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Soil salinity adversely affects plant growth and has become a major limiting factor
for agricultural development worldwide. There is a continuing demand for sustainable
technology innovation in saline agriculture. Among various bio-techniques being used to
reduce the salinity hazard, symbiotic microorganisms such as rhizobia and arbuscular
mycorrhizal (AM) fungi have proved to be efficient. These symbiotic associations each
deploy an array of well-tuned mechanisms to provide salinity tolerance for the plant.
In this review, we first comprehensively cover major research advances in symbiont-
induced salinity tolerance in plants. Second, we describe the common signaling
process used by legumes to control symbiosis establishment with rhizobia and AM
fungi. Multi-omics technologies have enabled us to identify and characterize more
genes involved in symbiosis, and eventually, map out the key signaling pathways.
These developments have laid the foundation for technological innovations that use
symbiotic microorganisms to improve crop salt tolerance on a larger scale. Thus, with
the aim of better utilizing symbiotic microorganisms in saline agriculture, we propose
the possibility of developing non-legume ‘holobionts’ by taking advantage of newly
developed genome editing technology. This will open a new avenue for capitalizing on
symbiotic microorganisms to enhance plant saline tolerance for increased sustainability
and yields in saline agriculture.

Keywords: symbiosis, sustainable agriculture, saline soil, plant ‘holobiont’, common symbiotic pathway

INTRODUCTION

The current world population of 7.8 billion is expected to reach 9.8 billion in 2050, increase by 25%
in the next 30 years (Figure 1A). Global food production will need to increase as well. Historically,
the highest global population growth rates, with increases of over 1.8% per year, occurred between
1955 and 1975, peaking to 2.1% between 1965 and 1970 (UN, 2019). In roughly coincident time
frames, scientific and technical advances induced a series of innovations in farming that increased
crop yields dramatically and were later known as the “Green Revolution” (GR, the 1950s to 1970s)
(Wu et al., 2020). Part of the core operation of the GR was carrying out large-scale monoculture
and using chemical pesticides, herbicides, and fertilizers (Liu et al., 2014; Nicolopoulou-Stamati
et al., 2016). This farming method successfully increased the grain yield of the main crops
(Figure 1B). However, its adverse consequences are becoming increasingly apparent. The inevitable
consequence of large-scale monoculture is deep-rooted perennial species are replaced by shallow-
rooted, annual species. It will increase leakage and groundwater recharge, leading to dissolved salts
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move toward the soil surface. Eventually, the soil becomes
salinized (FAO, 2015). Going hand-in-hand, the increasing use
of synthetic fertilizers poses hidden dangers to sustainable
agricultural development and food security worldwide
(Figure 1C). Therefore, achieving food security for the growing
population amidst the gradual salinization of farmland is one of
the most important missions for modern agriculture.

It is not economically or environmentally feasible to
expand traditional agricultural practices to meet future demand.
Therefore, there is an urgent need for alternative technologies
to sustainably meet global food security requirements. One way
to increase sustainable crop yields is to amplify the role of
plant–microbe symbiosis. Symbiotic microorganisms such as
arbuscular mycorrhizal (AM) fungi and rhizobia can significantly
improve crop growth and vigor, nutrient utilization efficiency,
and biological/abiotic stress resistance. If these effects could
be used in saline agriculture, they could increase agricultural
productivity and food quality sustainably, thereby bringing
positive environmental, social, and economic results.

SOIL SALINIZATION AFFECTS
AGRICULTURE GLOBALLY

Since the beginning of industrialization, human activities
have severely damaged the natural hydrological balance in
many regions of the world. These activities affect the natural
distribution of salt in various surface landscapes and ultimately
lead to the deterioration of the natural and agricultural
environment. On a global scale, soil salinization has become a
growing threat to food production amidst increasing climate
change. Soil salinization is commonly caused by climate
changes (primary) or anthropogenic activity (secondary).
Primary processes include weathering of mother rock, seawater
deposition, and atmospheric deposition. Secondary processes
include inadequate drainage, brackish water irrigation, and
long-term continuous agricultural irrigation (Rengasamy, 2010).
The area of primary salinization is estimated to be slightly under
1 billion ha. Secondary salinization has occurred on around 77
million ha, of which 58% is in irrigated areas; as much as 20%
of all irrigated areas are estimated to be salt-affected within
India, Pakistan, China, Iraq, and Iran (FAO, 2015; Abbaspour
and Ashraf Vaghefi, 2019). About 5.2 billion ha of the world’s
agricultural land is already salt-affected and not suitable for
conventional crop farming (Figure 1D; Ahmed et al., 2016).

Soil salinization is caused by the excessive accumulation of
ions in the soil, including calcium, magnesium, sodium, sulfate,
and chloride ions, resulting in plant growth inhibition. Excessive
salt interferes with the absorption of nutrients and water by
plants, thereby disrupting the physiological processes necessary
for plant growth and development (Munns, 2002). Therefore,
salinization is an important factor causing land degradation and
a major threat to non-renewable soil resources. Unfortunately,
the salinization of farmland is continuing and is estimated to
be expanding by 0.3–1.5 million hectares every year, resulting in
crop yield losses in these areas of more than 20% (Porcel et al.,
2011). Worldwide soil salinization will have a double impact on

social and economic progress. With the continuous salinization
of arable land, agricultural income and the world food supply
will eventually suffer. It is estimated that 12–27.3 billion US
dollars are lost annually due to reductions in crop productivity
(Qadir et al., 2014).

SYMBIOTIC MICROBES CAN HELP
PLANTS TOLERATE SALT STRESS

Soil salinity affects the germination and growth of plants, and
excessive salinity can cause severe yield reductions (Evelin
et al., 2009). Excessive salinity has three negative effects on
plants. First, the toxic effects of specific ions such as sodium
and chlorine inhibit protein synthesis and damaged organelles,
enzyme structures, and the system on which photosynthesis and
respiration depend. Second, excessive salt can hinder nutrient
absorption and/or transportation to shoots, resulting in nutrient
deficiency in plants (Marschner, 2002; Evelin et al., 2009). Finally,
too much salt in the soil reduces its osmotic potential and hinders
water absorption by the root system, leading to physiological
drought in the plant. In this state, the plant must reduce its
internal osmotic potential to prevent water from entering the soil
from the roots. Due to their immobility, when facing constant
environmental stress plants not only develop their adaptive
mechanisms, but also co-evolve with soil microorganisms to
develop complex mechanisms to resist stress. For example,
the interaction with symbiotic soil microorganisms such as
rhizobium and AM fungi have a great impact on the salt stress
tolerance of plants (Table 1; Marschner, 2002; Porcel et al., 2011;
Ngom et al., 2016).

Arbuscular Mycorrhizae in Salt Stress
Amelioration
AM fungi can establish a symbiotic relationship with
approximately 80% of terrestrial plant species, including
crops (Berruti et al., 2016). These microsymbionts exist by
obtaining nutrients from plants, and can effectively help plants
to obtain water and nutrients needed for growth from the soil.
In addition, they can improve the ability of plants to resist
abiotic stress (Shabala and Pottosin, 2014). In brief, AM fungi
increase the osmotic potential of root cells by enhancing the
host plant’s water absorption, nutrient intake, and accumulation
of osmotic adjustment substances, thereby reducing salt stress
on the host plant. Studies have shown that the formation of
arbuscular mycorrhizae can reduce the absorption of Cl− ions
by root tissues and at the same time prevent the transfer of
Na+ to upper stem and leaf tissues under high salinity (Evelin
et al., 2009). Under natural conditions, AM fungi can survive
in high-concentration saltwater environments (Evelin et al.,
2009). For instance, AM fungi were found in the heavily
saline-alkali soil of the Tabriz Plain, Iran, with a soil salinity
up to 92.0 dS/m (Aliasgharzad et al., 2001). The effect of AM
fungi on plant salt tolerance has been studied in many plants,
including giant reed (Romero-Munar et al., 2019), Sesbania
(Kong et al., 2017; Ren et al., 2018), Zea mays (Sheng et al., 2011;
Krishnamoorthy et al., 2016), cucumber (Hashem et al., 2018),
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FIGURE 1 | Global population, crop yield, synthetic fertilizers used and salt-affected proportion of arable land. (A) World population from 1970 to 2060.
(B) Production of Cereals (Rice Milled Eqv) of the world since 1961 to 2018. (C) Consumption of synthetic nitrogen fertilizers of the world since 1961 to 2018.
(D) Salt-affected proportion of arable land. All data taken from FAO-STAT (http://www.fao.org/statistics/en/). Figures ellaborated by the authors from FAOSTAT data.

olive (Porras-Soriano et al., 2009), Chrysanthemum morifolium
(Wang et al., 2018), durum wheat (Fileccia et al., 2017),
rice (Porcel et al., 2016), desert grass (Hashem et al., 2015)
and tomato (Khalloufi et al., 2017). In mycorrhizal plants,
AM fungi improved salt tolerance, helped maintain normal
growth and yield under salt stress (Elhindi et al., 2017; Fileccia
et al., 2017; Wang et al., 2018), nutrient absorption capacity
(Krishnamoorthy et al., 2016; Elhindi et al., 2017), photosynthesis
capability (Hashem et al., 2015; Shamshiri and Fattahi, 2016;
Chen et al., 2017), and proline content, and promoted the
accumulation of soluble sugars in roots. Under salt stress, the
colonization of arbuscular mycorrhizae significantly increased
the biomass of Sesbania (Kong et al., 2017); at 100 mM salinity,
the biomass increased by 431%. It has also been reported that
AM fungus inoculation has a similar growth-promoting effect on
sweet sorghum, and can promote better biomass production than
in plants without AM fungus inoculation in a salt environment
(Wang et al., 2019). These benefits of AM fungi under saline
conditions depend on the symbiotic associations formed by
specific strains and plants (Table 1); therefore, it is necessary to
select efficient fungal strains for certain plants.

Rhizobia Help Legumes Adapt to Saline
Conditions
Rhizobium is a genus of Gram-negative multi-source soil bacteria
that can form nodules on the roots of legumes. These bacteria
exist in special root nodule cells and provide nitrogen for

plant growth by fixing N2 from the atmosphere, while at
the same time the plant provides a carbon source for their
growth (Pawlowski and Demchenko, 2012). Many studies have
shown that inoculating suitable rhizobia strains can increase the
dry weight of legumes under salt stress conditions, including
Sesbania cannabina (Ren et al., 2016), Stylosanthes guianensis
(Dong et al., 2017), chickpea (Deepika and Satyavir, 2015),
pigeon pea (Bano et al., 2015), and soybean (Egamberdieva
et al., 2017). This growth-promoting effect comes from an
effective symbiotic relationship. Ethane reduction activity can
be detected even under high salt conditions, but depends on
the specific rhizobia–legume symbiosis combination (Bala et al.,
1990; Elsheikh and Wood, 1995). Studies have shown that under
salt stress conditions, salt-tolerant rhizobia strains can form
a functional symbiosis with S. cannabina, and soybean (Ren
et al., 2016; Egamberdieva et al., 2017), while salt-sensitive
strains cannot. These results indicate that the inoculation of
salt-tolerant rhizobia can improve biological nitrogen fixation
under salt stress conditions. Numerous studies have shown that
fast-growing rhizobia are more salt-tolerant than slow-growing
rhizobia. Strains of the genus Rhizobium are generally more
salt-tolerant than those of the genus Bradyrhizobium. Therefore,
inoculating symbiotic strains with stronger salt tolerance under
salt stress conditions may better promote the growth and yield of
host plants (Zahran, 2001).

Several salt-tolerant rhizobia have been isolated that can
tolerate high salt environments (Oshone et al., 2013; Srivastava
et al., 2013). Some of these strains can grow at NaCl
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TABLE 1 | Strains of AM fungi and rhizobia enhancing plant salinity tolerance.

Microorganisms inoculum Plant species References

Mycorrhizal fungi

Rhizophagus intraradices [syn. Glomus intraradices] and Funneliformis mosseae
[syn. Glomus mosseae]

Giant Reed (Arundo donax L.) Romero-Munar et al., 2019

Claroideoglomus etunicatum [syn. Glomus etunicatum], Rhizophagus
intraradices and Funneliformis mosseae

Cucumber (Cucumis sativus L.) Hashem et al., 2018

Funneliformis mosseae Hangbaiju (Chrysanthemum morifolium) Wang et al., 2018

Funneliformis mosseae Sesbania cannabina Kong et al., 2017; Ren et al., 2018

Rhizophagus irregularis Durum wheat (Triticum durum Desf.) Fileccia et al., 2017

Rhizophagus irregularis Black locust (Robinia pseudoacacia L.) Chen et al., 2017

Septoglomus deserticola [syn. Glomus deserticola] Sweet basil (Osmium basilicum) Elhindi et al., 2017

Rhizophagus irregularis Tomato (Solanum lycopersicum, cv. TT-115) Khalloufi et al., 2017

Funneliformis mossseae and Rhizophagus irregularis Pigeonpea (Cajanus cajan) Pandey and Garg, 2017

Claroideoglomus etunicatum Rice (Oryza sativa L.) Porcel et al., 2016

Funneliformis mossseae Pistachio (Pistacia vera) Shamshiri and Fattahi, 2016

Rhizophagus irregularis Cathay Poplar (Populus cathayana Rehder) Wu et al., 2015

Funneliformis mosseae, Rhizophagus intraradices and Claroideoglomus
etunicatum

Desert grass (Panicum turgidum Forssk.) Hashem et al., 2015

Rhizophagus intraradices, Claroideoglomus etunicatum and Septoglomus
constrictum

Maize (Zea mays L.) Estrada et al., 2013

Funneliformis mossseae Suaeda salsa L. Li et al., 2012

Funneliformis mossseae Wheat (Triticum aestivum L.) Abdel-Fattah and Asrar, 2011

Rhizophagus intraradices Daucus carota L. Hammer and Rillig, 2011

Funneliformis mosseae Maize (Zea mays L.) Sheng et al., 2011

Funneliformis macrocarpum Sesbania aegyptiaca, Sesbania grandiflora Giri and Mukerji, 2004

Claroideoglomus claroideum Olive (Oleae uropaea) Porras-Soriano et al., 2009

Rhizobia

Bradyrhizobium sp. Stylo (Stylosanthes guianensis) Dong et al., 2017

Bradyrhizobium japonicum Soybean (Glycine max) Egamberdieva et al., 2017

Rhizobium sp. Rape seed (Brassica napus) Saghafi et al., 2019

Mezorhizobium ciceri Chick pea (Cicer arietinum) Pandey et al., 2018

Mesorhizobium sp. Chick pea (Cicer arietinum) Deepika and Satyavir, 2015

Rhizobium sp. Mung bean (Vigna radiata) Zahir et al., 2010

Rhizobium sp. Lentil (Lens culinaris) Sepúlveda-Caamaño et al., 2018

Bradyrhizobium RA-5 Pigeon pea (Cajanus cajan) Bano et al., 2015

Rhizobium tropici CIAT 899 Maize (Zea mays L.) Fukami et al., 2018

Rhizobium sp. Maize (Zea mays L.) Bano and Fatima, 2009

Rhizobium tropici CIAT899 Common bean (Phaseolus vulgaris) Dardanelli et al., 2008

Mycorrhizal fungi & Rhizobia

Funneliformis mosseae and Agrobacterium pusense YIC4105 Sesbania cannabina Ren et al., 2016

Rhizophagus intraradices C Bradyrhizobiumsp. Aust11c Acacia auriculiformis Diouf et al., 2006

concentrations exceeding 350 mM (Dong et al., 2017). The
salt tolerance of rhizobia is related to the accumulation of
various osmotic adjustment substances in their cells (Del
Cerro et al., 2019). These osmotic regulators include K+,
glutamic acid, proline, glycine betaine, proline betaine, trehalose,
dipeptide N-acetyl glutamine, and poly β-hydroxybutyrate. Their
protective effects on rhizobia cells under high-salt conditions
have been reported one after another. Studies have found that
in R. meliloti salt-tolerant strains, the glycine betaine content
is higher than insensitive strains (Dong et al., 2017). It is
also believed that IAA synthesis by rhizobia can prevent the
harmful effects of salinity. Bianco and Defez (2009) reported
an IAA over-yielding mutant of Sinorhizobium meliloti, which

significantly increased the tolerance of Medicago truncatula to
salt stress. Compared with the wild-type strain, the proline
content and accumulation of antioxidant enzymes were higher
in plants inoculated with the mutants. Inoculation with these
symbiotic bacteria can help the host plants effectively resist
salt stress. For example, it has been reported that inoculation
of B. japonicum S2492 significantly increased the dry weight,
plant height, and yield (> 35%) of soybeans in arid saline soil
(Egamberdiyeva et al., 2004).

In summary, previous studies have shown that selected AM
fungi and rhizobia strains that are compatible with plants
can be used to improve the salt tolerance of crops and
plants used for saline soil remediation. However, for crops
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used in saline agriculture, a lack of compatibility with these
microsymbionts is likely to become the bottleneck of this new
agricultural technology. To fully exploit the beneficial effects of
plant–microsymbiont associations, we need to understand the
molecular mechanism of symbiosis between plants and these
symbionts (Figure 2).

DEPTH HORIZON: UNDERSTANDING
THE SYMBIOTIC MOLECULAR
NETWORK IN PLANTS

Symbiotic microorganisms that promote plant abiotic (salt) stress
resistance occur naturally and exist widely, such as AM fungi
and Rhizobium. However, traditional crop breeding techniques,
including genetic engineering, domestication and crossbreeding,
do not consider the role of symbiotic microorganisms in
promoting stress resistance. Moreover, the application of new
genetic engineering techniques in breeding overlooks the
perspective of plant–microbial symbiosis. Fortunately, research
on plant–microbial symbiosis has been continuous and fruitful.
There has been considerable research progress on key genes
that regulate the process of symbiosis establishment between
plants and microorganisms. Among them, the most exciting
one is a common symbiotic pathway may be exist in plants
(Oldroyd, 2013). Kistner et al. (2005) found that a single gene
mutation can inhibit both bacterial and fungal infection of
plant root tissue. At the same time, numerous studies of Ca2+

signaling in nuclei have shown that it can mediate calcium
oscillations of varying intensity (Yuan et al., 2017; Poovaiah and
Du, 2018; Plasencia et al., 2021), to activate different downstream
pathways. This may be the reason why CCaMK protein, core
component in the common symbiotic pathway, can be activated
differentially, e.g., mycorrhizal or nodular formation (Russo
et al., 2013). These findings could become a key starting point
for the use of new gene-editing technologies to engineer non-
legumes to establish better symbiotic relationships with versatile
symbiotic microorganisms.

The Common Symbiosis Pathway (SYM)
in a Mutually Beneficial Symbiosis With
AM Fungi or Rhizobium
Because legumes can establish symbiotic relationships with AM
fungi and rhizobia at the same time, people have carried out
extensive research on legumes from the perspective of symbiotic
molecular mechanisms. In the past few decades, genetic studies
on legumes and AM fungi have successively identified the
genetic components necessary for the establishment of a
symbiotic relationship. These genes constitute the molecular
basis of the relationship between most terrestrial plants,
including gramineous plants, and microsymbionts, and are
now collectively referred to as the common symbiotic pathway
(MacLean et al., 2017; de Bruijn, 2020; Figure 3). Studies
have found that AM fungi use the so-called ‘Myc factor’
to stimulate plant roots to begin a dialogue and eventually
form a symbiotic relationship (Rasmussen et al., 2016;

Pimprikar and Gutjahr, 2018). The chemical composition of
the Myc factor is lipochitooligosaccharides (LCOs), secreted
by AM fungi and released into the rhizosphere of plants. The
Myc factor is sensed by the LysM receptor kinase present on
the plant root cell membrane (Gough et al., 2018; He et al.,
2019). The transduction of Myc factor signals into plant cells
triggers the AM symbiosis signaling pathway. The currently
identified components of this pathway are an LRR receptor
kinase (MtDMI2/LjSYMRK), a nuclear cation channel protein
(MtDMI1/LjPOLLUX, LjCASTOR), a nucleoporin protein
(LjNUP85, LjNUP133, NENA), a calcium pump protein
(MtMCA8), a calcium-dependent and calmodulin-dependent
protein kinase (MtDMI3/LjCCaMK) and its interacting protein
components (MtIPD3/LjCYCLOPS) and two GRAS-family
transcription factors, NSP2 and RAM1 (Venkateshwaran et al.,
2012; Binder and Parniske, 2013; Xue et al., 2015; Gough et al.,
2018; Grosche et al., 2018; Hakoshima, 2018; Li et al., 2018;
Pimprikar and Gutjahr, 2018). Studies have proved that the
above components are all necessary for the establishment of
symbiosis. Mutant plants containing non-functional genes
cannot form a sound symbiotic structure. Many related studies
have found that most terrestrial plants (including non-legumes
such as corn and rice), and even some lower plants (such as
mosses), contain AM symbiotic signaling pathway-related genes.
This phenomenon shows that plants have evolved for symbiosis
and that the emergence of the ‘molecular machinery’ related to
symbiosis in plants has a very ancient origin (Rimington et al.,
2018; Delaux and Schornack, 2021).

Leguminous plants are the second most diverse group among
terrestrial plants. In addition to symbiosis with AM fungi,
they can also establish effective symbiotic relationships with
Rhizobium species. This relationship appears in the form of
root nodules. In rare cases, the symbiosis can form stem
nodules, such as in Azorhizobium caulinodans and Sesbania (Lee
et al., 2008; Liu et al., 2017). Nodules are a group of highly
specialized plant cells wrapped under the epidermis of plant
roots. Their purpose is to provide shelter for the bacteria. Inside,
the rhizobia efficiently fix nitrogen from the atmosphere and
exchange nutrients with the plant, forming a close relationship.
Related genetic studies on legumes have shown that the ancient
SYM pathway has further specialized in legumes. The nodulation
ability of some legume mutants with defective AM symbiosis
as mentioned above is also affected, which indicates the high
degree of homology of the SYM pathway in the establishment of
different forms of symbiosis between plants and microorganisms
(Kistner et al., 2005). In addition to the known members of
the SYM pathway, other molecular components related to the
establishment of symbiosis have high homology. For example,
NSP1 is an important component of rhizobia–legume symbiosis,
its original copy (RAM1) is also critical in AM symbiosis, and it
seems to belong to a broader SYM pathway (Gobbato et al., 2012;
Fonouni-Farde et al., 2016; Floss et al., 2017; Lace and Ott, 2018).
Detailed studies have discovered more and more key molecular
components involved in the symbiosis of rhizobia and plants,
and gradually revealed an ancient truth: these newly discovered
components are part of or modified from the SYM pathway.
The symbiotic interaction between legumes and rhizobia begins
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FIGURE 2 | Schematic illustration of the mechanisms deployed by AM fungi and Rhizobium in host plant coping with salinity stress. Salinity impedes plant
absorption of water and nutrients, resulting in physiological drought. AM and Rhizobium help plants in salt stress by improving osmoregulation, antioxidant
production, K+ uptake and other nutrient uptake (see text).

with the host’s perception of microbial signal molecules called
‘nodulation factors’ (NFs) released by rhizobia (Buhian and
Bensmihen, 2018). Notably, Nod factors are also LCOs, which are
recognized and bound by LysM-type receptor kinases in legumes
(Buendia et al., 2018; Gough et al., 2018; Bozsoki et al., 2020).
Studies have shown that NFs directly binds to the NF receptors
NFR5 and NFR1, which are located on the cell membrane of
Lotus japonicus. The dissociation constant (Kd) value of NF-
ligand binding is in the nanomolar range (about 10 nM for NFR5
and about 5 nM for NFR1), which is close to the concentration
known to trigger the onset of symbiosis (Broghammer et al.,
2012). The signal cascade required for nodulation is eventually
triggered by the perception of LCOs by these plasma membrane
receptors and triggers a series of rapid reactions in the host
cell, including the formation of ion currents, alkalization of the

cytoplasm, production of reactive oxygen species, and nuclear
and perinuclear calcium oscillations (Cardenas et al., 2008;
Chabaud et al., 2011; Naffah de Souza et al., 2017).

The abovementioned research progress shows that symbiotic
genes related to the SYM pathway existed in the common
ancestor of land plants, and their functions have remained
fundamentally unchanged during the evolution of land plants
(Wang et al., 2010; Radhakrishnan et al., 2019). Moreover,
increasing numbers of related studies have revealed that this
common symbiotic pathway (SYM) is highly conserved in
different symbiotic relationships, and even the interactions of
plants with microbes other than mycorrhiza and nodules are
associated with components of the SYM pathway (Chiu and
Paszkowski, 2020). The discovery of the SYM pathway and
continuing research progress provide a promising strategy for

Frontiers in Microbiology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 763014

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-763014 April 29, 2022 Time: 14:18 # 7

Ren et al. Plant ‘Holobiont’ for Saline Agriculture

FIGURE 3 | Schematic diagram of the common symbiotic pathway (SYM) of nodulation and arbuscular mycorrhizal signals in legumes. The first known molecular
component in the symbiotic pathway (SYM) signaling pathway is the receptor-like kinase DMI2 of M. truncatula (homologous to SYMRK of L. japonicus) (Kevei et al.,
2007; Antolín-Llovera et al., 2014). The direct target of DMI2 is unclear, but it can be determined that the signal is transmitted to the nuclear membrane by a
secondary messenger. There are three nucleoporins (NUP85, NUP133 and NENA) in L. japonicus, which continue to transmit symbiotic signals to the nucleus (Genre
and Russo, 2016). There is a recognized cation channel DMI1 on the nuclear membrane, the results have confirmed the role of DMI1 in the formation of Ca2+

oscillations, which has also been confirmed to participate in the conduction of this signal into the nucleus (Charpentier et al., 2008). In the nucleus, the
calmodulin-dependent kinase DMI3 (CCaMK in L. japonicus) is responsible for decoding the induced calcium oscillation signal (Gleason et al., 2006; Tirichine et al.,
2006), and then, together with IPD3 (homolog of CYCLOPS in L. japonicus) (Yano et al., 2008; Singh et al., 2014), it takes over the upstream signal and activates a
set of downstream transcriptional regulators (NSP1, NSP2, and RAM1) (Kaló et al., 2005; Smit et al., 2005; Hirsch et al., 2009; Pimprikar et al., 2016), these
regulatory factors regulates the expression of genes related to nodulation and arbuscular mycorrhiza in the terminal, respectively.

genetically engineering symbiotic molecular components into
plants, to utilize symbiotic microorganisms to improve the vigor
and salt resistance of host plants.

Multi-Omics Approaches for Unraveling
the SYM Pathway and Identification of
Anchor Genes
In the past two decades, research on clarifying the molecular
mechanism of plant–microbe symbiosis has not only successfully
identified individual key genes involved in the establishment
of symbiosis through reverse genetics but also made much
progress through high-throughput genomics and proteomics
quantitative strategies (Genre and Russo, 2016; Lardi and Pessi,
2018; Rehman et al., 2019; Chiu and Paszkowski, 2020; diCenzo
et al., 2020; Tong et al., 2020). With the completion of genome
sequencing for a large number of plants (including legumes and

non-leguminous crops), it has become more feasible to apply
the “-omics” strategy to the study of symbiosis (Lardi and Pessi,
2018). Regarding the use of proteomics and phosphorylation
proteomics to study the symbiosis signal of legumes, Rose
et al. (2012) used a proteomics method based on deep non-
targeted mass spectrometry and found that the phosphorylation
status of 13,506 phosphorylation sites of 7,739 M. truncatula
proteins changed rapidly under NF treatment. The study also
found that in the early stage of symbiotic signal transmission
(within 1 h after NF induction), the types and contents of
proteins did not change. The rapid cellular and molecular
response induced by NF mainly relied on post-translational
modifications, such as phosphorylation, rather than protein
synthesis or degradation (Rose et al., 2012). This study also
employed a genetics method to discover some new symbiosis-
related candidate genes using a limited number of key gene
loss-of-function mutants in the SYM pathway, which may
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FIGURE 4 | An integrated tool for developing plant ‘holobiont’ adapted to saline. First, through multi-omics approaches to identify ‘anchor genes’ in the SYM
pathway. Then, using genome editing tool such as CRISPR/Cas9 to engineer non-leguminous crops to associate better with rhizobia and AM fungi utilize the SYM
symbiotic machinery. In parallel, screening of highly efficient salt-tolerant improving strains from the rhizosphere of saline-alkali soil plants. At last, in combing
genetically modified crops that are easy to establish symbiotic relationships with specific AM fungi and rhizobia strains to develop a plant ‘holobiont’, which can
better adapt to the salt soil environment.

be involved in symbiosis signaling, cell cycle regulation, and
root hair growth and infection (Rose et al., 2012). Similarly,
Nguyen et al. (2012) analyzed the phosphoproteome during the
rhizobial colonization of soybean root hair cells to understand
the molecular mechanism of nodule formation. Their study
identified 1,126 phosphorylated soybean proteins and detected
1,659 phosphorylation sites, and in soybean plants inoculated
with Bradyrhizobium japonicum, 273 phosphorylation sites of
240 phosphorylated proteins were significantly altered, many
of which were the same phosphorylation sites identified by
Rose et al. (2012). In addition, a genome-wide transcriptome
study aimed at elucidating the Myc factor signal transduction
process in M. truncatula found that all kinds of symbiotic LCO
analogs upregulated a common set of genes (Czaja et al., 2012).
On an even larger scale, the three plant systems Casuarina
glauca, M. truncatula and Oryza sativa were used to compare
the transcriptomes of genes involved in rhizobial nodulation,
actinomycete nodulation, and arbuscular mycorrhiza formation.
The results showed that a group of common genes was regulated
in these three endosymbiosis processes (Tromas et al., 2012).
These systemic approaches together provide a rapid means
of filling the gaps in our knowledge on symbiotic signal
transduction as well as potentially pointing us in new directions

with genes and proteins not previously thought to be involved.
“Multi-omics approaches” together enable the rapid description
of the mechanism of symbiotic signal transduction, potentially
providing a blueprint for genetically engineering crops to utilize
the potential of symbiotic microorganisms to promote growth
and resist stress.

POSSIBILITY OF PAIRING NON-LEGUME
CROPS AND SYMBIOTIC MICROBES TO
COPE WITH SALT STRESS THROUGH
GENE EDITING

Global human activities and climate change are intensifying,
leading to further intensification of cultivated land salinization.
To expand the planting area on saline soils, increase the net
yield of crops, and avoid the impact of negative environments
on crop yields while reducing the dependence of large-scale
shallow-root monocropping crops on chemical fertilizers, a
promising strategy is to make full use of growth- and salt
resistance-promoting symbiotic microorganisms such as AM
fungi and rhizobia. To achieve this goal, we need to fully
understand the molecular mechanism of symbiosis between
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plants (especially legumes) and microorganisms. One specific
method is to use the symbiosis mechanism of SYM (the
relevant molecular components of this mechanism already
exist in most land plants) together with genetic engineering
methods to modify the main food crops (legumes and non-
legumes) so that they can establish better symbiotic relationships
with microsymbionts, and achieve high-quality microsymbiosis
through screening to construct a plant ‘holobiont’ (Figure 4).
This will allow us to make full use of the growth-promoting and
anti-stress functions of microsymbionts to enable the sustainable
development of saline agriculture under future climate change
conditions. Because most terrestrial plants (including cereals)
already contain the relevant molecular components of the SYM
symbiosis mechanism, realizing the perception of rhizobial
signals is the key first step to initiating the SYM pathway and
achieving infection in non-legume plants. Studies on Parasponia
have shown that successful cell colonization can enable a certain
degree of nitrogen fixation without the formation of complex
nodule organs (Geurts et al., 2012), which implies that the
microsymbiont and the host are also carrying out the exchange
of nutrients and physiological signals in an incomplete symbiotic
relationship with only infection achieved. Unlike NF signaling,
the receptors specifically used for Myc factor sensing have
not yet been determined. Although the LysM type receptor
kinase LYR1 is strongly upregulated during AM symbiosis
in M. truncatula (Arrighi et al., 2006; Benedito et al., 2008;
Young et al., 2011), there is still a lack of direct experimental
evidence to support its role in Myc factor perception. Myc
factors can trigger calcium oscillation in both legumes and non-
legume dicots, but there is no such response in monocots.
However, studies have shown that there is crosstalk between
the NF and Myc factor signaling pathways in the same plant
(Groth et al., 2010; Gully et al., 2018; Suzaki et al., 2019).
This phenomenon indicates that it is possible to modify the
signal receptors in plants to make them sense the NF and Myc
factors at the same time. In the natural environment, only a
few monocotyledonous and dicotyledonous plants can form close
and effective associations with rhizobium. However, most of the
research aimed at using symbiotic microorganisms to promote
stress resistance in plants has focused on screening out more
effective microbial strains. The specific molecular mechanism
encoded in the plant genome tightly controls the interaction with
these beneficial microsymbionts. We have shown in this review
that plants continue to use this ancient and extensive symbiotic
molecular machinery (the SYM pathway) in their evolution
to recruit AM fungi and a variety of tolerance-promoting
bacteria to adapt to environmental stress. This fact demonstrates
that utilizing microsymbiosis by artificially modifying the key
components of the SYM pathway in target crops is an achievable
goal. For example, the transformation of economically valuable
non-legume crops to expand beneficial microsymbiosis in the
soil will have a huge impact on the sustainability of food
amidst the gradual salinization of arable land. Therefore, the
combination of ongoing high-throughput research and in-depth
genetic analysis will be of vital importance for engineering salt
tolerance-promoting associations in non-leguminous crops and
particularly in cereals.

CONCLUDING REMARKS

It is clear that expansion of conventional agricultural practices
to meet future demands amidst the gradual salinization of
farmland is neither economically nor environmentally feasible.
Therefore, saline agriculture urgently needs innovations to
follow on from the Green Revolution to sustainably meet the
demand for global food security. One way to improve the
production efficiency of crops under saline conditions is to
expand the growth-promoting and stress-resistance effects of
microsymbionts. These microsymbionts include AM fungi
and a variety of rhizobia that can improve crop growth and
vitality, nutrient utilization efficiency, and biotic/abiotic stress
tolerance. However, traditional crop breeding technologies
(including genetic engineering technology, domestication,
and hybrid breeding) rarely consider the role of symbiotic
microorganisms in promoting plant stress resistance, and
breeding using new genetic engineering technologies overlooks
the perspective of plant–microbe symbiosis. Fortunately,
however, research on plant–microbe symbiotic relationships
have been continuous and fruitful. In the past few decades,
researchers have successfully identified the key molecular
components of arbuscular mycorrhiza and nodule formation
with plants through genetic studies. These genes are collectively
referred to as the SYM pathway. Through multi-omics methods,
analysis of these key symbiotic components has continuously
deepened. Based on these findings, we may use new gene-
editing technologies such as the clustered regularly interspaced
short palindromic repeat (CRISPR)/CRISPR-associated protein
9 (Cas9) system to customize plant utilization of the SYM
symbiotic machinery (which is present already in most land
plants and, in particular, in cereals), in combination with
AM fungi and rhizobia strains to develop salt-tolerant plant
‘holobiont’. These developments will open a new avenue for
capitalizing on symbiotic microorganisms to strengthen plant
salt resistance. Agricultural practices and production efficiency
under saline conditions will be greatly improved to meet the
increasing global food demand.
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