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a b s t r a c t

The potential advantages of hyaluronic acid (HA) production by metabolically-engineered Lactococcus
lactis is constrained by the lower molecular weight and yield of HA obtained in these strains, compared
to natural producers. Earlier studies have correlated lower HA yield with excessive lactate production in
L. lactis cultures (Chauhan et al., 2014). In the present study, a three-fold increase was observed in the
amount as well as molecular weight of HA produced by recombinant ldh-mutant L. lactis strains. The
diversion from lactate production in the ldh-mutant strains resulted in excess ethanol and acetoin
production and higher NADþ/NADH ratio in these cultures. The initial NADþ/NADH ratio showed a
positive correlation with HA molecular weight as well as with the HA-precursor ratio (UDP-GlcUA/UDP-
GlcNAc). The influence of NADþ/NADH ratio on regulation of the concerned metabolic pathways was
assessed by transcriptional analysis of key genes having putative binding sites of the NADH-binding
transcriptional factor, Rex.
& 2016 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hyaluronic acid (HA) production by metabolically-engineered
recombinant organisms is being studied intensively, due to po-
tential advantages over current commercial sources. Some of the
recombinant GRAS organisms used for production of HA include
Escherichia coli (Mao et al., 2009; Yu and Stephanopoulos, 2008),
Bacillus subtilis (Chien and Lee, 2007a; Jia et al., 2013; Widner
et al., 2005), Agrobacterium (Mao and Chen, 2007) and Lactococcus
lactis (Badle et al., 2014; Chauhan et al., 2014; Chien and Lee,
2007b; Hmar et al., 2014; Prasad et al., 2010; Sheng et al., 2009). A
comparison of various recombinant bacterial strains used for HA
production, in terms of HA concentration, yield and molecular
weight (based on the standards used) is given in Table 1. One of
the main challenges with these systems is to produce high mole-
cular weight HA, comparable to animal sources and native pro-
ducers such as the pathogen, Streptococcus zooepidemicus.

In the native producer of HA (S. zooepidemicus) two parallel
pathways originate from glucose-6-phosphate and lead to formation
of HA-precursors i.e. UDP-glucuronic acid and UDP-N-acetyl gluco-
samine (Fig. 1). The genes involved in HA synthesis are arranged in
the has operon. In S. zooepidemicus, these genes are hasA, hasB, hasC,
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hasD and hasE. The most commonly used recombinant hosts for HA
production do not contain the hyaluronan synthase (hasA) gene,
whereas the homologs corresponding to the rest of genes are avail-
able. These homologous genes corresponding to hasB, hasC, hasD and
hasE are UDP-glucose dehydrogenase (ugd), UDP-glucose pyropho-
sphorylase (galU), pyrophosphorylase (glmU) and phosphoglucoi-
somerase (pgi), respectively (Fig. 1). However, many studies have
demonstrated that incorporation and expression of heterologous hasA
alone results in low HA production. Co-expression of hasA with other
has genes enhances HA yield and molecular weight (Chauhan et al.,
2014; Prasad et al., 2010; Widner et al., 2005; Yu and Stephanopoulos,
2008). In L. lactis, it was shown that combination of three genes
(hasABC and hasABD) was the optimum for higher HA yield (Chauhan
et al., 2014; Prasad et al., 2010, 2012).

L. lactis presents an attractive alternative for HA production due
to its well-studied genome and availability of wide range of ge-
netic manipulation tools. However, HA production in this organ-
ism is limited by the excess lactic acid production. In L. lactis,
nearly 70% of glucose gets fluxed towards lactate pathway (Chong
et al., 2005). An inverse correlation was observed between HA
yield and lactate yield in recombinant L. lactis strains (Badle et al.,
2014; Chauhan et al., 2014) and S. zooepidemicus (Shah et al.,
2013). Therefore, the objective of the present study was to in-
vestigate HA production in recombinant lactate dehydrogenase
(ldh) mutant L. lactis strains, containing heterologous has-genes
(hasABC and hasABD) taken from S. zooepidemicus.
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Table 1
Comparison of different recombinant bacterial strains producing HA.

HA produced
(g/l)

HA yield
(YHA/S) (g/
g)

HA molecular weight
(MDa) and standards
used

Reference

Bacillus subtilis
– – 1.1–1.2 Widner et al. (2005)
1.8 0.18 – Chien and Lee (2007a)
6.8 0.34 4.5 (Polystyrene so-

dium sulfate)
Jia et al. (2013)

E. coli
0.16 – 0.39–1.6 (HA) Yu and Stephanopoulos

(2008)
3.7 – 1.5 (Dextran) Mao et al. (2009)
L. lactis
0.65 0.065 – Chien and Lee (2007b)
0.234 0.023 2.8 (Pullulan) Prasad et al. (2010)
0.595 0.06 – Prasad et al. (2012)
0.89 0.007 1.79 (PEO) Chauhan et al. (2014)
0.68 0.068 4.3(PEO) Hmar et al. (2014)
0.49 0.049 – Sheng et al. (2014)
3.03 0.101 1.40 (HA) Present study
Agrobacterium
0.3 – 0.7–2 (Dextran) Mao and Chen (2007)
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In homo-fermentative cultures of lactic acid bacteria, the tight
coupling of cofactor utilization and regeneration ensures a stoi-
chiometric relation between glucose consumption and lactic acid
production. During fermentative metabolism of glucose, every
mole of glucose consumed produces 2 mol of NADH. Due to the
absence of respiratory activity, NADH is regenerated to NADþ

primarily through lactate production, thus maintaining redox
balance inside the cell (Cocaign-Bousquet et al., 1996). In the ab-
sence of ldh genes, carbon gets re-distributed from lactate pro-
duction to other pathways for production of ethanol, acetoin,
acetate, formate etc. (Bongers et al., 2003; Lopez De Felipe et al.,
Fig. 1. Biosynthetic pathway of HA in L. lactis. The has genes shown in oval are the heter
The genes in hexagon are the homologous genes in L. lactis (adapted from Prasad et al.
1997; Mehmeti et al., 2011). The emergence of other rescue
pathways to replenish pools of NADþ changes overall NADþ and
NADH levels and their ratio. The change in NADþ/NADH ratio has
significant effects on glycolytic flux (Garrigues et al., 1997), as
NADþ/NADH ratio affects GAPDH activity (Payot et al., 1998). The
other key intermediate of glycolysis, fructose 1,6-bisphosphate, is
also influenced by NADþ levels (Neves et al., 1999). In HA synth-
esis, two equivalents of NADþ are involved in the production of
the limiting precursor UDP-Glucuronic acid (UDP-GlcUA). There-
fore, we investigated the effect of changes in NADþ/NADH ratio on
precursor levels and HA synthesis.

When the redox balance is disturbed, the cell rearranges its
carbon distribution to attain redox homeostasis. This happens
through up-regulation or down-regulation of genes coding for
enzymes involved in cofactor-utilizing reactions. Many studies
have shown that the redox-sensing regulator Rex is sensitive to
NADþ/NADH ratio (Brekasis and Paget, 2003) and regulates the
expression of genes coding for NADþ or NADH-utilizing enzymes
(Gyan et al., 2006; Pagels et al., 2010). Rex is composed of two
structural domains: an N-terminal domain that interacts with DNA
and a C-terminal domain that binds with NADH (Du and Pene,
1999; Sickmier et al., 2005; Wang et al., 2008). Its DNA-binding
domain is strongly influenced by NADH level. Increased NADH
level stabilizes its two DNA-binding domains, preventing the
binding of Rex to its regulatory site in the upstream region of the
gene (Gyan et al., 2006; Pagels et al., 2010; Sickmier et al., 2005).

Transcriptional regulation by Rex has been found in many or-
ganisms like B. subtilis (Gyan et al., 2006), Staphylococcus aureus
(Pagels et al., 2010), Enterococcus faecalis (Mehmeti et al., 2011).
Rex is found to be universally conserved between Streptococcaceae
and Lactobacillaceae lineages (Ravcheev et al., 2013). The present
study also sought to examine the possible role of Rex in regulating
the expression of genes involved in NADþ regeneration in re-
combinant L. lactis.
ologous genes from S. zooepidemicus, which can be potentially expressed in L. lactis.
(2010)).
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2. Materials and methods

2.1. Bacterial strains and plasmids

The strains used in this study were L. lactis NZ9000 and L. lactis
NZ9020. Both the strains are based on the nisin-inducible (NICE)
expression system. L. lactis NZ9000 was constructed from L. lactis
MG1363 by integrating nisRK genes in its chromosome (Kuipers
et al., 1998). L. lactis NZ9020 is a lactate dehydrogenase (ldh)
mutant strain, in which two out of three ldh genes have been
knocked out (Bongers et al., 2003). Both L. lactis NZ9000 and L.
lactis NZ9020 were procured from NIZO (Netherlands). The plas-
mids used were pSJR3 (hasABC gene combination) and pSJR6
(hasABD gene combination), constructed by Prasad et al. (2010,
2012). L. lactis SJR3 and L. lactis SJR6 were respectively constructed
by transformation of L. lactis NZ9000 with pSJR3 and pSJR6 (Prasad
et al., 2010, 2012). In the present study, L. lactis MKG3 and L. lactis
MKG6 were obtained by transformation of L. lactis NZ9020 with
pSJR3 and pSJR6, respectively.

2.2. Culture media

The media used for agar plates, seed culture and bioreactor
studies had the following components (g/l): Glucose (varying
concentration), Yeast extract (5.0), brain heart infusion (5.0),
KH2PO4 (0.5), K2HPO4 (1.5), MgSO4 �7H2O (0.5), ascorbic acid (0.5).
All the media components were procured from HiMedia (India).
Glucose concentration in agar media and seed culture was 5 g/l.
Initial glucose concentration varied from 10–80 g/l for bioreactor
studies. During the investigations on the effect of acetate addition
on HA production, different initial concentrations (5–15 g/l) of
sodium acetate were used.

All the strains used in the study were stored at �80 °C as
glycerol stocks and cultured for 24 h on agar plates at 30 °C. Co-
lonies from agar plates were cultured in 10 ml tubes for 12–14 h.
These tubes were then used to inoculate 100 ml of seed culture
media, kept in static condition at 30 °C. The selection marker used
for L. lactis SJR3 and L. lactis SJR6 strains was chloramphenicol
(10 μg/ml). For L. lactis MKG3 and L. lactis MKG6, the selection
markers were chloramphenicol (10 μg/ml) and tetracycline (2 μg/
ml).

All the batch bioreactor experiments were carried out in a 2.4 l
bioreactor (Bioengineering, Switzerland) with working volume of
1.2 l. The process conditions were: unaerated conditions, impeller
speed 200 rpm, pH 7, 30 °C, 8% inoculum. HA production was in-
duced by 2 ng/ml nisin (Sigma-Aldrich, USA) when the culture
reached OD600¼0.6.

2.3. Analytical methods

Samples were treated with 0.1% SDS to remove HA capsule
from the cell surface and then centrifuged at 10,000 rpm to pellet
HA-free biomass. The pellets were dissolved in 0.9% NaCl and the
optical density was measured at 600 nm. The dry cell weight
(DCW) concentration was measured and correlated to optical
density using the correlation: 1 OD600¼0.45 gDCW/l. The super-
natant was used to estimate glucose, HA and other metabolites.
Glucose was estimated by glucose-oxidase–peroxidase (GOD–
POD) method (Merck Pvt. Ltd., India). HA was quantified by
modified carbazole assay (Bitter and Muir, 1962).

HA molecular weight was estimated using PolySep-GFC-P 6000
size-exclusion column (300�7.8 mm2), in a HPLC fitted with RID.
Mobile phase used was 0.2 N NaNO3 at 0.6 ml/min. HA standards
were procured from Calbiochem (0.6 MDa) and Lifecore Biomedi-
cal (1.5 MDa and 1.8 MDa) and were used for estimation of mo-
lecular weight of HA. Although, many other studies have used
polymer standards other than HA (Chauhan et al., 2014; Im et al.,
2009; Lai et al., 2012; Liu et al., 2008a), it has been recently ob-
served in our laboratory that it leads to overestimation of HA
molecular weight (Supplementary data, Table S1).

Lactate, acetate, formate, ethanol and acetoin were estimated
by HPLC (Shimadzu, Japan) at 50 °C using a 300�7.8 mm2 column
(Phenomenex Rezex). The eluent used was 5 mM H2SO4 at 0.6 ml/
min. Lactate, formate and acetate were detected by diode-array
detector at 210 nm. Ethanol and acetoin were detected by re-
fractive index detector (RID). The NADþ/NADH ratio was esti-
mated using a quantification kit (Sigma-Aldrich, USA; Cat no.:
MAK037). For extraction of NADþ and NADH, 1 ml of extraction
buffer was added to each sample and sonicated using QSONICA
sonicator at 60 Hz for 5 min with pulse time of 10 s ON and 2 s
OFF. Rest of the protocol was followed as described in the manual
supplied with the kit.

Intracellular precursors of HA (UDP-GlcUA and UDP-GlcNAc)
were extracted using method described by Ramos et al. (2001).
Their estimation was done using Ion-pair reverse phase HPLC. The
column used was Luna 5u C18(2) 100 Å, 250�4.6 mm2 Phenom-
enex column. For elution, Buffer A (100 mM potassium phosphate
buffer, pH 6.4, supplemented with 8 mM tetrabutylammonium
hydrogen sulfate as ion-pair reagent) and Buffer B (70% Buffer A
with 30% acetonitrile) were used. The elution gradient was as
follows: 100% Buffer A for 13 min; 0–77% linear gradient of Buffer
B for 22 min; 77–100% gradient of Buffer B for 1 min; and 100%
Buffer B for 14 min (Nakajima et al., 2010). The flow rate was
maintained at 1 ml/min and the metabolites were detected using
diode array detector at 254 nm.
2.4. Bioinformatic analysis of Rex binding sites in L. lactis MG1363

The manually-curated database of Rex regulon is available on
RegPrecise database (http://regprecise.lbl.gov) for L. lactis subsp.
cremoris SK11, which has 99% identity with L. lactis subsp. cremoris
MG1363. From the given sequences of Rex-binding sites, a DNA
motif was constructed to screen the genome of L. lactis subsp.
cremoris MG1363 using Regulatory Sequence Analysis Tool (http://
prokaryotes.rsat.eu/). Under the ‘pattern matching’ option, the
‘genome-scale-DNA-pattern’ was selected. The query pattern
WWGWDRWWNHNDWHAHVW was searched in L. lactis subsp.
cremoris MG1363 uid58837. The various parameters used were:
feature type: CDS; sequence type: upstream from �500 to �1;
overlap with upstream ORFs was allowed; sequence label: gene
identifier; search strands: both strands; overlapping matches were
prevented; threshold on match counts: 1; substitutions: 0.
2.5. Real-time quantification PCR

The expression level of adhe, adr and ugd was measured, based
on protocols developed by Hmar et al. (2014). It consisted of initial
denaturation at 95 °C for 15 min, followed by 40-cycle sequence of
denaturation (15 s, 94 °C), annealing (57 °C, 30 s), and extension
(72 °C, 30 s). The sequence of primers used for the genes is shown
in Supplementary data (Table S2). The samples were collected at
different time points (4, 6, 10, and 16 h) and normalized to their
biomass concentrations. The collection times reflected critical
stages of the culture, such as early, mid and late-exponential
phases of growth and time periods corresponding to highest glu-
cose uptake rate.

http://regprecise.lbl.gov
http://prokaryotes.rsat.eu/
http://prokaryotes.rsat.eu/
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3. Results and discussion

3.1. Effect of ldh mutation on HA production and molecular weight

The L. lactis NZ9000 and L. lactis NZ9020 (ldh mutant) strains
were transformed with recombinant plasmids containing the
heterologous hasABC (L. lactis SJR3; L. lactis MKG3) and hasABD (L.
lactis SJR6; L. lactis MKG6) gene combinations. Previous studies in
our laboratory have established that these gene combinations give
maximum HA production in recombinant L. lactis cultures (Chau-
han et al., 2014; Prasad et al., 2010, 2012). The four recombinant
strains were compared under similar conditions for the con-
centration and molecular weight of HA produced by each strain in
batch bioreactor cultures. It was observed that HA production was
nearly three-fold higher in L. lactis MKG cultures as compared to L.
lactis SJR cultures. The lowest HA concentration produced was
0.92 g/l by L. lactis SJR3 and the highest HA concentration pro-
duced was 3.03 g/l by L. lactis MKG6 (Fig. 2A). This result was
anticipated due to the inverse correlation between HA yield and
lactate yield (Badle et al., 2014; Chauhan et al., 2014).

Our investigation threw up another interesting and unexpected
result. The highest molecular weight of HA was produced by L.
lactis MKG6 strain (�1.4 MDa), which was about three-fold higher
(Fig. 2A) as compared to recombinant L. lactis SJR3 strain
(0.47 MDa). Fig. 2A has shown only relative molecular weight in-
crease for HA, since the values reported for absolute molecular
weight in literature are dependent on the polymer standards used
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Very few studies have reported simultaneous increase in HA
production as well as molecular weight. The present study showed
significant enhancement in HA molecular weight along with in-
creased HA production due to an ldh mutation in L. lactis strains.
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have shown an increase in HA molecular weight with decrease in
specific growth rate (Badle et al., 2014; Chong et al., 2005; Ja-
gannath and Ramachandran, 2010; Shah et al., 2013). In our study,
the increase in molecular weight of HA produced by L. lactis MKG
strains was much more drastic for the relatively small reduction in
specific growth rate compared in L. lactis SJR strains (Supple-
mentary data, Fig. S1).

Earlier studies in our laboratory have shown that initial glucose
concentration affects yield and molecular weight of HA and an
optimum value of 30–40 g/l has been reported for L. lactis SJR
cultures (Chauhan et al., 2014). Therefore, experiments were
conducted by varying initial glucose from 10–80 g/l for L. lactis
MKG strains (Supplementary data, Tables S3 and S4). Unlike the
inverse correlation between lactate yield and HA yield reported for
recombinant L. lactis SJR cultures (Badle et al., 2014; Chauhan et al.,
2014), a positive correlation was observed between ethanol and
HA yields across various glucose concentrations in recombinant L.
lactis MKG cultures (Fig. 3A). Similarly, a positive correlation was
also observed between acetoin and HA yields (Fig. 3B).
3.2. Effect of NADþ /NADH ratio on HA production and molecular
weight

In L. lactis MKG strains, the carbon redistribution towards
ethanol and acetoin due to ldh deletion can potentially generate a
higher amount of NADþ , as compared to lactate-producing L. lactis
SJR strains. While each mole of lactate produced generates one
mole of NADþ , each mole of acetoin and ethanol produced gen-
erates one and two moles of NADþ , respectively. Therefore, higher
yield of ethanol and acetoin will give a higher yield of NADþ as
compared to lactate yield (Supplementary data, Table S5). An MFA
study by Gao et al. (2006) showed that HA production is inhibited
under high NADH flux. Subsequent studies showed that HA
synthesis was found to be facilitated by oxidative environment
inside the cell i.e. with availability of higher NADþ (Liu et al.,
2008b). However, as shown in Section 3.5, it is not NADþ per se,
but the NADþ/NADH ratio which is critical for the transcriptional
regulation of many genes coding for NADH-utilizing enzymes
(Brekasis and Paget, 2003). Such transcriptional regulation can
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affect the metabolic fluxes through the HA-precursor biosynthesis
pathway and other competing pathways. In S. zooepdemicus, en-
hanced NADþ/NADH ratio was shown to increase HA yield in-
directly (Zhang et al., 2006). Therefore, production and molecular
weight of HA were analysed as a function of NADþ/NADH ratios in
L. lactis MKG and L. lactis SJR cultures.

The initial NADþ/NADH ratio showed strong positive correla-
tion with HA produced. The lowest initial NADþ/NADH ratio ob-
tained was 5.31 in L. lactis SJR3 and the highest was 6.97 in L. lactis
MKG6. This ratio was in general higher for L. lactis MKG strains as
compared to L. lactis SJR strains and correlated well with the
higher amount of HA produced by the former (Fig. 4A). It has been
shown with other NADþ-dependent products that even a small
increase in initial NADþ/NADH ratio, from 4.0 to 6.7 in a re-
combinant E. coli strain, results in a drastic eight-fold increase in
yield of the NADþ-dependent product (Zhou et al., 2013).

In our studies, a positive correlation was also found between
the initial NADþ/NADH ratio and HA molecular weight obtained in
L. lactis MKG and L. lactis SJR cultures. The highest relative mole-
cular weight for HA (2.98) and NADþ/NADH ratio (6.97) were
found in L. lactis MKG6 whereas the lowest relative molecular
weight for HA (1.0) and NADþ/NADH ratio (5.31) were found in L.
lactis SJR3 (Fig. 4B).

3.3. Effect of NADþ /NADH ratio on HA precursor ratio

It has been suggested that the polymerization activity of HA
synthase is affected by competition between precursors for each
other’s binding site (Chen et al., 2009; Tlapak-Simmons et al.,
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Fig. 5. The concentration of the UDP-sugars, UDP-GlcUA and UDP-GlcNAc, during various
SJR3. The data are presented as the mean7SD from three replicates. The concentration
lactis SJR6 and L. lactis SJR3. *po0.05 and **po0.01.
2004). This implies that chain termination could occur when one
of the precursors is at a much higher concentration as compared to
the other. It has been observed that a balance in concentration
between the two HA-precursors is required for production of high
molecular weight HA (Badle et al., 2014; Chen et al., 2009; Chong
et al., 2005; Hmar et al., 2014 ). The cellular content of UDP-GlcNAc
is found to be three to seven times higher than UDP-GlcUA in
eukaryotic cells (Tammi et al., 2011). Vigetti et al. (2006) have
shown that over-expressing genes for UDP-GlcUA enhanced HA
production. Badle et al. (2014) have shown positive correlations
between UDP-GlcUA/UDP-GlcNAc ratio and HA molecular weight.
Hmar et al. (2014) showed that the higher molecular weight HA
produced by recombinant L. lactis strains (with genome-integrated
has genes) correlated with the UDP-GlcUA/UDP-GlcNAc ratio being
close to unity in these cultures. Thus, the limiting precursor in HA
synthesis seems to be UDP-GlcUA, whose synthesis requires two
equivalents of NADþ .

In the present study, the intracellular concentrations of UDP-
GlcUA and UDP-GlcNAc were measured during the exponential and
stationary phase of L. lactis MKG and L. lactis SJR cultures. The range
of values obtained was comparable to that in S. zooepidemicus
(Marcellin et al., 2009). The intracellular concentration of UDP-
GlcNAc was found to be higher than UDP-GlcUA across all the strains
(Fig. 5). On an average, the concentration of UDP-GlcUAwas found to
be higher in L. lactis MKG strains as compared to L. lactis SJR strains,
the highest being in L. lactis MKG6. The ratio of UDP-GlcUA/UDP-
GlcNAc was calculated for L. lactis MKG and L. lactis SJR strains
(Fig. 6). During the initial and mid log phase, the balance of con-
centrations for UDP-GlcUA and UDP-GlcNAc was less skewed for L.
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Table 2
Effect of acetate addition on HA production and molecular weight in L. lactis MKG6.

Without
acetate

5 g/l Acetate 10 g/l Acetate 15 g/l Acetate

Biomass (g/l) 3.3670.16 6.8370.10 7.9970.23 7.270.05
HA (g/l) 3.0370.4 2.570.21 1.7670.11 1.670.06
Relative HA mo-
lecular weight

3.5270.2 4.470.14 3.570.15 3.670.11

Lactic acid (g/l) 0.670.16 0.970.12 0.8370.11 0.9270.12
Formate (g/l) 4.170.16 7.0970.11 6.270.23 6.070.26
Acetoin (g/l) 9.2870.4 11.870.07 10.170.03 10.870.2
Ethanol (g/l) 9.8670.32 11.3170.38 6.9670.23 8.5970.14
Acetic acid (g/l) 1.2370.05 3.570.24 6.5270.14 10.270.07
Yacetoin/S (C-mol/
C-mol)

0.43 0.52 0.44 0.45

Yethanol/S (C-mol/
C-mol)

0.43 0.47 0.29 0.33

NADþ/NADH
ratio

6.9770.3 8.4670.17 6.170.09 5.9970.21
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lactis MKG6 as compared to the rest three strains.
Since the cofactor NADþ is involved in production of UDP-

GlcUA, the effect of NADþ/NADH ratio on UDP-GlcUA/UDP-GlcNAc
ratio was studied in L. lactis MKG and L. lactis SJR cultures. When
measured with different recombinant L. lactis strains and across
different time points, it was observed that NADþ/NADH ratio
showed a strong positive correlation with UDP-GlcUA/UDP-GlcNAc
ratio (Fig. 7). With increase in NADþ/NADH ratio, the UDP-GlcUA/
UDP-GlcNAc ratio was found to approach unity, which is favorable
for production of higher molecular weight HA. Badle et al. (2014)
have shown that this precursor ratio correlates strongly with
molecular weight of HA produced by S. zooepidemicus as well as
recombinant L. lactis strains. This shows that higher NADþ/NADH
ratio helps in producing higher molecular weight HA. To further
validate these observations, a process strategy was adopted to
increase NADþ/NADH ratio inside the cell.

3.4. Effect of acetate addition on redox balance and HA molecular
weight

The NADþ/NADH ratio can be manipulated through process
strategies (Liu and Chen, 2011; San et al., 2002) or genetic stra-
tegies (Berríos-Rivera et al., 2004; Liu and Chen, 2011; San et al.,
2002; Wang et al., 2013). Hols et al. (1999) have shown that
acetate addition enhanced ethanol formation in ldh-mutant L.
lactis strains. We adopted the same strategy to enhance ethanol
production, which in turn was expected to increase NADþ/NADH
ratio, and thereby HA production and molecular weight. The strain
L. lactis MKG6, which produced HA at the highest concentration
and molecular weight, was chosen for the experiments.

Acetate was added at different concentrations (5, 10 and 15 g/l)
at the beginning of the bioreactor culture, keeping the initial
glucose concentration at 30 g/l. Interestingly, with 5 g/l acetate
addition there was 25% increase in HA molecular weight (Table 2).
The yields of acetoin and ethanol also increased from 0.43 C-mol/
C-mol each to 0.52 C-mol/C-mol and 0.47 C-mol/C-mol, respec-
tively. The initial NADþ/NADH ratio showed an increase from 6.97
to 8.46.

The yields of acetoin and ethanol as well as initial NADþ/NADH
ratio decreased with increased acetate addition (45 g/l), with a
concomitant decrease in HA molecular weight. This experiment
validated the hypothesis that increase in initial NADþ/NADH ratio
contributes towards higher HA molecular weight. However, the HA
concentration inexplicably dropped from 3.03 g/l to 2.5 g/l at even
at higher initial NADþ/NADH ratio (obtained at acetate addition of
5 g/l). The HA concentration decreased further with increased
acetate addition.

3.5. Transcriptional regulation of genes involving cofactor utilization

During the fermentation at different growth phases,
NADþ/NADH ratio showed dynamic variation (Supplementary
data, Fig. S2). This change in level of NADþ/NADH ratio is a part of
dynamic homeostasis between different redox states. It is medi-
ated inside the cell through redox sensors and transcriptional
regulators like Rex (Mehmeti et al., 2011).

The deletion of ldh genes in L. lactis led to re-distribution of
fluxes, resulting in increased production of ethanol and acetoin, as
well as shift in NADþ/NADH ratios. The fluxes for HA synthesis as
well as competing pathways may be regulated by transcriptional
regulation of critical genes in these pathways.

Screening of L. lactis subsp. cremoris MG1363 showed 11 genes
in central carbon metabolism that could contain Rex-binding sites.
Of these, the genes for bifunctional acetaldehyde-CoA/alcohol
dehydrogenase (adhe), acetoin (diacetyl) reductase (adr) and UDP-
glucose dehydrogense (ugd) were selected for transcriptional
analysis in L. lactis MKG6. The mRNA level of these genes were
measured relative to the host strain L. lactis NZ9020. The relative
mRNA level was correlated with the NADþ/NADH ratio, measured
at selected time-points in the recombinant L. lactis MKG6 cultures.
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Time (h) 4     6            10           16

NAD+/NADH ratio

Relative mRNA of adhe

NAD+/NADH ratio

Relative mRNA of adr

NAD+/NADH ratio

Relative mRNA of ugd

Colour code Relative level of mRNA and NAD+/NADH ratio

NAD+/NADH adhe adr ugd

High >6 >6 >8 >3

Medium 4-6 1-6 6-8 1-3

Low <4 <1 <6 <1

Fig. 8. Relative mRNA level of adhe, adr and ugd genes in L. lactis MKG6 strain.
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For Rex-regulated genes, a high NADþ/NADH ratio would lead to
binding the Rex repressor and low mRNA levels. Conversely, a low
NADþ/NADH ratio would de-repress the gene and lead to high
mRNA levels. The relative mRNA levels for adhe, adr and ugd
showed an inverse correlation with NADþ/NADH ratio (Fig. 8). This
indicated that the expression of these genes is probably regulated
by the global regulator Rex, whose binding activity is controlled by
NADþ/NADH ratio.

While the Rex-regulation understandably acts as a feedback
regulation mechanism for adhe and adr, it becomes a feed-forward
repression mechanism for ugd. At high NADþ/NADH ratio, the
production of UDP-GlcUA is controlled at transcriptional level.
Prasad et al. (2012) have found the hasB mRNA level to be several-
fold lower than other has genes in S. zooepidemicus, and similar
results were obtained for ugd in L. lactis cultures, suggesting its
tight regulation at transcriptional level. Not surprisingly, several
studies have shown that co-expression of hasB (ugd) along with
hasA leads to multifold increase in HA production (Chauhan et al.,
2014; Chien and Lee, 2007a, 2007b; Prasad et al., 2010; Widner
et al., 2005).

When NADþ/NADH ratio decreases, the transcriptional reg-
ulation of ugd is relaxed, but the lowered thermodynamic driving
force leads to lower precursor production. The equilibrium con-
stant for the reaction converting UDP-glucose and 2 NADþ to UDP-
GlcUA and 2 NADH, has a 2nd order dependence on NADþ/NADH
ratio. The equilibrium constant changes sharply with variation in
NADþ/NADH ratio. Therefore, even with over-expression of ugd
gene, HA production will not be thermodynamically favored un-
less the NADþ/NADH ratio is high. Our study confirms this hy-
pothesis while comparing HA production by the L. lactis NZ9000
and L. lactis NZ9020 (ldh-mutant) strains containing the same
combination of has genes.

In addition to the transcriptional regulation, Ugd experiences
cofactor and product inhibition under certain conditions. In E. coli,
Mainprize et al. (2013) have shown substrate inhibition by NADþ

at concentrations beyond 1 mM. They suggested that at high
concentration of NADþ , multiple NADþ molecules fit into the
cofactor binding pocket in non-productive geometries, which de-
creases Ugd activity. In Klebsiella pneumonia, the mechanism of
allosteric regulation of Ugd was proposed (Chen et al., 2011).
When UDP-GlcUA accumulates (Ki¼283 mM), it inactivates Ugd
either by competing for substrate binding site or by binding to the
allosteric site. The heterologous expression of the ugd gene leads
to high enzyme levels, reducing inhibition by the co-factor or the
product. Due to the multiple regulations, over-expression of ugd as
well as high NADþ/NADH ratio is required for high production of
UDP-GlcUA and obtaining high molecular weight HA.
4. Conclusions

This study has highlighted the importance of cofactor dis-
tribution and availability in metabolic processes for enhancing the
yield and productivity of cofactor-dependent products. The path-
ways for HA synthesis involve different cofactors including NADþ ,
UTP and Acetyl CoA. Therefore, metabolic engineering for HA
production provides a rich paradigm for studying optimal cofactor
distribution between cellular needs and product synthesis. This
study demonstrated how the change in redox balance (viz. the
NADþ/NADH ratio) impacts production and molecular weight of
HA in pathway-engineered L. lactis strains. Although, the shift in
redox balance occurred primarily due to the ldh-mutation, which
inactivated lactate synthesis, we have shown that suitable process
strategies (viz. acetate addition) can also be adopted to achieve
this objective. Through the screening of Rex-binding sites and
correlation of gene-expression with NADþ/NADH ratio, we have
indirectly shown the possibility of transcriptional regulation of
several critical genes by Rex. Although, this study did not in-
vestigate direct mechanistic evidence for this hypothesis, it is
nevertheless an interesting observation worth further investiga-
tion. Cofactor utilization is tightly regulated within a cell, often at
multiple levels and this issue has wider implications for metabolic
engineering of cofactor-dependent products.
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