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Pantothenate-kinase-associated neurodegeneration (PKAN) is 
an inherited disease caused by PANK2 gene mutations1 that are 
thought to result in the reduction of cellular coenzyme A (CoA). 
Patients with PKAN exhibit a variety of symptoms, including 
dystonia, rigidity, bradykinesia, spasticity, difficulty swallowing 
and speaking, shortened lifespan, and sometimes cognitive and 
visual impairment.2 The clinical symptoms are often associated 
with an accumulation of iron in the brain and postmortem 
pathology indicates an enrichment of ischemic foci in the globus 
pallidus,3 implicating an interruption of oxidative metabolism in 
the central nervous system (CNS). CoA is cell autonomous and 
thus any effective PKAN therapy must penetrate both cellular 
membranes and the blood-brain barrier (BBB). One of the first 
ideas was to treat patients with pantothenate in an attempt to 
raise CoA synthesis by increasing substrate supply. Although it 
remains possible that high-dose pantothenate over extended 
periods may be useful in reducing the symptoms,4 the strong 
feedback inhibition of the pantothenate kinases (PANKs) means 
that there is little to no increase in tissue CoA levels in animals 
treated with high-dose pantothenate.5

Three different approaches to PKAN therapy have been 
proposed that are designed to bypass the PANK2 genetic 
defect by supplying a CoA biosynthetic pathway intermediate 
downstream of PANK. Phosphopantothenate is the product 
of PANK but cannot cross cell membranes due to its charged 
nature. Fosmetpantotenate was designed as a prodrug to 
deliver phosphopantothenate to cells and elevate intracellular 
CoA.6 The charged moieties on phosphopantothenate are 
chemically masked by covalent modification with hydropho-
bic groups to promote penetration across cellular membranes. 
The synthetic additions to phosphopantothenate are then 
released by intracellular enzymes (esterases) and the resulting 
phosphopantothenate bypasses PANK and is converted to 
CoA. This cellular pathway was established by showing that 

intact dual-labeled ([18O]phospho[13C]pantothenate) fosmet-
pantotenate was converted to CoA.7 Fosmetpantotenate 
raised liver CoA levels in mice, but an elevation of brain CoA 
could not be demonstrated.7 However, the intrastriatal injec-
tion of fosmetpantotenate elevated brain CoA,6 confirming 
the low to absent BBB penetration when fosmetpantotenate 
was delivered systemically. Although fosmetpantotenate is a 
promising bypass drug, inefficient BBB penetration is a sig-
nificant liability.

Phosphopantetheine is another intermediate in the CoA 
biosynthetic pathway downstream of PANK, and phospho-
pantetheine itself8 or its derivative, acetyl-phosphopantetheine,9 
was proposed as another bypass option. There are 2 serious 
problems with these potential therapeutics. (1) Both com-
pounds are phosphorylated and, like phosphopantothenate, do 
not diffuse across cell membranes. The isotopic labeling experi-
ment that was used to demonstrate the incorporation of the 
intact phosphopantetheine into cellular CoA cannot rule out 
the possibility that it was first degraded to pantetheine or pan-
tothenate and then phosphorylated by PANK prior to incorpo-
ration into CoA.8 Pantetheine is an excellent substrate for the 
PANK enzyme.10 Because pantetheine is readily degraded to 
pantothenate by cultured cells and in circulation,11 degradation 
prior to incorporation is the likely route to CoA. (2) The 
HoPan-treated mouse model12 was used to demonstrate that 
acetyl-phosphopantetheine reversed the effect of HoPan on 
liver CoA levels in mice.9 Because pantothenate alone potently 
counteracts HoPan-mediated reduction of CoA levels12 and 
acetyl-phosphopantetheine is degraded to pantothenate by 
digestion,13-15 it is not proven that the therapy bypasses PANK. 
The HoPan-treated mouse model is also not a representative 
PKAN model because HoPan treatment can be used to reduce 
CoA in the liver and kidney, but HoPan does not reduce brain 
CoA.12
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Extracellular CoA itself was the third proposed bypass 
treatment using cultured neuronal cells derived from PKAN 
patient fibroblasts16 or Drosophila.8 The facts that highly 
charged molecules such as CoA15 or CoA biosynthetic precur-
sors7 cannot diffuse into cells and that CoA is digested by an 
assortment of extracellular enzymes to ultimately yield panto-
thenate and cysteamine prior to absorption by intestine or 
other tissues13,14 were not considered. There is no direct evi-
dence that the treatment of cells with CoA increases cellular 
CoA.8,16 Extracellular CoA, pantetheine, or pantothenate is 
not effective in raising CoA levels in human cultured cells 
(Figure 1A). CoA and pantetheine are completely degraded to 
pantothenate during cell culture (Figure 1B).

The BBB penetration challenge was addressed by the 
recent development of a novel drug called PZ-2891.5 The 
physicochemical properties of drugs capable of crossing the 
BBB are established and PZ-2891 was designed to have the 
properties of polar surface area, number of hydrogen bond 
donors, molecular weight, and a cLogP value similar to the 
top 25 CNS drugs (Table 1).17 By comparison, the properties 
of fosmetpantotenate provide a clear rationale for the diffi-
culties encountered in elevating brain CoA with this therapy 
(Table 1). PZ-2891 is very lipophilic and diffuses across 
membranes to elevate cellular CoA levels by acting as an 
allosteric activator that prevents feedback inhibition of the 
PANK enzymes,5 including PANK1 and PANK3 which are 
intact activities in the context of mutated PANK2 as found in 
PKAN patients.

A PKAN mouse model with disrupted brain CoA biosyn-
thesis was derived by specific deletion of the murine PANK1 
and PANK2 genes in neurons to serve as a platform to evalu-
ate PKAN therapeutics.5 Brain CoA levels were reduced sig-
nificantly in this model and the animals exhibited phenotypic 
characteristics that resembled PKAN including reduced loco-
motor activity, growth rate, and lifespan. Oral administration 
of PZ-2891 elevated brain CoA and substantially resolved 
the severe locomotor, growth, and lifespan phenotypes.5 
These data show that PZ-2891 penetrates the BBB to elevate 

Figure 1.  Elevation of cellular CoA and stability of CoA in cell 

culture. (A) C3A cells were treated with 10 µM pantothenate, 

pantetheine, or CoA in the presence or absence of PZ-2891 (10 µM). 

Total CoA was measured as described.7 Neither extracellular CoA 

nor pantetheine elevated intracellular CoA. (B) CoA (10 µM) was 

incubated with DMEM culture medium, medium plus 10% fetal bovine 

serum (FBS), or medium plus serum plus C3A cells for 20 hours. The 

medium was analyzed by mass spectrometry for CoA and 

pantothenate.5 CoA was stable in culture medium plus serum, but 

was quantitatively degraded to pantothenate when C3A cells were 

present. CoA indicates coenzyme A; DMEM, Dulbecco’s Modified 

Eagle Medium.

Table 1.  Physicochemical properties of PZ-2891, protected phosphopantothenate (RE-024 or fosmetpantotenate), and the top 25 central nervous 
(CNS) system drugs.

Property Mean value of top 
25 CNS drugs

Suggested 
limits

Preferred 
range

PZ-2891 RE-024

PSA (Å) 47 <90 <70 72 149

HBD 0.8 <3 0-1 0 3

cLogP 2.8 2-5 2-4 2.3 0.42

MW 293 <500 <450 349 474

Abbreviations: HBD, hydrogen bond donor; MW, molecular weight; PSA, polar surface area.
Properties of the top 25 drugs considered critical for blood-brain barrier penetration were taken directly from Hitchcock and Pennington.17 The properties of PZ-28915 and 
RE-024, also known as fosmetpantotenate,6,7 are provided for comparison.
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CoA in CoA-deficient neurons to ameliorate the severe con-
sequences of the CoA deficiency. There remain many chal-
lenges in the development of PKAN therapeutics, but the 
identification of a class of small molecule allosteric PANK 
activators that efficiently cross the BBB is an important step 
toward clinical deployment of a safe and effective treatment.
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