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Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome

(SARS) coronavirus 2 (SARS-CoV-2), has become a pandemic, infecting more than

4,000,000 people worldwide. This review describes the main clinical features of

COVID-19 and potential role of microbiota in COVID-19. SARS-CoV and SARS-CoV-2

have 79.5% nucleotide sequence identity and use angiotensin-converting enzyme 2

(ACE2) receptors to enter host cells. The distribution of ACE2 may determine how

SARS-CoV-2 infects the respiratory and digestive tract. SARS and COVID-19 share

similar clinical features, although the estimated fatality rate of COVID-19 is much lower.

The communication between the microbiota and SARS-CoV-2 and the role of this

association in diagnosis and treatment are unclear. Changes in the lung microbiota

were identified in COVID-19 patients, and the enrichment of the lung microbiota with

bacteria found in the intestinal tract is correlated with the onset of acute respiratory

distress syndrome and long-term outcomes. ACE2 regulates the gut microbiota by

indirectly controlling the secretion of antimicrobial peptides. Moreover, the gut microbiota

enhances antiviral immunity by increasing the number and function of immune cells,

decreasing immunopathology, and stimulating interferon production. In turn, respiratory

viruses are known to influence microbial composition in the lung and intestine. Therefore,

the analysis of changes in the microbiota during SARS-CoV-2 infection may help predict

patient outcomes and allow the development of microbiota-based therapies.

Keywords: microbiota, COVID-19, SARS-CoV-2, ACE2, SCFAs

INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS)
coronavirus 2 (SARS-CoV-2), initially produced a pneumonia outbreak in China and then quickly
spread across the globe (The Lancet, 2020). On January 30, 2020, the World Health Organization
declared the epidemic to be a public health emergency of international concern. As of May 15th,
more than 4,000,000 confirmed cases and 290,000 deaths were reported worldwide (World Health
Organization, 2019). The majority of studies focused on the symptoms and chest radiographic
findings because SARS-COV-2 is clinically similar to SARS-CoV, which caused respiratory disease
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outbreaks in China in 2002 and 2003 and respiratory symptoms
in 67.7–81.0% of infected patients (Zhong et al., 2003; Chen
et al., 2020; Guan et al., 2020; Huang et al., 2020). In
addition, previous studies reported that SARS-CoV-2 patients
had digestive symptoms, including diarrhea, and test results in
stools specimens or rectal swabs were positive. For this reason,
the gastrointestinal (GI) tract deserves special attention because
SARS-COV-2might be transmitted via fomites (Chen et al., 2020;
Guan et al., 2020). This review describes the etiology and clinical
features of COVID-19 and discusses the potential role of the
microbiota in disease management.

BASIC CLINICAL FEATURES OF COVID-19

Etiology
Coronaviruses are genetically classified into four major genera:
Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and
Deltacoronavirus, and infect predominantly the respiratory and
intestinal tract (Li, 2016). SARS-CoV and MERS-CoV, which
caused two large respiratory outbreaks in the last 20 years, belong
to the genus Betacoronavirus (Drosten et al., 2003; Gomersall and
Joynt, 2013). Full-length genome sequence analysis showed that
SARS-CoV-2 presented a nucleotide sequence identity of 79.5%
with SARS-CoV and 96% with a bat coronavirus (Zhou et al.,
2020). Spike, envelope, membrane, and nucleocapsid proteins
have a structural role in SARS-CoV-2 (Wu A. et al., 2020). SARS-
CoV-2 is sensitive to ultraviolet radiation and heat. In addition,
75% ethanol, chlorine-containing disinfectants, and peracetic
acid completely inactivate the virus (Lee, 2003).

Little is known about the genetic diversity of SARS-CoV-2. A
study has shown that there may be two major strains (L and S
type) based on two tightly linked SNPs. The genomic distance
between these SNPs was significant, with r2 value of 0.954 and
a LOD value of 50.13. The L type was more prevalent in the
early phase of the outbreak in Wuhan, whereas the S type was
evolutionarily older and predominated after January 2020 (Tang
et al., 2020). However, the infectivity and transmissibility of
different SARS-CoV-2 genotypes remain unknown.

SARS-CoV uses angiotensin-converting enzyme2 (ACE2)
receptors to enter host cells (Lee and Mazmanian, 2010).
Similarly, SARS-CoV-2 binds to ACE2 receptors but not to
MERS-CoV receptor dipeptidyl peptidase 4 (Hoffmann et al.,
2020; Wu F. et al., 2020; Zhou et al., 2020).

The origin of SARS-CoV-2 is unknown, however, bats are
considered the natural reservoir because this virus is genetically
similar to bat coronaviruses (Wu F. et al., 2020). Wild animals
are potential intermediate hosts for SARS-CoV-2 because civet
cats, which are sold in Chinese wet markets, serve as intermediate
hosts for the zoonotic transmission of SARS-CoV between bats
and humans, and SARS-CoV-2-infected patients in China had
a history of exposure to animals sold at the Huanan Seafood
Wholesale Market (Yip et al., 2009; Li et al., 2020).

Virus Transmission
After the presumed zoonotic transmission of SARS-CoV-
2 in China, evidence of human-to-human transmission was
confirmed by a familial cluster of pneumonia (Hoffmann et al.,

2020; Li et al., 2020). Both symptomatic and asymptomatic
patients with COVID-19 can spread the virus (Rothe et al., 2020).
The estimated reproductive number (R0) for SARS-CoV-2 varies
between 2 to 3 and is higher than that for SARS-CoV (del Rio and
Malani, 2020). A study found that the binding affinity of SARS-
CoV-2 to ACE2 receptors is 10- to 20-fold higher than that of
SARS-CoV (Wrapp et al., 2020), which may explain the higher
number of COVID-19 cases relative to SARS cases.

The main routes of transmission of MERS-CoV, SARS-CoV,
and SARS-CoV-2 are direct contact and respiratory droplets
(Otter et al., 2016), and vertical transmission remains disputable.
It is unclear whether MERS is spread via mother-to-child
transmission because relevant specimens, including umbilical
cord, amniotic fluid, and placenta, were not tested (Hijawi et al.,
2012; Malik et al., 2016; Jeong et al., 2017). In addition, a study
showed that babies born to SARS-CoV-infected mothers had no
clinical and laboratory evidence of infection (Shek et al., 2003).
Another study reported that nine infants born to mothers with
COVID-19 had no symptoms, and the results of tests in the
amniotic fluid, cord blood, neonatal throat swab, and breast
milk were negative for SARS-CoV-2, confirming the absence
of vertical transmission (Chan et al., 2020). Conversely, it was
reported that two of six neonates born to women with COVID-19
had elevated IgG and IgM antibodies to SARS-CoV-2, although
diagnostic tests for detecting the virus in the placenta, cord blood,
and amniotic fluid were not performed (Zeng et al., 2020). Given
that the maternal-fetal transmission of human coronaviruses
is possible, large studies are necessary to confirm the vertical
transmission of SARS-CoV-2 (Gagneur et al., 2008).

A cluster of SARS infection in Amoy Gardens, Hong Kong,
indicated possible fomite transmission of coronaviruses because
many infected patients had diarrhea (Lee, 2003) and further
transmission through environmental contamination and person-
to-person contact. Moreover, it has been shown that the test
results of nasopharyngeal and stool samples were positive for
SARS-CoV-2 before treatment and remained positive in stool or
rectal samples after treatment, demonstrating that the fomite or
fecal-route transmission of SARS-CoV-2 should not be ignored
(Guan et al., 2020; He et al., 2020; Lingkong et al., 2020; Wang J.
et al., 2020).

Clinical Features of COVID-19
The average incubation period of COVID-19 is 3.0 days
(range, 0–24.0), which is shorter than that of SARS
(Supplementary Table 1; Donnelly et al., 2003; Guan et al.,
2020). The most common clinical symptoms of COVID-19
and SARS are fever, fatigue, and dry cough. The average age of
infected patients in different studies ranged from 45 to 56 years.
Approximately 86% and more than 90% of COVID-19 and
SARS patients, respectively, have abnormal chest radiographs. In
addition, 6.1–32.0% of COVID-19 patients needed mechanical
ventilation (Donnelly et al., 2003; Goyal et al., 2020; Guan
et al., 2020). These data vary widely because different hospital
protocols were used across studies (Huang et al., 2020; Young
et al., 2020).

The overall case-fatality rate has not been determined because
many patients are currently under treatment and follow-up. The

Frontiers in Microbiology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 1302

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


He et al. SARS-CoV-2 Infection and Microbiota

estimated mortality in the early stage of the outbreak was 11–
15% in China but does not represent the overall rate because
only patients with severe symptoms were tested during this stage.
In addition, the high number of asymptomatic patients limited
measuring this variable accurately.

The most common complication from COVID-19 is acute
respiratory distress syndrome (ARDS), which affects 3.4% of
infected patients and 15.6–17.0% of severe patients (Chen
et al., 2020; Guan et al., 2020). Lymphopenia is common in
severe and critically ill patients and rare in patients with mild
symptoms. The chest computed tomography features of COVID-
19 include bilateral ground-glass opacity, consolidation, and local
or bilateral patchy shadowing (Kanne, 2020; Lee, 2020).

GI symptoms are common in COVID-19 patients, and a
meta-analysis showed that these symptoms occurred in 17.6%
of infected patients and were more common in severe patients
(Cheung et al., 2020). Similarly, approximately 25% of SARS and
MERS patients had GI symptoms (Donnelly et al., 2003; Assiri
et al., 2013).

Potential Routes of SARS-CoV-2 Infection
of the GI Tract
The mechanisms by how SARS-CoV-2 causes GI symptoms
remain unknown. A possible route of infection is from the
trachea to the esophagus since single-cell transcriptome analysis
showed that ACE2 was highly expressed in lung AT2 cells,
stratified epithelial cells in the upper esophagus, and enterocytes
in the ileum and colon (Zhang et al., 2020). Moreover, pharyngeal
swabs, esophageal biopsies, stool specimens, as well as samples
from the gastric, rectal, and duodenal mucosa tested positive
for SARS-CoV-2 in two patients (Guan et al., 2020). Another
potential route of infection is the bloodstream because SARS-
CoV-2 was detected in bleeding site in one case (Guan et al.,
2020). Moreover, the expression of ACE2 in endothelial cells
and macrophages, and virus detection in plasma and blood
lymphocytes indicate the possibility of bloodstream infection of
SARS-CoV-2 (Grant et al., 2003; Peiris et al., 2004; Wang et al.,
2004; Zhao et al., 2020). However, the fecal-oral transmission of
SARS-CoV-2 has not been confirmed.

EXISTING EVIDENCE ABOUT THE
MICROBIOTA AND SARS-COV-2

Changes in the Microbiota in the
Bronchoalveolar Lavage Fluid of COVID-19
Patients
To date, only one study analyzed changes in the composition
of the lung microbiota in SARS-CoV-2-infected patients (Shen
et al., 2020) and found that the microbial composition in
the bronchoalveolar lavage fluid (BALF) of these patients was
different from that of healthy controls and was dominated
by either pathogenic bacterial strains or commensal bacteria
commonly found in the oral and upper respiratory tract. In
addition, this microbial composition was similar to that of
patients with community-acquired pneumonia. However, the
microbial signature associated with SARS-CoV-2 was similar to

that of other respiratory viruses such as influenza and respiratory
syncytial virus (RSV). Notwithstanding, this conclusion was
limited by the small sample size (eight patients) (Shen et al.,
2020). Few studies have examined the association between lower
respiratory tract (LRT)microbiota and viral infections. There was
an increase in the abundance of Streptococcus and Staphylococcus
in the BALF of H1N1-infected mice and in the abundance
of H. influenzae in rhinovirus-infected patients with chronic
obstructive pulmonary disease (Molyneaux et al., 2013; Gu et al.,
2019). Changes in the microbiota in the LRT during viral
infection were variable andmight be a result of the reduced ability
to clear pathogens in the upper respiratory tract.

Relationship Between Coronavirus, ACE2,
and the Gut Microbiota
ACE2 expression is downregulated in SARS patients during
infection (Kuba et al., 2005). ACE2 regulates the expression
of the amino acid transporter B0AT1, which controls the
intestinal uptake of tryptophan (Hashimoto et al., 2012).
Tryptophan regulates the mRNA expression of antimicrobial
peptides through the mTOR pathway (Zhao et al., 2018), and
antimicrobial peptides may influence the composition of the gut
microbiota (Lievin-Le Moal and Servin, 2006). As a result, ACE2
downregulation decreases the intestinal absorption of tryptophan
and reduces the secretion of antimicrobial peptides, leading
to increased pathogen survival and gut dysbiosis (Figure 1).
Therefore, the ACE2-dependent regulation of the microbiota
may explain the occurrence of diarrhea in SARS-CoV and SARS-
CoV-2 infections.

POTENTIAL ROLE OF THE MICROBIOTA
IN THE PROGNOSIS AND TREATMENT OF
COVID-19

The Presence of Gut Microbes in the Lung
May Predict ARDS
ARDS is a common and severe complication of COVID-19, and
evidence shows that the lungmicrobiota of patients with ARDS is
different from that of patients without ARDS; therefore, changes
in the microbial composition in the lung of COVID-19 patients
may predict ARDS (Meyer and Calfee, 2017; Panzer et al., 2018;
Kyo et al., 2019; Dickson et al., 2020). Dickson et al. used high-
throughput sequencing to identify the microbiota in the BALF of
68 patients with ARDS. The results showed that gut-associated
Bacteroides species were present in 41% of patients vs. 3.8% of
healthy controls, and the enrichment of the lung microbiota with
gut bacteria was correlated with elevated inflammatory markers
in plasma (Dickson et al., 2016). Another study demonstrated
that the abundance of gut-associated Enterobacteriaceae spp. was
increased in critically ill patients with ARDS compared with
patients without ARDS. In addition, the increased number of
gut-associated Lachnospiraceae and Enterobacteriaceae predicted
fewer ventilator-free days, and an increase in Lachnospiraceaewas
a strong predictor of reduced survival in ARDS patients (Dickson
et al., 2020). These results suggest that the microbiota can be used
as a marker to predict ARDS and the outcomes of COVID-19.

Frontiers in Microbiology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 1302

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


He et al. SARS-CoV-2 Infection and Microbiota

FIGURE 1 | ACE2 and the microbiota. The intestinal uptake of tryptophan is mediated by B0AT1, and ACE2 is indispensable for the expression of B0AT1. Tryptophan

stimulates the secretion of antimicrobial peptides through the mTOR pathway. Changes in the levels of antimicrobial peptides can influence the composition of the gut

microbiota. AMP, antimicrobial peptides; Trp, tryptophan.

TABLE 1 | Summary of antiviral functions of the gut microbiota.

Bacterial species Intervention Microbial

factors

Mechanisms Response References

Commensal microbiota Antibiotic exposure Undefined • Inflammasome-mediated migration of DCs and

specific CD8+T cell priming

• Protection against viral infections and

enhancement of IFN signaling in macrophages

Anti-influenza Ichinohe et al., 2011;

Abt et al., 2012

Increased abundance

of Bacteroides species

HFD

SCFA treatment

SCFAs

(butyrate)

• Enhancement of CD8+T cell metabolism

• Increased generation of macrophages with

reduced ability to produce CXCL1 in airways

• Reduced neutrophil recruitment, resulting in the

attenuation of lung immunopathology

Anti-influenza Trompette et al., 2018

Clostridium

orbiscindens

Antibiotic exposure DAT Enhanced type I IFN signaling in macrophages Anti-influenza Steed et al., 2017

Commensal microbiota Antibiotic exposure

Microbiota transfer

Undefined Production of virus-specific CD8+T cell responses

via DCs

Anti-West Nile virus Thackray et al., 2018

Lachnospiraceae spp.

(phylum Firmicutes,

class Clostridia)

HFD

SCFA treatment

Antibiotic exposure

SCFAs

(acetate)

GPR43-mediated and IFNAR dependent IFN-β

responses in lung epithelial cells

Anti-RSV Antunes et al., 2019

DAT, desaminotyrosine; DCs, dendritic cells; HFD, high-fiber diet; IFN, interferon; RSV, respiratory syncytial virus; SCFAs, short-chain fatty acids.

Microbiota and Virus Infection
Both the innate and adaptive immune systems are involved in
SARS-CoV-2 infection. Lymphopenia with drastically reduced
numbers of B cells, CD4+ and CD8+ T cells, and monocytes,
and the upregulation of programmed cell death-1, a biomarker
of T-cell exhaustion, occur in severe COVID-19 patients
(Cao, 2020; Diao et al., 2020). In addition, the microbiota
modulates the immune system (Round et al., 2011; Cebula
et al., 2013) by affecting the development of immune cells,
such as regulatory T cells and innate lymphoid cells, which

help maintain gut and lung homeostasis (Furusawa et al., 2013;
Smith et al., 2013; Hepworth et al., 2015). Although the data
on the interaction between normal microbiota and viruses are
limited, accumulating evidences with different interventions such
as antibiotic exposure and microbiota transfer showed that
the microbiota enhanced antiviral immunity (Table 1). These
findings may allow developing effective therapies for SARS-CoV-
2 infection.

Mice treated with antibiotics had impaired anti-influenza
immunity. The normal gut microbiota can active the
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inflammasome and induce the migration of dendritic cells
to initiate T-cell responses to the influenza virus and activate
antiviral responses in macrophages (Ichinohe et al., 2011; Abt
et al., 2012). It has been reported that antibiotic exposure
impaired West Nile virus-specific CD8+ T-cell responses and
increased infection and immunopathology (Thackray et al.,
2018). Although these results demonstrate the antiviral role of
the microbiota, the direct association between the microbiota
and virus-specific immune cells is unknown. Microbial
metabolites regulate the host immune system (Hooper et al.,
2012). Short-chain fatty acids (SCFAs) and desaminotyrosine
produced by Bacteroidetes and/or Clostridium can enhance
influenza-specific CD8+ T-cell function and type I interferon
(IFN) signaling in macrophages, increasing protection against
influenza infection (Atarashi et al., 2013; Tanoue et al., 2016;
Steed et al., 2017; Trompette et al., 2018). Influenza-infected mice
fed a high-fiber diet exhibited changes in the microbiota, with
increased production of SCFAs and increased differentiation of
Ly6c− patrolling monocytes in the bone marrow, limiting the
synthesis of the chemokine CXCL1 in the airways, leading to
the suppression of neutrophil recruitment to the airways and
attenuation of lung immunopathology (Trompette et al., 2018).
Similarly, a high-fiber diet increased the relative abundance
of SCFA-producing Lachnospiraceae spp. The SCFA acetate
protected mice against RSV infection through IFN-β production
in lung epithelial cells via G-protein-coupled receptors (Antunes
et al., 2019). Given that lymphopenia is common in COVID-19
patients and probiotics can improve protection against influenza
infection, the microbiota can potentially serve as a target for
antiviral therapy (Maeda et al., 2009; Wang D. et al., 2020).

Respiratory viruses can also change the composition of
the gut microbiota. It has been shown that the abundance
of Proteobacteria and Bacteroidetes is increased, whereas the
abundance of Firmicutes is decreased during influenza and RSV
infections. The influence of these viruses on the gut microbiota
may be mediated by systemic signals, including types I and II
IFN, physiologic changes, and increased susceptibility to colitis
(Deriu et al., 2016; Bartley et al., 2017; Groves et al., 2018).

These data suggest that the microbiota improves antiviral
immunity and may play a role in SARS-CoV-2 infection. A

clinical trial onmicrobiota transplantation in COVID-19 patients
is ongoing (Zhang, 2020); notwithstanding, additional studies are
necessary to elucidate this role.

DISCUSSION

This review described the epidemiological features of SARS-
CoV-2 and COVID-19 and investigated the potential role
of the microbiota in SARS-CoV-2 infection. The microbiota
signature in the lung may predict ARDS and long-term
outcomes in COVID-19 patients. Diarrhea during SARS-CoV-
2 infections should not be ignored, and the dysregulation of
ACE2 expression may contribute to gut dysbiosis. In addition,
understanding how changes in microbial communities promote
viral infections may allow developing effective therapies for this
novel coronavirus.

As COVID-19 has rapidly spread throughout the world,
health workers, epidemiologists, and scientists should work
together to address three issues: (1) determine the virulence
and fatality rate of different SARS-CoV-2 genotypes in different
geographic areas and the relationship between these genotypes
and epidemiology; (2) investigate the potential mechanism by
which SARS-CoV-2 attacks the immune system considering that
ACE2 expression is low in T and B cells, and analyze how
lymphopenia predicts disease severity; (3) understand how the
microbiota can help assess clinical status and serve as a target for
anti-SARS-CoV-2 therapies.
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