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The purification and characterization of Gram-negative bacterial lipid A is tedious and time-consuming. Herein
we report a rapid and sensitive method to identify lipid A directly on intact bacteria without any chemical
treatment or purification, using an atypical solvent system to solubilize the matrix combined with MALDI-TOF
mass spectrometry.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Lipopolysaccharide (LPS), composed of the O-antigen, the oligosac-
charide core and the lipid A, is the major surface glycolipid located in
the outer membrane of Gram-negative bacteria (Raetz and Whitfield,
2002, Caroff and Karibian, 2003). Although significant efforts have
been made to isolate and purify lipid A, the whole extraction process
is time-consuming, involves the use of highly hazardous reagents, and
requires a large volume of bacteria cultures (Westphal and Luderitz,
1953, Westphal et al., 1981; El Hamidi et al., 2005; Sturiale et al.,
2005; De Castro et al., 2010). In addition, the requirement for chemical
hydrolysis of LPS into its lipid A and polysaccharide components results
in the loss or potential modification of the lipid A moiety, such as
dephosphorylation or O-deacylation, as well as loss of labile residues.
Maintenance of these modifications is crucial to determine the native
structure of the lipid A and its consequence in the host immune
response (Shimazu et al., 1999; Kawahara et al., 2002; Pier, 2007,
DeMarco and Woods, 2011). For this reason, we decided to investigate
an alternative methodology to allow detection of lipid A directly on in-
tact Gram-negative bacteria without any chemical treatment or purifi-
cation steps. This method allows users to obtain data on the main lipid
A forms in a sample.

The Gram-negative,medically relevant strains used in this study are:
Shigella sonnei 53G, Shigella flexneriM90T, Klebsiella pneumoniae B5055,
Pseudomonas aeruginosa PAK, enterohemorrhagic Escherichia coli
EDL933 and enteroinvasive E. coli 1457-75. Strains were cultivated
under aerobic conditions in Luria Broth medium at 37 °C overnight at
180 rpm. Bacteria were handled within a Class-II safety-level cabinet
equipped with UV light source and HEPA filters and placed into a
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1.5 ml microtube by 1 ml of culture medium prior to heat-inactivation
for 1 h at 90 °C in a water-bath. The heat-inactivated bacteria were
then washed three times with 0.5 ml of double distilled water at
9000 ×g for 5 min and suspended in double distilled water at a final
concentration of about 104 to 105 bacteria per μl. This was estimated
using a “Thoma cell” counting method (Strober, 2001). Prior to mass
spectrometry analysis, the 2, 5-dihydroxybenzoic acid (DHB) matrix
was used at a final concentration of 10 mg/ml in chloroform/methanol
(CHCl3/MeOH) in a ratio 90:10 v/v. 0.5 μl of bacteria solution and
0.5 μl of the matrix solution were deposited on the target, mixed with
a micropipette and dried gently under a stream of air. After optimiza-
tion, this solvent system and ratio were selected in order to selectively
ionize lipid A. MALDI-TOF MS analysis was performed on a 4800 Prote-
omics Analyzer (with TOF–TOF Optics, Applied Biosystems) using the
reflectron mode. Samples were analyzed operating at 20 kV in the neg-
ative ion mode using an extraction delay time set at 20 ns. Typically,
spectra from 500 to 2000 laser shots were summed to obtain the final
spectrum. All experimentswere carried out in three independent bacte-
rial cultures and in three technical replicates. The negative control con-
sists of 0.5 μl of double distilled water and 0.5 μl of the matrix solution.
Mass spectrometry data were analyzed using Data Explorer version 4.9
from Applied Biosystems. For all bacterial species, the negative mass
spectrum was scanned betweenm/z 1000 and 2200.

In S. sonnei, the mass spectrum is dominated by two sets of peaks
assigned to tetra-acyl lipid A and hexa-acyl lipid A (Fig. 1A). The peak
atm/z 1796.2 corresponds to hexa-acyl diphosphoryl lipid A containing
four C14:0 3-OH, one C14:0 and one C12:0 (Paciello et al., 2013)
(Fig. 2A). The peak atm/z 1768.2, distant of 28mass units, characterizes
also hexa-acyl diphosphoryl lipid A but with globally two methylene
units less compared to the peak at m/z 1796.2. We suggest that this
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Negative ion mode MALDI-TOF MS spectra of intact heat-inactivated S. sonnei
(A), S. flexneri (B), enterohemorrhagic E. coli (C), enteroinvasive E. coli (D), K. pneumonia
(E), P. aeruginosa (F). (FA: fatty acid).
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species represents a hexa-acyl diphosphoryl lipid Awith one C14:0 acyl
chain substituted with a C12:0 acyl chain. The peak at m/z 1876.1 is
assigned to hexa-acyl triphosphoryl lipid A due to the increase by 80
mass units to the peak at m/z 1796.2, which corresponds to one phos-
phate group. The peaks at m/z 1347.9 and m/z 1375.9 are tentatively
assigned to tetra-acyl diphosphoryl lipid A (Sturiale et al., 2011). How-
ever, further investigations are required to determine the exact struc-
ture of these identified molecules. In S. flexneri (Fig. 1B), all of these
peaks are also observed and assigned to tetra-acyl and hexa-acyl
diphosphoryl lipid A. For both species of Shigella, the masses observed
are in accordance to the reference mass spectra of purified lipid A
from these species (De Castro et al., 2010; Sturiale et al., 2011). Interest-
ingly, thismethod also revealed two peaks atm/z 1885.5 andm/z 1929.5
present in S. flexneri which are absent in S. sonnei. These two molec-
ular species do not correspond to extra lipid A modifications com-
monly found such as ethanolamine phosphate, aminoarabinose,
N-acetylglucosamine, or extra-acylation. Further investigations are re-
quired to confidently assign these peaks. Detection of these extra-peaks
could potentially be used as a tool to discriminate these two closely
related species for diagnostic purposes.

For EHEC (Fig. 1C), the mass spectrum is dominated by three sets of
peaks. The peak at m/z 1796.2 corresponds to hexa-acyl diphosphoryl
lipid A containing four C14:0 3-OH, one C14:0 and one C12:0
(Fig. 2A). As discussed for lipid A from Shigella species, the ions centered
atm/z 1375.9 are tentatively assigned to tetra-acyl diphosphoryl lipid A
(Sturiale et al., 2011). However, further investigations are required to
determine the structure of these molecules. In addition, three peaks
are present at m/z 1187.5; m/z 1369.9 and m/z 1397.7, which are not
directly related to any other known modifications of the lipid A but
predicted to belong to lipid molecules as the differences between
them (182 and 210 mass units from m/z 1187.5 to m/z 1369.9 or m/z
1397.7) can be assigned to one C12:0 and C14:0, respectively. For EIEC
(Fig. 1D), the mass spectrum is dominated by four sets of peaks. As for
Shigella species and EHEC, the same peaks are observed in EIEC includ-
ing hexa-acyl lipid A at m/z 1768.2 and m/z 1796.2 which is similar to
the ones observed for purified lipid A (El Hamidi et al., 2005; Zhou
et al., 2010). In addition, as observed for S. flexneri, for EIEC this method
reveals two sets of unknown molecular species at m/z 1885.5 and m/z
1929.5.

In the case ofK. pneumoniae, the negativemass spectrum is dominat-
ed by three sets of peaks centered at m/z 1187.5, m/z 1397.7 and m/z
1823.9. The peak m/z 1823.9 is assigned to hexa-acyl diphosphoryl
lipid A containing four C14:0 3-OH and two C14:0 (Clements et al.,
2007) (Fig. 2B). This methodology also reveals three peaks at m/z
1187.5;m/z 1397.7 andm/z 1425.7. Thesemolecular ions are not direct-
ly related to any of the other known modifications of the lipid A as
described earlier but predicted to belong to lipidmolecules as the differ-
ences between them (210 and 238 mass units from m/z 1187.5 to m/z
1397.7 or m/z 1425.7) can be assigned to one C14:0 and one C16:0,
respectively.

In the case of P. aeruginosa, the negativemass spectrum is dominated
by three sets of peaks centered at m/z 1191.5, m/z 1403.7 and m/z
1617.2. The peaks at m/z 1447.1 andm/z 1463.1 are assigned to penta-
acyl diphosphorylated lipid A which corresponds to the presence of
one C10:0 3-OH, three C12:0 2- or 3-OH, and one C12:0 (Ernst et al.,
2006; Moskowitz et al., 2012). The peaks at m/z 1617.2 and m/z
1633.2 are assigned to hexa-acyl diphosphorylated lipid A, due to the
addition of 170 mass units which corresponds to one C10:0 3-OH fatty
acid (Fig. 2C). This new methodology reveals additional peaks at m/z
1191.5, and two sets of molecular ions with differences of 28 and 56
mass units corresponding to two and four methylene units respectively
(m/z 1375.7 tom/z 1403.7, and fromm/z 1551.6 tom/z 1607.6) typifying
the lipid nature of these molecules, which have not been assigned yet.

This new and sensitive application applied here allows one to
characterize lipid A and its modifications directly byMALDI-MS anal-
ysis of intact heat-inactivated bacteria without any extraction or pu-
rification steps. Moreover, our analysis requires only about 104 to 105

bacteria. This represents a major advancement for the analysis of
lipid A from Gram-negative bacteria allowing the study of native
lipid A and its modifications directly on bacteria without large
starting volumes or the use of chemical reagents or harsh treatments.
Thismethodmay therefore reveal previously uncharacterizedmodifica-
tions as well as allowing rapid analysis of native lipid A under different
conditions.



Fig. 2. Structure of the lipid A analyzed in the study. (A) Shigella species and E. coli, (B) K. pneumoniae, (C) P. aeruginosa.

70 G. Larrouy-Maumus et al. / Journal of Microbiological Methods 120 (2016) 68–71
This work was supported by the Department of Life Sciences
from the Faculty of Natural Sciences Imperial College London, UK.
Work in the SM laboratory is supported by a Wellcome Trust Re-
search Career Development Fellowship (WT097411MA) and the Lister
Institute of Preventive Medicine. RRMC is supported by BBSRC grant
(BB/L007959/1). We thank Ms. Sina Krokowski (MRC-CMBI) for the
preparation of bacterial cultures. We thank Dr. Frankie Bolt, Imperial
College London, and Dr. Germain Puzo (CNRS, IPBS-Toulouse) for their
helpful discussion and careful reading of the manuscript. The authors
declare no competing financial interest.

References

Caroff, M., Karibian, D., 2003. Structure of bacterial lipopolysaccharides. Carbohydr. Res.
338 (23), 2431–2447.

Clements, A., Tull, D., Jenney, A.W., Farn, J.L., Kim, S.H., Bishop, R.E., McPhee, J.B., Hancock,
R.E., Hartland, E.L., Pearse, M.J., Wijburg, O.L., Jackson, D.C., McConville, M.J., Strugnell,
R.A., 2007. Secondary acylation of Klebsiella pneumoniae lipopolysaccharide contrib-
utes to sensitivity to antibacterial peptides. J. Biol. Chem. 282 (21), 15569–15577.

De Castro, C., Parrilli, M., Holst, O., Molinaro, A., 2010. Microbe-associated molecular
patterns in innate immunity: extraction and chemical analysis of Gram-negative
bacterial lipopolysaccharides. Methods Enzymol. 480, 89–115.
DeMarco, M.L., Woods, R.J., 2011. From agonist to antagonist: structure and dynamics of
innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial
endotoxins. Mol. Immunol. 49 (1–2), 124–133.

El Hamidi, A., Tirsoaga, A., Novikov, A., Hussein, A., Caroff, M., 2005. Microextraction of
bacterial lipid A: easy and rapid method for mass spectrometric characterization.
J. Lipid Res. 46 (8), 1773–1778.

Ernst, R.K., Adams, K.N., Moskowitz, S.M., Kraig, G.M., Kawasaki, K., Stead, C.M., Trent, M.S.,
Miller, S.I., 2006. The Pseudomonas aeruginosa lipid A deacylase: selection for expres-
sion and loss within the cystic fibrosis airway. J. Bacteriol. 188 (1), 191–201.

Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B., Matsuura, M., 2002. Modification of
the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth
temperature. Infect. Immun. 70 (8), 4092–4098.

Moskowitz, S.M., Brannon, M.K., Dasgupta, N., Pier, M., Sgambati, N., Miller, A.K., Selgrade,
S.E., Miller, S.I., Denton, M., Conway, S.P., Johansen, H.K., Hoiby, N., 2012. PmrB
mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from
colistin-treated cystic fibrosis patients. Antimicrob. Agents Chemother. 56 (2),
1019–1030.

Paciello, I., Silipo, A., Lembo-Fazio, L., Curcuru, L., Zumsteg, A., Noel, G., Ciancarella, V.,
Sturiale, L., Molinaro, A., Bernardini, M.L., 2013. Intracellular Shigella remodels its
LPS to dampen the innate immune recognition and evade inflammasome activation.
Proc. Natl. Acad. Sci. U. S. A. 110 (46), E4345–E4354.

Pier, G.B., 2007. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor,
initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol.
297 (5), 277–295.

Raetz, C.R., Whitfield, C., 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71,
635–700.

http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0005
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0005
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0010
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0010
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0015
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0015
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0015
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0020
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0020
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0020
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0025
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0025
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0025
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0030
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0030
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0035
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0035
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0035
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0040
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0040
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0040
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0040
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0045
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0045
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0045
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0050
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0050
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0050
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0055
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0055
Image of Fig. 2


71G. Larrouy-Maumus et al. / Journal of Microbiological Methods 120 (2016) 68–71
Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., Kimoto, M., 1999.
MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor
4. J. Exp. Med. 189 (11), 1777–1782.

Strober, W., 2001. Monitoring cell growth. Curr. Protoc. Immunol. (Appendix 3:
Appendix 3A).

Sturiale, L., Garozzo, D., Silipo, A., Lanzetta, R., Parrilli, M., Molinaro, A., 2005. New conditions
for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial
R-type lipopolysaccharides. Rapid Commun. Mass Spectrom. 19 (13), 1829–1834.

Sturiale, L., Palmigiano, A., Silipo, A., Knirel, Y.A., Anisimov, A.P., Lanzetta, R., Parrilli, M.,
Molinaro, A., Garozzo, D., 2011. Reflectron MALDI TOF and MALDI TOF/TOF mass
spectrometry reveal novel structural details of native lipooligosaccharides. J. Mass
Spectrom. 46 (11), 1135–1142.
Westphal, O., Luderitz, O., 1953. [Chemical and biological analysis of highly purified bacterial
polysaccharides]. Dtsch. Med. Wochenschr. 78 (21), 17–19.

Westphal, O., Luderitz, O., Rietschel, E.T., Galanos, C., 1981. Bacterial lipopolysaccharide
and its lipid A component: some historical and some current aspects. Biochem. Soc.
Trans. 9 (3), 191–195.

Zhou, P., Altman, E., Perry, M.B., Li, J., 2010. Study of matrix additives for sensitive analysis
of lipid A by matrix-assisted laser desorption ionization mass spectrometry. Appl.
Environ. Microbiol. 76 (11), 3437–3443.

http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0060
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0060
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0065
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0065
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0070
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0070
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0070
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0075
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0075
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0075
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0080
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0080
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0085
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0085
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0085
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0090
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0090
http://refhub.elsevier.com/S0167-7012(15)30126-3/rf0090

	Direct detection of lipid A on intact Gram-�negative bacteria by MALDI-�TOF mass spectrometry
	References


