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Abstract: Starting from the enantiopure precursors, a pair of chiral macrocyclic arenes named
helic[1]triptycene[3]arenes were conveniently synthesized. The circular dichroism (CD) spectra of
the enantiomeric macrocyclic arenes exhibited mirror images, and the X-ray single crystal structures
confirmed their absolute conformations as well. Moreover, the macrocyclic arenes showed strong
complexation with secondary ammonium and primary ammonium salts containing aminoindan
groups. In particular, the chiral macrocyclic arenes exhibited enantioselective recognition ability to-
wards the chiral secondary ammonium salts containing aminoindan groups with an enantioselective
ratio up to 3.89.

Keywords: macrocyclic arene; enantioselective recognition; helic[1]triptycene[3]arene; ammonium salts

1. Introduction

Rasagiline is the second generation of monoamine oxidase inhibitor, which exhibits
efficient capacity in blocking the breakdown of the neurotransmitter dopamine, and im-
proving therapeutic effect on patients that suffered the decline in potency of long-term
applications of dopamine [1]. Furthermore, the metabolite of rasagiline is an inactive non-
benzedrinum with few side effects [2]. Azilect, namely rasagiline mesylate, is essentially a
chiral secondary ammonium salt with excellent medicinal cure effects. However, there is
little research into the recognition, and especially the enantioselective recognition, towards
these bioactive guests based on synthetic receptors so far [3].

Macrocyclic arenes are a type of macrocycles which all composed of hydroxyl substi-
tuted aromatic rings bridged by methylene or methenyl groups [4]. Macrocyclic arenes
have exhibited wide applications in host–guest chemistry [5–10], self-assembly [11,12],
molecular machines [13], and material sciences [14–16]. Novel macrocyclic arenes have
been reported successively in recent years to enrich the macrocyclic arene library [17].
Although the macrocyclic arene’s recognition ability towards ammonium salts have been
well studied [18–22], their enantioselective recognition towards ammonium salts, and
especially those bioactive ammonium salts, have been rarely reported [23].

Previously, we [24] reported a new macrocyclic arene named helic[1]triptycene[3]arene
that exhibited excellent recognition ability towards the organic ammonium salts. Since
the protonated rasagiline and its metabolite were chiral ammonium salts, we deduced
that enantiopure macrocyclic arenes based on the helic[1]triptycene[3]arene could show
enantioselective recognition ability toward the chiral guests containing aminoindan groups.
In this paper, we report a pair of enantiopure helic[1]triptycene[3]arenes P-H and M-H,
which could be conveniently synthesized by one-pot reaction starting from the enantiopure
precursors. P-H and M-H showed mirror CD spectra and they could also self-assemble into
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herringbone-like architecture in the solid states. The enantiopure macrocycles exhibited
enantioselective recognition abilities towards chiral secondary ammonium salts (R/S-G1)
and primary ammonium salts (R/S-G2, Figure 1). In particular, the P-H showed high
enantioselectivity towards R-G1 than S-G1 with the ratio up to 3.89:1.
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Figure 1. Structures and proton designations of the hosts (P-H/M-H) and the guests (R-G1/S-G1 and R-G2/S-G2).

2. Results and Discussion
2.1. Synthesis and Structures

Synthesis of enantiomeric helic[1]triptycene[3]arenes P-H/M-H was depicted in
Scheme 1. RR-1 and SS-1 were first obtained by efficient chiral resolution of the racemic
triptycene derivative with HPLC on chiral column (Figures S1–S3, in the Supplementary
Materials). By the reaction of RR-1, 1,4-dimethoxybenzene 2 and 1,4-dihydroxymethyl-2,5-
dimethoxybenzene 3 [25] with a catalytic amount of FeCl3 in dichloroethane, we conve-
niently obtained P-H with 42% yield. Similarly, starting from SS-1 and 2 and 3, we obtained
M-H with 40% yield. P-H and M-H both exhibited good solubility in common solvents
including chloroform, dichloromethane, dichloroethane and tetrahydrofuran. Starting
from commercial materials, the guests were conveniently obtained by two-step reactions
as well (see Materials and Methods for details).
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methane was −128°. Moreover, the circular dichroism (CD) spectra of P-H and M-H 
showed mirror images (Figure 2), which confirmed their enantiomeric structures. The en-
antiopure hosts and guests were further characterized by their 1H NMR, 13C NMR and 
HRMS spectra. 
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Figure 2. CD spectra of P-H and M-H (CH2Cl2, c = 2×10-5 M-1, T = 298 K). 
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The specific rotation [α]D
25 of RR-1 in dichloromethane was 21◦. By cyclization

reaction of RR-1 with 2 and 3, the resulting product P-H showed its [α]D
25 of 123◦ in

dichloromethane, which was significantly bigger than that of RR-1. Similarly, the specific
rotation [α]D

25 of SS-1 in dichloromethane was −21◦, while [α]D
25 of the macrocyclic arene

M-H in dichloromethane was −128◦. Moreover, the circular dichroism (CD) spectra of P-H
and M-H showed mirror images (Figure 2), which confirmed their enantiomeric structures.
The enantiopure hosts and guests were further characterized by their 1H NMR, 13C NMR
and HRMS spectra.
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Figure 2. CD spectra of P-H and M-H (CH2Cl2, c = 2×10−5 M−1, T = 298 K).

2.2. Crystal Structures

By slow evaporation of the macrocyclic hosts in mixture solution of dichloromethane
and isopropyl ether at room temperature, we obtained the colorless single crystals. As
shown in Figure 3, the macrocycles adopted the bucket-like structures with the mirror
image correspondence. For P-H, the methoxy groups on one rim adopted the clockwise
orientation, while for M-H, the methoxy groups on one rim adopted the anticlockwise
orientation. This result was in accordance with their mirror images reflected in CD spec-
tra. Moreover, one dichloromethane molecule was encapsulated in the center of the
macrocyclic cavity. It was further found that both P-H and M-H could self-assemble into
herringbone-like architectures along c axis while the orientations were different from each
other (Figure 3c,d).

We also obtained the colorless single crystal of P-H by slow evaporation of acetonitrile
and isopropyl ether solution at room temperature. As shown in Figure 4, one acetonitrile
molecule was encapsulated in the center of the P-H’s cavity. There existed multiple
C−H···N interactions between acetonitrile and the two adjacent macrocycles in the distance
of 2.662 Å for A, 2.736 Å for B and 2.738 Å for C, respectively. Since the encapsulated
acetonitrile showed noncovalent interactions with the adjacent macrocycle, the two adjacent
macrocycles were thus drawing closer compared with the macrocycle that encapsulated
dichloromethane. There existed multiple C−H···π interactions (2.871 Å for D and 2.858 Å
for E) and multiple C−H···O interactions (2.579 Å for F, 2.667 Å for G and 2.656 Å for
H) between the two adjacent macrocycles. Moreover, the macrocycles could pack in a
herringbone pattern along the c axis in a more closely packed mode compared with the
aforementioned macrocycle that encapsulated dichloromethane.
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2.3. Enantioselective Recognition Ability of the Macrocyclic Hosts towards Ammonium Salts

To investigate the enantioselective complexation of enantiomeric helic[1]triptycene[3]
arenes P-H/M-H, two pairs of enantiopure bioactive ammonium salts containing aminoin-
dan groups have been chosen as the guests. R-G1 is the protonated derivative of rasagiline,
which is an important monoamine oxidase inhibitor [1]. R-G2 is the protonated deriva-
tive of the metabolite of rasagiline, which is an inactive non-benzedrinum with few side
effects [2].

Firstly, we tested the enantioselective recognition ability towards the guests by the
racemic host through 1H NMR spectra. When R-G1 was added into rac-H in CDCl3 solution,
a new set of proton signals which were different from those of the free host and the free
guest appeared, indicating the host-guest complexation was the fast exchange process in
NMR timescale (Figure 5). When R-G1 was added into the host’s solution, the proton
signal of H1 of rac-H split. With the increasing amount of R-G1 into the host’s solution, the
splitting trend was even greater. The proton signal of H2 of rac-H also split after the addition
of R-G1 into the host’s solution. These phenomena indicated that helic[1]triptycene[3]arene
showed enantioselective recognition ability towards G1. Similarly, upon addition of R-G2
into rac-H in CD2Cl2 solution, the proton signals of rac-H also split (Figure S20, in the
Supplementary Materials), which confirmed the chiral recognition ability of the macrocycle
towards G2.
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The host–guest complexations between P-H/M-H and the chiral guests were then
investigated by 1H NMR spectroscopy. When equimolar M-H and S-G1 were mixed in
CDCl3 solution, a new set of proton signals different from free host and free guest appeared,
suggesting the complexation was fast exchange process in NMR timescale (Figure 6). The
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proton signals of H1
′′ and H4

′′ of M-H showed upfield shifts while other proton signals of
M-H showed downfield shifts. The proton signals of Ha–He of S-G1 all showed upfield
shifts probably due to the shielding effect of M-H. Other host–guest complexes also showed
similar complexation mode and the complexations were all fast exchange processes in
NMR timescale (Figures S21–S28, in the Supplementary Materials). Besides, the CD spectra
of the enantiomeric hosts in the presence of the guests exhibited mirror images as well
(Figure S72, in the Supplementary Materials). Compared with the individual hosts, the CD
spectra of the host-guest complexes exhibited slight enhanced cotton effects at 248, 288,
and 308 nm.
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In order to quantitively study the complexation strength between the hosts and the
guests, 1H NMR titration experiments were performed, and the association constants were
calculated by the non-linear fitting method [26]. The complex-ratios were all calculated to
be 1:1 through Job plot method (Figures S37, S40, S43, S46, S49, S52, S55 and S58, in the
Supplementary Materials), and the association constants were summarized in Table 1. The
association constants between the hosts and the secondary ammonium salts were in the
vicinity of 103 M−1 in chloroform. P-H showed biggest association constant with R-G1
in the value of (7.63 ± 0.75) × 103 M−1. Meanwhile, P-H showed moderate association
constant with S-G1 in the value of (1.96 ± 0.18) × 103 M−1. It’s noteworthy that the
association constant of P-H towards R-G1 was 3.89 times of P-H towards S-G1. The
association constants between the hosts and the primary ammonium salts were in the
vicinity of 102 M−1 in dichloromethane. And the association constant of P-H towards R-G2
was 1.61 times of P-H towards S-G2.

HRMS analysis also confirmed the 1:1 complexation ratio of those host-guest com-
plexes in gas phase. The strongest peak at m/z 948.4447 for [P-H R-G1-BArF]+ was found by
using a solution of P-H and R-G1 in chloroform, which was in accordance with formation
of the 1:1 complex in solution. Similarly, the strongest peaks at m/z 948.4444, 948.4446,
948.4442, 910.4316, 910.4319, 910.4323, and 910.4319 for [P-H·S-G1-BArF]+, [M-H·R-G1-
BArF]+, [M-H·S-G1-BArF]+, [P-H·R-G2-BArF]+, [P-H·S-G2-BArF]+, [M-H·R-G2-BArF]+,
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[M-H·S-G2-BArF]+ were also observed, respectively (Figures S29–S36, in the Supplemen-
tary Materials), which further verified formation of the 1:1 complexes.

Table 1. Association Constants (Ka/M−1) for 1:1 Complexes Between Chiral H and Chiral G1–G2 at
298 K.

P-H M-H
Guests Ka M−1 KR/KS Ka M−1 KR/KS

R-G1 1 (7.63 ± 0.75) × 103
3.89/1

(2.10 ± 0.20) ×103
1/3.28

S-G1 1 (1.96 ± 0.18) × 103 (6.98 ± 0.67) ×103

R-G2 2 (3.44 ± 0.32) ×102
1.61/1

(2.06 ± 0.19) ×102
1/1.40

S-G2 2 (2.14 ± 0.19) × 102 (2.88 ± 0.27) ×102

1 In CDCl3. 2 In CD2Cl2.

2.4. DFT and IGM Analyses of Complexes P-H·R-G1 and P-H·S-G1

To further investigate the enantioselective recognition of the chiral macrocycles to-
wards R-G1 and S-G1, DFT calculations for the host-guest complexes without consideration
of the counter anions were carried out by using B3LYP/6-31G(d) method [27]. As shown
in Figure 7, the alkynyl group and ammonium group of the guests were both located
inside the cavity of P-H, while the indane group was outside the cavity. According to the
superimposed views of optimized structures for the complexes P-H·R-G1 and P-H·S-G1,
the main difference for the complexes lay in the noncovalent interactions between the chiral
center of the guests and the methoxy group at the rim of the host. For complex P-H·R-G1,
the C-H···O hydrogen bonds between the hydrogen of the chiral carbon of R-G1 and the
oxygen at the rim of the triptycene unit was in the distance of 2.7 Å. For complex P-H·S-G1,
the C-H···O hydrogen bonds between the hydrogen of the chiral carbon of S-G1 and the
oxygen at the rim of the phenyl unit was in the distance of 3.2 Å, which was essentially weak
noncovalent interactions compared with P-H·R-G1 [28]. Moreover, complex P-H·R-G1
showed lower energy (−13.0 kcal mol−1) than that of P-H·S-G1 (−12.1 kcal mol−1), which
indicated that complex P-H·R-G1 was thermodynamically stable adduct than complex
P-H·R-G1 (Table S8, in the Supplementary Materials). This was consistent with the result
of P-H’s preference for R-G1 over S-G1.
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Moreover, IGM [29] analyses for complexes P-H·R-G1 and P-H·S-G1 were also carried
out based on their optimal structures. As shown in Figure 8, there existed not only the
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dispersion force (the green region) but also multiple C−H···π interactions and N−H···O
and C−H···O hydrogen binding interactions (the blue region) between P-H and R-G1, thus
generating the strong interactions in this host-guest complex. For P-H·S-G1, there existed
weak noncovalent intermolecular interactions in the host-guest complex, which might
result in the lower association constant for P-H·S-G1 compared with that of P-H·R-G1.
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3. Conclusions

In summary, we have conveniently synthesized a pair of enantiopure helic[1]triptycene
arenes by one-pot reaction. The CD spectra of the chiral macrocycles showed mirror images,
and X-ray crystal structures showed that one dichloromethane or acetonitrile molecule
could be encapsulated in the cavities of the macrocycles, while the macrocyclic molecules
could pack into the herringbone-like architectures along the c axis. Moreover, the macro-
cycles exhibited strong complexation with the bioactive guests containing aminoindan
groups. It was further found that the chiral macrocyclic hosts showed enantioselective
recognition ability towards chiral guests G1 and G2. In particular, P-H showed preference
for R-G1 over S-G1 with an enantioselective ratio up to 3.89. The selectivity might originate
from the noncovalent interactions between the chiral carbon center of the guests and the
methoxy groups at the rim of the hosts.

4. Materials and Methods
4.1. General Methods

All the reagents were commercially available and used without further purification.
Reactions were carried out under inert and anhydrous conditions unless otherwise noted.
Anhydrous solvents were dried from 4 Å molecular sieves. Flash column chromatography
was performed on 200–300 mesh silica gel. 1H and 13C NMR spectra were measured at
298 K. The ionization methods used in mass spectrometry were atmospheric pressure
chemical ionization (APCI) and electrospray ionization (ESI). Melting points, taken on an
electrothermal melting point apparatus, were uncorrected. X-Ray single crystal data were
measured by XtaLAB Synergy-R at 170 K. Circular dichroism spectra were measured by
J-810 at 298 K.

4.2. General Synthesis Procedure for the Hosts

To a solution of RR-1 (1.00 g, 2.65 mmol), 2 (0.75 g, 5.30 mmol), and 3 (0.55 g, 2.65 mmol)
in dichloroethane (400 mL) was added FeCl3 (0.05 g, 0.25 mmol). Then the mixture was
refluxed in the oil bath under argon atmosphere for 12 h. After cooling to room temperature,
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the mixture was evaporated under vacuum and the residue was further purified by flash
column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4:1, Rf = 0.4)
to afford P-H as white solid (0.85 g, 42%).

According to the above method, M-H was obtained as white solid in 40% yield.

4.3. General Synthesis Procedure for the Guests

To the solution of (R)-N-(2-Propynyl)-2,3-dihydroinden-1-amine (171.2 mg, 1.0 mmol)
in DCM (5 mL) was added excessive hydrochloric acid. The mixture was stirred for 30 min
under room temperature and then filtrated to collect the residue. Then the residue was dis-
solved in DCM/H2O (1:1, v/v, 10 mL) and sodium tetrakis [3,5-bis(trifluoromethyl)phenyl]
borate (NaBArF) (886.2 mg, 1.0 mmol) was added subsequently. The mixture was stirred
for 2 h under room temperature and then extracted with CH2Cl2. The organic phase was
dried with MgSO4, and concentrated to give R-G1 (994.1 mg, 96%) as the white solid.

According to the similar method, S-G1 was prepared as white solid in 97% yield,
R-G2 was prepared as white solid in 98% yield, and S-G2 was prepared as white solid in
96% yield.

4.4. Characterization Data

RR-1.
1H NMR (300 MHz, CDCl3): δ 7.35–7.32 (m, 2H), 7.29 (s, 2H), 6.99 (s, 2H), 6.98-6.93 (m, 2H),
4.56 (s, 4H), 3.81 (s, 6H), 2.07 (s, 2H). 13C NMR (75 MHz, CDCl3): δ 155.0, 147.0, 145.4, 137.4,
125.2, 124.9, 124.1, 123.3, 107.1, 61.9, 55.6, 53.6. M.p.: 156.7–159.8 ◦C. [α]D

25 = +21◦ (c = 0.25,
CH2Cl2). HRMS (APCI) m/z: [M-H]+ calcd for C24H21O4

− 373.1434; found 373.1429.

SS-1.
1H NMR (400 MHz, CDCl3): δ 7.33 (dd, J = 5.3, 3.2 Hz, 2H), 7.29 (s, 2H), 7.00–6.97 (m, 2H),
6.97–6.92 (m, 2H), 4.55 (s, 4H), 3.78 (s, 6H), 2.10 (s, 2H). 13C NMR (100 MHz, CDCl3): δ
154.9, 147.0, 145.5, 137.5, 125.2, 125.0, 124.1, 123.3, 107.1, 61.8, 55.6, 53.6. M.p.: 159.2-161.6 ◦C.
[α]D

25 =−21◦ (c = 0.25, CH2Cl2). HRMS (APCI) m/z: [M-H]+ calcd for C24H21O4
− 373.1434;

found 373.1428.

P-H.
1H NMR (400 MHz, CDCl3): δ 7.32–7.30 (m, 2H), 7.21 (s, 2H), 6.96-6.93 (m, 2H), 6.80 (s, 2H),
6.78 (s, 2H), 6.54 (s, 2H), 6.51 (s, 2H), 5.14 (s, 2H), 3.81 (d, J = 12.9 Hz, 2H), 3.75 (s, 4H), 3.69
(s, 6H), 3.64 (d, J = 12.9 Hz, 2H), 3.51 (s, 6H), 3.48 (s, 6H), 3.39 (s, 6H). 13C NMR (125 MHz,
CDCl3): δ 154.0, 151.0, 150.9, 145.7, 145.2, 137.3, 129.0, 128.8, 128.5, 126.3, 125.9, 124.8,
123.1, 114.5, 114.5, 114.1, 106.9, 56.1, 56.0, 55.9, 55.3, 53.4, 29.9, 29.6. M.p.: 221.8–223.9 ◦C.
[α]D

25 = + 123◦ (c = 0.25, CH2Cl2). HRMS (ESI) m/z: [M+Na]+ calcd for C50H48O8Na+

799.3241; found 799.3252.

M-H.
1H NMR (500 MHz, CDCl3): δ 7.32–7.30 (m, 2H), 7.21 (s, 2H), 6.95–6.94 (m, 2H), 6.80 (s, 2H),
6.77 (s, 2H), 6.54 (s, 2H), 6.51 (s, 2H), 5.14 (s, 2H), 3.81 (d, J = 12.9 Hz, 2H), 3.76 (s, 4H), 3.68
(s, 6H), 3.64 (d, J = 13.0 Hz, 2H), 3.51 (s, 6H), 3.47 (s, 6H), 3.39 (s, 6H). 13C NMR (125 MHz,
CDCl3): δ 154.0, 151.0, 150.9, 145.7, 145.2, 137.3, 129.0, 128.8, 128.5, 126.3, 125.9, 124.8,
123.1, 114.5, 114.5, 114.1, 106.9, 56.1, 56.0, 55.9, 55.3, 53.4, 29.9, 29.6. M.p.: 219.8-221.2 ◦C.
[α]D

25 = −128◦ (c = 0.25, CH2Cl2). HRMS (ESI) m/z: [M+Na]+ calcd for C50H48O8Na+

799.3241; found 799.3221.

R-G1.
1H NMR (400 MHz, CDCl3): δ 7.72 (s, 8H), 7.56 (s, 4H), 7.52–7.48 (m, 1H), 7.44–7.30 (m,
3H), 7.02 (s, 2H), 4.93 (d, J = 6.7 Hz, 1H), 3.79–3.78 (m, 2H), 3.11-3.07 (m, 2H), 2.67 (t,
J = 2.5 Hz, 1H), 2.65-2.55 (m, 1H), 2.16–2.12 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3):
δ 161.7 (q, 1JCB = 50 Hz), 144.4, 134.8, 133.3, 132.1, 129.0 (q, 2JCF = 32 Hz), 128.3, 126.5,
124.9, 124.6 (q, 1JCF = 271 Hz), 117.6, 80.3, 70.5, 64.3, 35.7, 29.6, 29.2. M.p.: 81.8–82.9 ◦C.
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[α]D
25 = +4◦ (c = 0.25, CH2Cl2). HRMS (ESI) m/z: [M-BArF]+ calcd for C12H14N+ 172.1121;

found 172.1118.

S-G1.
1H NMR (400 MHz, CDCl3): δ 7.72 (s, 8H), 7.56 (s, 4H), 7.49–7.42 (m, 1H), 7.38 (d, J = 8.5 Hz,
2H), 7.32 (t, J = 7.5 Hz, 1H), 4.92 (dd, J = 7.5, 2.4 Hz, 1H), 3.80 (d, J = 2.6 Hz, 2H), 3.15-3.00 (m,
2H), 2.63 (t, J = 2.8 Hz, 1H), 2.59-2.56 (m, 1H), 2.19–2.12 (m, 1H). 13C{1H} NMR (100 MHz,
CDCl3): δ 161.7 (q, 1JCB = 50 Hz), 144.4, 134.8, 133.3, 132.0, 128.9 (q, 2JCF = 31 Hz), 128.3,
126.5, 124.8, 124.6 (q, 1JCF = 271 Hz), 117.6, 80.3, 70.6, 64.2, 35.7, 29.6, 29.2. M.p.: 78.9–80.7 ◦C.
[α]D

25 = −3◦ (c = 0.25, CH2Cl2). HRMS (ESI) m/z: [M-BArF]+ calcd for C12H14N+ 172.1121;
found 172.1119.

R-G2.
1H NMR (500 MHz, CD2Cl2): δ 7.74 (s, 8H), 7.58 (s, 4H), 7.48 (t, J = 7.5 Hz, 1H), 7.42
(d, J = 7.5 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 6.31-5.98 (m, 3H), 5.20–5.17 (m, 1H), 3.26-3.10
(m, 2H), 2.80–2.75 (m, 1H), 2.26-2.18 (m, 1H). 13C{1H} NMR: (125 MHz, CD2Cl2) δ 163.1
(q, 1JCB = 50 Hz), 145.6, 136.2, 135.6, 133.4, 130.2 (q, 2JCF = 31 Hz), 129.8, 127.8, 126.0 (q,
1JCF = 270 Hz), 125.4, 118.9, 62.1, 32.1, 31.0. M.p.: 66.5–67.5 ◦C. [α]D

25 = + 3◦ (c = 0.25,
CH2Cl2). HRMS (ESI) m/z: [M-BArF]+ calcd for C9H12N+ 134.0964; found 134.0965.

S-G2.
1H NMR (500 MHz, CD2Cl2): δ 7.74 (s, 8H), 7.58 (s, 4H), 7.48 (t, J = 7.2 Hz, 1H), 7.41 (d,
J = 8.3 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 5.68 (s, 3H), 5.17 (d, J = 7.3 Hz, 1H), 3.27–3.08
(m, 2H), 2.86–2.69 (m, 1H), 2.27–2.14 (m, 1H). 13C{1H} NMR (125 MHz, CD2Cl2): δ 163.1
(q, 1JCB = 50 Hz), 145.6, 136.2, 135.8, 133.4, 130.2 (q, 2JCF = 31 Hz), 129.8, 127.8, 126.0 (q,
1JCF = 270 Hz), 125.4, 118.9, 62.2, 32.2, 31.0. M.p.: 68.1–69.4 ◦C. [α]D

25 = − 3◦ (c = 0.25,
CH2Cl2). HRMS (ESI) m/z: [M-BArF]+ calcd for C9H12N+ 134.0964; found 134.0963.

Supplementary Materials: The following are available online: HPLC charts, NMR spectra of new
compounds, high resolution mass spectra for the complexes, determination of association constants
for the complexes, CD spectra of the complexes, crystal structures and DFT calculations.
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