERQ	measures	the	tendency	
to use either suppression or reappraisal, but does not capture alter-
native strategies that people may adopt.
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