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ABSTRACT

We report a tool, Calling Cards Reporter Arrays
(CCRA), that measures transcription factor (TF) bind-
ing and the consequences on gene expression for
hundreds of synthetic promoters in yeast. Using
Cbf1p and MAX, we demonstrate that the CCRA
method is able to detect small changes in binding
free energy with a sensitivity comparable to in vitro
methods, enabling the measurement of energy land-
scapes in vivo. We then demonstrate the quantitative
analysis of cooperative interactions by measuring
Cbf1p binding at synthetic promoters with multiple
sites. We find that the cooperativity between Cbf1p
dimers varies sinusoidally with a period of 10.65 bp
and energetic cost of 1.37 KBT for sites that are po-
sitioned ‘out of phase’. Finally, we characterize the
binding and expression of a group of TFs, Tye7p,
Gcr1p and Gcr2p, that act together as a ‘TF collec-
tive’, an important but poorly characterized model
of TF cooperativity. We demonstrate that Tye7p often
binds promoters without its recognition site because
it is recruited by other collective members, whereas
these other members require their recognition sites,
suggesting a hierarchy where these factors recruit
Tye7p but not vice versa. Our experiments establish
CCRA as a useful tool for quantitative investigations
into TF binding and function.

INTRODUCTION

Transcription factors (TFs) recognize and bind to specific
sequences in regulatory DNA, called TF binding sites (TF-
BSs), and these events ultimately define the transcriptional
programs that cells execute as they proliferate, develop, and
respond to their environments (1–3). The principles that
govern how TFs select functional binding sites in vivo are

not well understood. For example, the in vivo occupancies
of TFs cannot be predicted solely from their DNA bind-
ing preferences measured in vitro. Many TFs bind to only
a small fraction of high-scoring TFBS in the genome, and,
conversely, TF binding is often observed at loci without a
nearby TFBS (4–6). Explaining the binding of paralogous
TFs is a related outstanding problem, as such factors of-
ten have nearly identical in vitro DNA binding preferences
but regulate diverse sets of target genes and perform dif-
ferent cellular functions, even when expressed at the same
time and in the same cell (7–9). Finally, the relationship be-
tween TF binding and the resulting transcriptional conse-
quences is also unclear, as it is difficult to predict whether
a TF binding event will have any effect on the expression
of a nearby gene or the directionality of such a change.
Part of the reason for these difficulties is that TFs appear
to act in a highly complex manner. Many TFs bind coop-
eratively (10–15), and we are far from having a complete
description of which TFs interact with one another, or how
they select their binding sites when they do interact. Even
TFs that bind DNA independently may recruit transcrip-
tional machinery in a combinatorial fashion after they bind
to influence gene expression (16). Therefore, we need new
experimental tools to study gene regulation that are quan-
titative, allow for the rapid analysis of many user-specified
regulatory sequences, and can be easily multiplexed to study
a number of different TFs.

High throughput methods such as Sort-Seq (17,18) and
Massively Parallel Reporter Assays (MPRAs) (19,20) have
emerged as important tools for investigations into the reg-
ulatory code, but these methods measure gene expression
only, making it difficult to directly study the impact of TF
binding on transcriptional regulation. Recent studies have
performed ChIP-based binding measurements on libraries
of promoter elements (21,22); however, these studies were
unable to quantitatively measure binding energies or ana-
lyze cooperative interactions, features which are critical for
dissecting TF function. To study the complex nature of TF
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binding in a quantitative manner and correlate this bind-
ing with gene expression, we have developed Calling Cards
Reporter Arrays (CCRA), a novel tool that builds on the
previously reported Calling Card method (23–25). CCRA
measures TF binding and the transcriptional consequences
of this binding for hundreds of synthetic DNA sequences
in the yeast, Saccharomyces cerevisiae. We first demonstrate
that CCRA measures TF binding at synthetic promoters
and gene expression from a downstream reporter in a sen-
sitive, accurate, and reproducible manner. We then apply
CCRA to study TF–DNA interactions and show that the
CCRA method is able to detect single nucleotide difference
in the free energy of binding with a sensitivity that is com-
parable to in vitro methods. We then use CCRA to study
how cooperativity dictates TFs binding in vivo, by analyz-
ing the binding of the bHLH factor Cbf1p. We find that the
cooperativity between Cbf1p dimers varies sinusoidally as
the distance between two Cbf1p binding sites is changed,
with an observed period of 10.65 bp. The helical phase of
binding sites plays a major role in the cooperative binding
of this factor, as ‘out of phase’ sites incur an energetic cost of
3.40 kJ/mol (1.37 KBT) relative to in-phase sites. Finally, we
characterize the binding of a group of TFs that are thought
to act together as a ‘TF collective’, a recently proposed
model of cooperative binding (26,27). Consistent with pre-
vious work (23), we find that one member of the group,
Tye7p, is able to bind at promoters that do not encode its
recognition sequence. Surprisingly however, the binding of
other collective members, Gcr1p and Gcr2p, requires only
their recognition sites, suggesting a hierarchy where these
factors can recruit Tye7p but not vice versa. We further
demonstrate that the expression of a reporter gene regulated
by this collective can be best explained by considering the
occupancy of all members of this complex. Together, these
results establish CCRA as a useful tool for quantitative in-
vestigations into TF binding and function.

MATERIALS AND METHODS

Library design and amplification

CCRA libraries are created by array-based oligonucleotide
synthesis (Agilent). Each element of the library is a distinct
230 bp oligonucleotide comprised of five different sequence
regions (See Supplemental Note 2 for a diagram of these re-
gions and the specific sequences used in this study). The first
region is a 20 bp constant sequence that is homologous to
the backbone plasmid to support Gibson cloning. The next
(downstream) 11 bp sequence is unique to each sub-library
to enable the amplification of subsets of the library elements
that are synthesized in each batch. This allows for the anal-
ysis of different TFs or the testing of different hypotheses
using a single oligonucleotide synthesis. The third region
is the 170 bp user-defined variable synthetic promoter se-
quence. This region is followed by 12 bp ‘promoter’ barcode
that identifies the corresponding promoter sequence at Illu-
mina sequencing step. Each promoter barcode is designed
to be at least 3 bp different than all other barcodes to control
for synthesis, PCR and sequencing errors. The last region
of each library element is a constant 17 bp sequence used
for PCR amplification. The library pool was synthesized by

Agilent as 10 pmol of lyophilized nucleic acid (See Supple-
mental Note 2 for primer design and additional details for
library amplification). To amplify the library, we used 0.15
ng of library DNA template in a final 50 �l PCR reaction.
In each 50 �l reaction, we used 0.2 mM dNTP mix, 0.5 �M
forward primer, 0.5 �M reverse primer, 1× Herculase II re-
action buffer, 1 M Betaine, 0.15 ng DNA template in water,
1 �l of Herculase II polymerase (Agilent). The PCR reac-
tion was cycled as follows: 95◦ for 1 min, 16 cycles of 95◦ for
30 s and 58◦ for 2.5 min and then 72◦ for 4 min. PCR prod-
ucts were purified by AMPure XP beads from Beckman
coulter with 1:1.6 of PCR sample to magnetic particles ra-
tio according to manufacturer’s instructions. Typically, we
obtained 5 to 10 ng/�l of DNA in a final volume of 15 �l.

CCRA library construction

Plasmid pRS414 was used as the backbone to create li-
brary plasmid pRM1806 (See Supplemental notes 1a for
plasmid map, sequence, and Supplemental Table S2 for Ad-
dgene accession number). To clone library sequences into
the pRM1806 backbone, we linearized the plasmid with
high fidelity KpnI and SacI (NEB), and then performed
gel extraction using the Qiagen DNA extraction kit. We
used 0.03 pmol of the linearized plasmid and 0.12 pmol
of purified PCR product in a Gibson assembly reaction
(NEB), following the manufacturer’s instructions. Nitro-
cellulose membrane (0.025 �m) was used to filter Gibson
assembly product by drop dialysis following the Millipore
Sigma protocol. The library was electroporated into 10G
SUPREME Electrocompetent cells (Lucigen) using 0.1 cm
cuvette and cells were plated on to Kanamycin contain-
ing LB plates after 1-hour recovery in SOC. After 16 h of
growth, over 50 000 colonies were scraped and the plasmid
DNA was extracted using Qiagen Miniprep Kit.

Calling cards induction and promoter library recovery

The yeast strain used in this study was yRM1004, which
is derived from matA deltaSir4, and has the following
genotype: his3�1 leu2�0 met15�0 ura3�0 �sir4::KanMx
�trp1::HygMx. Induction of TF directed transposition
was performed using a modified calling cards protocol
(24). Briefly, plasmid containing a Sir4p (amino acids
951–1200) tagged TF driven by ADH1 promoter with
LEU2 auxotrophic marker was transformed into yeast cells
(yRM1004) together with the plasmid pRM1804 (see Sup-
plemental notes 1b for plasmid maps, sequences, and Sup-
plemental Table S2 for Addgene accession numbers), which
contains the URA3 marker and a galactose inducible Ty5
transposon with an artificial intron inside of His3 gene that
is inside of Ty5 gene body for the purpose of selecting trans-
position positive cells in the next step (28). After transfor-
mation, cells were plated onto a Glu-Ura-Leu plate to se-
lect for cells carrying both the TF-sir4p fusion plasmid and
Ty5 transposon plasmid. Next, a single colony was picked
for library plasmid transformation. The library plasmid
pRM1806 carries the TRP auxotrophic selection marker, so
after the yeast cells were transformed with the library plas-
mid, they were plated onto a Glu-Ura-Leu-Trp plate to se-
lect for all three plasmids. Multiple parallel transformations
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were performed to obtain a diverse population of library se-
quences. We typically obtained over 10 000 colonies for each
sub library. All colonies were pooled and plated to Gal-Ura-
Leu-Trp to induce Ty5 transposition on 10 plates to increase
the number of transpositions. Cells were allowed to grow
on galactose plates for 4 days at room temperature. After
galactose induction, we replica plated cells to Glu-His-Trp
to select for yeast with Ty5 transpositions and that carry the
library plasmid. After 2–3 days, colonies were scraped, and
plasmid extraction was performed using the Yeast Plasmid
Mini Kit (Omega).

Preparation of Illumina libraries for calling cards mapping

We performed four independent PCRs to recover transposi-
tions that were inserted into synthetic promoters in either of
two possible orientations and upstream or downstream of
the barcodes and UMI. We performed an additional PCR
to measure the relative abundance of elements in the library
for normalization. For these four PCRs, one primer of each
pair is specific to either 3′ LTR of Ty5 transposon sequence
or 5′ LTR of Ty5 transposon sequence, and the other primer
is specific to a constant region either upstream or down-
stream of the inserted library sequence on the plasmid. For
the additional PCR, one primer is specific to an upstream
constant region of the inserted library sequence on the plas-
mid, and the other primer is for the downstream constant
region (See Supplemental Table S1 for the primer sequences
used). All five PCR products were pooled together for se-
quencing.

In each PCR reaction, we used 1X RedTaq buffer, 0.2
mM dNTP mix, 1M Betaine, 0.5 �M forward primer,
0.5 �M reverse primer, 4 �l RedTag DNA polymerase
(Sigma-Aldrich), 1 �g of the purified plasmid DNA and the
corresponding amount of water to reach a final volume of
50 �l. The PCR parameters were set to be 93◦ for 2 min,
24–28 cycles of 93◦ for 30 s and 62◦ for 6 min and 62◦ for
6 min. The PCR products were then purified with Qiagen
PCR purification kit before sequencing.

Measuring reporter expression in CCRA libraries by Sort-
Seq

After transforming the library plasmid into yeast, we di-
vided the cells for either Calling cards or Sort-Seq. For ex-
pression measurement, we followed the experimental proce-
dures as well as promoter expression calculation described
in (18). We sorted cells into eight bins of 100 000 cells each,
and then added yeast culture media to grow the cells for
16 h. Cells from each bin were then pelleted separately and
the plasmids were extracted with Yeast Plasmid Mini Kit
(Omega) for sequencing.

Next, we performed a separate PCR reaction for each
sorted bin. The primer sequences are listed in Supplemental
Table S1, and they target the constant regions upstream and
downstream of the CCRA library. In each of the eight PCR
reactions, the reverse primer was indexed with unique bar-
code to allow the reactions to be sequenced together. The
PCR amplification conditions used were identical to those
used for calling cards recovery.

Analysis of sequencing reads for quantification of TF binding

To quantify TF binding to CCRA libraries, we analyze Illu-
mina paired end sequencing reads to count all unique inser-
tions into each library member. An transposition is unique
if it can be distinguished by its insertion coordinate rela-
tive to the library reference or contains a unique UMI in
instances where multiple insertions have landed at the same
position across four independent PCRs (See Supplemen-
tal notes 3 for examples of CCRA sequencing reads; our
python analysis source code and an output sample are avail-
able on Gitlab). To identify unique insertions from the se-
quencing data, we first filter for reads containing the ap-
propriate 12 bp library barcode and 6 bp TF barcode. Fil-
tered reads are then divided into five categories: reads from
synthetic promoters where the Ty5 transposon inserted in
the forward direction upstream of the promoter barcodes,
reads where Ty5 inserted in reverse direction upstream of
barcodes, reads where the Ty5 inserted in forward direction
downstream of barcodes, reads where the Ty5 inserted in
reverse direction downstream of barcodes, and reads from
synthetic promoters without insertion. This categorization
is achieved by analyzing the first 20 bp of read 1 and read 2.
The next 12 bp are used to map the precise location of the
transposon insertion into the synthetic sequence. We used
the 4 bp UMI to resolve events when multiple calling cards
are deposited at the same base pair in a given synthetic se-
quence. Finally, we use the number of full-length sequences
recovered for each library element as a normalization fac-
tor to control for the variation in abundance between li-
brary members. The total number of independent insertions
for each library member is normalized by the relative abun-
dance of each element in the library to compute a normal-
ized binding score (NBS) of TF binding to each synthetic
sequence.

Using an expectation maximum algorithm to distinguish TF-
directed insertions from background

For experiments in which changes in binding energies are
measured, it is important to measure TF binding strength
as accurately as possible. Therefore, we used an expecta-
tion maximization algorithm to resolve TF-directed trans-
positions which occur near TF recognition sites from back-
ground transpositions which occur uniformly across the
synthetic promoter. Since the distribution of TF directed
insertions is approximately Gaussian with the distribution
centred at the TF recognition site, we assumed that TF
directed insertions can be modelled with this distribution
while background insertions follow a uniform distribution.
We then used an expectation maximum algorithm to esti-
mate, for each synthetic promoter, the variance of the Gaus-
sian distribution (the mean value is determined by the loca-
tion of the TF recognition sequence) and the fraction of in-
sertions that were the result of a TF-directed or background
transposition. For each library element, we iterate each in-
dependent insertion for maximum of 1000 times or until
the parameters no longer change. The estimated fraction of
TF-directed insertions is used to multiply the raw number
of insertions at each promoter to remove insertions due to
non-specific transposition (Python script and sample files
are provided in Gitlab). This background correction step
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removes 0–20% of non-specific insertions, which is impor-
tant for calculating small changes in binding energy; how-
ever, incorporating this step does not impact other analy-
sis and should not be used for sequences where the Gaus-
sian assumption is not appropriate (e.g. for sequences with
multiple TF sites or for TFs whose recognition sequence is
not well-characterized). Therefore, we performed this back-
ground correction only for the generation of binding energy
landscapes.

Binding energy difference calculation

To quantitatively compare CCRA with PBM and MITOMI
in terms of binding affinity, we calculated the change of
binding energy (��G) from consensus site to the alterna-
tive site as follows:

Under binding equilibrium, [TF] and [sequence] associate
at the same rate that the bound complex [TFS] disassociates:

[TF] + [S] ←→ [TFS] (1)

The Gibbs free energy �G is related to the binding con-
stant K as follows:

K(S) = [TF][S]
[TFS]

= e�G/RT (2a)

�G = RT (2b)

ln(K(S))
(2b)

The binding occupancy on a sequence is defined as the
fraction of bound sequence to the total sequence in solu-
tion. Replace [TFS] with [TF][S]/K according to 2a, and by
approximation that K(S) is much greater than [TF] as the
affinity of these sequences are high, we get:

Occ(S) = [TFS]
[TFS] + [S]

= [TF]
[TF] + K(S)

≈ [TF]
K (S)

(3a)

K(S) = [TF ]
Occ(S)

(3b)

Therefore, the change of binding energy equals:

��G = �G(Sconsensus) − �G(Smutant)

= −RTln
(

Occ(Smutant)
Occ(Sconsensus)

)
(4)

Test for binding cooperativity

To determine if Cbf1p binds cooperativity at various syn-
thetic promoters, we compared the observed occupancy to
expected occupancy assuming independent binding, and we
derived this test by the following:

[Cbf1p] + [DNA with two free sites]
k1←→ [Cbf1p − DNA with one free site]

+ [Cbf1p]
k2←→ [2 ∗ Cbf1p − DNA with both sites occupied]

To simplify: [P] + [S]
k1←→ [PS] + [M]

k2←→ [P2S]

Occ(P) = 2 ∗ K1 ∗ P + 2 ∗ K1 ∗ K2 ∗ P2

1 + 2 ∗ K1 ∗ P + K1 ∗ K2 ∗ P2

If Cbf2 binds additively, then K1 = K2 = K;

Occ(P) = 2 ∗ K ∗ P + 2 ∗ k2 ∗ P2

1 + 2 ∗ K ∗ P + k2 ∗ P2

= 2 ∗ K ∗ P (1 + K ∗ P)

(1 + K ∗ P)2

= 2 ∗
(

K ∗ P
1 + K ∗ P

)

And so, the null expectation for binding occupancy is
simple twice the observed binding to a single recognition
site.

TF motifs and NDS definition

For yeast TF motifs, we used the recommended
PWMs compiled by Spivak and Stormo in the ScerTF
database(stormo.wustl.edu/ScerTF). The ScerTF rec-
ommended PWM cutoff scores were used to de-
fine the presence or absence of TF sites on DNA
sequences. The binding motif of MAX, the hu-
man bHLH factor, was obtained from factorbook
(v1.factorbook.org/mediawiki/index.php/MAX). The
NDS sequences used for this study were taken from a study
by Raveh-Sadka (29); the NDS1 and NDS2 sequences in
this work correspond to the v1 and v37 sequences from
that study, respectively.

Processing PBM and MITOMI data

Cbf1p PBM data was obtained from UniProbe database,
and we used dataset UP00397 for calculating free energy
changes. We searched for each motif variant in PBM data,
all the sequences that contains the same motif variant are
grouped together, and the average PBM score was used to
reflect the binding affinity for that variant. MITOMI data
was obtained from the study by Maerkl (30) and the Kd for
each relevant variant reported in the original publication
was used for the calculation directly.

RESULTS

Overview of Calling Cards Reporter Arrays (CCRA)

The CCRA method is designed to measure both TF
binding and gene expression in parallel for hundreds of
uniquely barcoded synthetic promoter sequences. To per-
form CCRA, the TF of interest is C-terminally fused to a
short protein tag, so that the TF directs insertion of Ty5
retrotransposons (or ‘calling cards’) (24,25) near its binding
sites (Figure 1A and C). For each CCRA assay, TF-directed
insertions into the designed promoter library are recovered
from yeast cells and the insertion locations and promoter se-
quence identities are determined via second-generation se-
quencing (Figure 1C). Each plasmid molecule in a CCRA li-
brary has a ‘library barcode’ corresponding to a unique pro-
moter sequence (Figure 1A), as well as a unique molecular
identifier (UMI). The library barcode allows each transpo-
son calling card to be assigned to the correct synthetic pro-
moter sequence, and the UMI enables us to determine when
multiple transposition have inserted into the same location
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Figure 1. Illustrations of CCRA experimental steps and binding results recovery. (A) CCRA library sequences are synthesized on a microarray and cloned
into plasmid and transformed into S. cerevisiae. The transformed cells are divided into two subpopulations for either binding measurements by Calling
Cards method or expression measurements by Sort-Seq method. (B) Because the promoter library is cloned upstream of YFP reporter gene, and the
mCherry reporter is constantly expressed from the same vector for internal control, cells are sorted based on the ratio of YFP and mCherry fluorescence
to estimate the relative strength of the library promoter sequences. (C) Each element in the library is designed to contain a sub-library index that allows
the user to assay a sub-population of the library, a unique barcode for identity, and a 4 bp randomized UMI to increase binding measurement capacity.
TF-directed transpositions into barcoded library are fully recovered by four PCRs to account for insertions in either orientation and the relative position
to barcode and UMI. PCR products are sequenced, and each library element is identified by barcode. Each dot represents a TF-directed transposition.
The relative position of the insertion in the library sequence of each transposition is shown as X-axis. Multiple transpositions at the same position are
distinguished by UMI. Raw number of transpositions are further normalized into a binding score (NBS) by correcting for the relative abundance of each
element in the library as well as the total number of transpositions in one experiment to make accurate comparisons across experiments.
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in distinct copies of the same synthetic promoter sequence.
By determining the number of independent transpositions
inserted into each synthetic promoter and then normaliz-
ing by the promoter’s abundance in the library, we generate
a normalized binding score (NBS), which is a quantitative
measure of TF binding (Figure 1C).

Because the CCRA library is cloned upstream of a yellow
fluorescence protein (YFP) reporter gene, it is also possi-
ble to measure the transcriptional output of each synthetic
promoter in the library using Sort-Seq (17,18) (Figure 1B).
To do so, the CCRA library is sorted by flow cytometry
into subpopulations according to the ratio of YFP fluores-
cence to mCherry fluorescence. The mCherry gene is reg-
ulated by a constitutive promoter, allowing for normaliza-
tion of the YFP signal to account for variation due to plas-
mid copy number, cell size, and other sources of extrinsic
expression noise. Next, the sorted subpopulations of yeast
cells are sequenced to quantify the abundance of each bar-
coded sequence in each subpopulation. Relative expression
is then calculated by the proportion of each sequence in ev-
ery binned library as per the standard Sort-Seq protocol
(17,18). By combining aspects of both Calling Cards assay
and Sort-Seq, CCRA allows us to quantitatively measure
the binding of a TF to a library of regulatory sequences,
and simultaneously measure the effect of that binding on
gene expression.

Binding and expression measurements are sensitive, accurate
and reproducible

To determine if CCRA can accurately and reproducibly
measure TF binding in parallel, we first analyzed the bind-
ing of Cbf1p, a well-studied bHLH protein whose motif
is strongly predictive of its in vivo binding pattern (23).
To evaluate the sensitivity of the method for the detec-
tion of TF binding at weak sites, we created a library of
40 different sequences consisting of 10 synthetic promot-
ers, each with four unique barcodes for replicates. Three
of these sequences were taken from different endogenous
yeast promoters previously shown to be bound by Cbf1p
at a single recognition site (23). We also designed two syn-
thetic promoters with nucleosome disfavouring sequences
(29) that flanked a single Cbf1p consensus motif. As nega-
tive controls, we included five matched promoters with mu-
tated Cbf1p binding sites. The binding of Cbf1p to a repre-
sentative promoter, OYE3/DAP1, and its matched control
is shown in Figure 2A. Each symbol on the graph repre-
sents an independent calling card insertion. Cbf1p-directed
transpositions appear to fit a Gaussian distribution centred
at Cbf1p motif. Interestingly, the region directly over the
motif contains few insertions, likely due to Cbf1p’s foot-
print as binds to its recognition sequence. The wild-type
OYE3/DAP1 promoter is bound tightly by Cbf1p (70.1
NBS), but when the Cbf1p binding site is mutated, bind-
ing is greatly reduced (7.7 NBS, Figure 2A bottom panel).
Cbf1p’s binding to all five pairs of promoters is summarized
in Figure 2B. In all instances, Cbf1p’s binding was signifi-
cantly stronger at promoters with intact Cbf1p sites than
at the mutated promoters, demonstrating that the CCRA
method can reliably detect TF binding even at relatively
weak sites containing single motifs. It is interesting to note

that although Cbf1p binding was significant at all five pro-
moters with intact Cbf1p motifs, the binding was signifi-
cantly stronger at the two promoters in which the Cbf1p
binding sites were flanked by nucleosome disfavouring se-
quences.

We next investigated the dynamic range of the CCRA as-
say. Since Cbf1p binding at regulatory elements is known
to strongly depend on the number of Cbf1p sites present
(23), we designed 183 synthetic promoters containing 0 to
6 sites and measured the binding of Cbf1p to this library.
We observed a strong non-linear relationship between the
normalized binding score (NBS), and the number of sites
present in a given promoter (Figure 2C). Importantly, we
were able to measure Cbf1p binding across 3 orders of mag-
nitude. These data demonstrate that CCRA technology can
accurately measure TF binding across a large range of bind-
ing strengths.

Because the oligonucleotides used to create the synthetic
promoters for CCRA are typically 170bp in length, we next
sought to determine if TFs still bind in vivo with the same
specificity as they do in their native genomic context. There-
fore, we designed a 344-element library of genomic promot-
ers derived from endogenous Gcn4p and Gal4p target pro-
moters and used CCRA to measure the binding of these two
TFs. We found that Gcn4p directed transpositions almost
exclusively to synthetic promoters derived from Gcn4p tar-
gets whereas Gal4p directed transpositions to Gal4p targets
(Figure 2D), with each TF showing little non-specific bind-
ing to the other TF’s set of target sequences. These results in-
dicate that truncated genomic sequences in a plasmid-based
system still retain their specificities and are not aberrantly
bound by other TFs.

Having established that the CCRA assay measures TF
binding with high sensitivity and specificity, we next sought
to benchmark the method’s reproducibility. To do so,
we performed replicate CCRA experiments using a 531-
element synthetic promoter library and found that the NBS
measured for each library member was highly reproducible
(Pearson r = 0.92, P-value = 4.23e–216, Spearman r = 0.63,
P-value = 3.21e–59. Figure 2E).

We next sought to establish that the CCRA method could
accurately and reproducibly measure expression of the YFP
reporter driven by a synthetic promoter library. To deter-
mine accuracy, we performed Sort-Seq to measure reporter
expression for each member of a library containing se-
quences derived from Gcn4p and Gal4p promoters. We then
cloned 24 of these library members and individually mea-
sured their expression levels by flow cytometry. We observed
excellent agreement between the two measurements; the
Pearson correlation coefficient was 0.95 (Pearson P-value =
6.59e–13, Spearman r = 0.96 and P-value = 7.91e–14), in-
dicating that CCRA methodology accurately measures pro-
moter activities from a library of synthetic sequences (Fig-
ure 2F). To further investigate the accuracy of the method
using a functional approach, we evaluated reporter expres-
sion as a function of the number of TF recognition sites for
Gcn4p in an amino acid starvation growth condition and
for Gal4p in galactose (31–35). For both factors, reporter
expression increased with the number of motifs, as expected
from the known mechanism of action for these TFs (Sup-
plementary Figure S2 ). Finally, we also showed that expres-
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Figure 2. CCRA produce accurate and reproducible measurements on binding and expression. (A) Cbf1p directed transpositions into the OYE3 DAP1
intergenic region where only one E-Box motif is present. Each dot represents a unique TF-directed transposition along the sequence. The x-axis specifies
the sequence coordinate to which a calling card insertion was mapped, whereas the y-axis specifies the number of independent insertions at each position.
Transpositions at the same position are distinguished by a UMI. In general, transpositions follow a gaussian distribution center at the transcription factor
binding site. (B) Cbf1p binding measurements on three pairs of promoter regions and two pairs of synthetic sequences with one motif flanked by NDS.
Blue bars represent sequences containing a motif, and gray bars represent the paired sequences with a mutated motif. The significance of binding detection
on one motif is indicated by the number of stars. Three stars indicate a P-value of less than 0.0001 by paired t-test with four replicates, two stars, a P-value
less than 0.001, and one star, a P-value <0.05. (C) Quantitative Cbf1p binding measurements on 183 sequences containing 0–6 motifs. Mean and standard
deviation are indicated by the lines in each boxplot. The dynamic range spans over 3 orders of magnitudes. (D) Gcn4p and Gal4p were tested on a 344
elements library derived from Gcn4p or Gal4p naturally bound promoters. The library is categorized into three groups: sequences containing at least
one Gcn4p site, sequences containing one Gal4p site and sequences containing no site. Most Gcn4p and Gal4p directed transpositions go to sequences
containing at least one of either motif respectively, suggesting CCRA performs accurate binding measurement with little false positive. (E) Showing binding
reproducibility from two binding experiments with Cbf1p on 531-element library. Pearson r = 0.92, P-value = 4.23e–216; Spearman r = 0.63, P-value =
3.21e–59. (F) 24 clones were measured by Flow cytometry individually and compared to the expression measured by Sort-Seq with Pearson correlation
coefficient of 0.95. Pearson P-value = 6.59e–13; Spearman r = 0.96 and P-value = 7.91e–14. (G) Showing expression reproducibility on a 344-element
library derived from Gcn4p and Gal4p binding targets. Pearson r = 0.97 and P-value = 1.51e–228, Spearman r = 0.95 and P-value = 1.29e–177.
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sion measurements are highly reproducible between two bi-
ological replicates (Pearson r = 0.97 and P-value = 1.51e–
228, Spearman r = 0.95 and P-value = 1.29e–177 Figure
2G).

The CCRA assay requires that the TF of interest be fused
to a fragment of the Sir4p protein. This can be achieved
by tagging the TF at its endogenous locus or by express-
ing the fusion from a plasmid, which is more convenient for
many experiments. To investigate whether TF fusions ex-
pressed from plasmids binds to CCRA libraries in a similar
manner as TF fusions expressed at their endogenous loci,
we measured the binding for each using the same 531 syn-
thetic promoter library and observed a high concordance
(r = 0.84, Supplementary Figure S1). We also confirmed
that transcription factors tagged with the Sir4p fragment do
not influence Sort-Seq expression measurements as they are
highly correlated with measurements made using untagged
proteins (r = 0.94 for Gal4p, r = 0.99 for Gcn4p, Supple-
mental Figure S3A and B). Tagging TFs with Sir4p also
does not appear to affect their functions (Supplemental Fig-
ure S3C–F). Taken together, these results demonstrate that
the CCRA method accurately and reproducibly measures
the TF binding and expression consequences to a library of
synthetic promoters

Quantitative and high-throughput measurement of the bind-
ing energy landscapes of transcription factors in vivo

Quantitative measurement of TF binding affinities to differ-
ent DNA sequences is critical for understanding how TFs
function in vivo. Because several studies have shown that
minute variation in binding site affinity can specify alter-
native transcriptional or functional programs (36,37), it is
important to be able to determine not only a TF’s consen-
sus binding sequence, but also its binding energy landscape
(i.e. the TF’s affinity for alternative binding sites). There are
several methods that measure binding energy landscapes
in vitro, such as MITOMI, PBM, Spec-seq, HT-SELEX,
Bind-n-Seq, SPR, CSI and EMSA (30,38–49), and these
have proven invaluable for understanding TF-DNA inter-
actions. However, there is currently no method to accu-
rately discriminate the small changes in free energy needed
to generate binding energy landscapes in vivo. Such land-
scapes may differ from those measured in vitro due to the
effects of nucleosomes and other chromatin-associated pro-
teins on DNA shape and binding site accessibility. There-
fore, we sought to determine whether CCRA could mea-
sure binding energy landscapes in vivo. We measured the
binding of two basic helix loop helix (bHLH) factors, Cbf1p
and MAX, to their consensus motifs and all sequences that
differ by 1 bp from the consensus (Figure 3A). The TF
binding sites were flanked by two intrinsic nucleosome dis-
favouring sequences to facilitate comparison to the in vitro
binding landscapes previously determined (29). In order to
accurately measure small changes in TF affinity, we used
an expectation maximization algorithm to distinguish TF-
directed transpositions from background insertions by as-
suming that TF-directed transpositions follow a Gaussian
distribution centred at the consensus motif whereas non-
specific transpositions follows a uniform distribution across
the full synthetic promoter (see Materials and Methods).

Cbf1p and MAX occupancies at their consensus binding
sites and at all possible one base substitution are shown
in Figure 3B and E respectively. As expected, both factors
bound most strongly to their consensus sites. The changes in
occupancies at non-consensus sites were strongly dependent
on the position of the alteration and the identity of the sub-
stituted nucleotide. Some positions are crucial, such as the
first position of core E-box motif, in the sense that any al-
ternation resulted in completely abolished binding, whereas
some positions such as flanking bases next to the core mo-
tif are more flexible when changed into other nucleotides. In
general, Cbf1p binding appeared to be less tolerant to sub-
stitutions in its consensus motif than MAX, in agreement
with previous in vitro measurements (30). We calculated the
change of binding energy (��G) from consensus site to the
alternative site as follows (see Methods for a detailed deriva-
tion):

��G = �G(Sconsensus) − �G(Smutant)

= −RTln
(

Occ(Smutant)
Occ(Sconsensus)

)

To determine whether the measurements performed by
CCRA are concordant with the binding energy landscapes
of Cbf1p and MAX as measured by well-established in vitro
methods, we compared our results to MITOMI and PBM
(Figure 3C, D, F and G). Both methods generated energy
landscapes that were highly correlated to our CCRA mea-
surements (For Cbf1p the correlation between CCRA and
MITOMI: Pearson r of 0.75 and P-value = 1.90 e–5, Spear-
man r of 0.70 and P-value = 9.40e–5; the correlation be-
tween CCRA and PBM: Pearson r of 0.72 and P-value =
5.29e–5, Spearman r of 0.73 and P-value = 3.97e–5. For
MAX the correlation between CCRA and MITOMI: Pear-
son r of 0.72 and P-value = 1.42e–4, Spearman r of 0.74
and P-value = 9.06e–5; the correlation between CCRA and
PBM: Pearson r of 0.80 and P-value = 7.24e–6, Spearman
r of 0.77 and P-value = 2.36e–5). Since the correlations be-
tween the measurements made by the two in vitro methods
are similar in magnitude (for Cbf1p, the correlation between
MITOMI and PBM: Pearson r = 0.73 and P-value of 3.35e–
5, Spearman r = 0.78 and P-value = 4.57e–6. For MAX,
the correlation between MITOMI and PBM: Pearson r of
0.79 and P-value = 1.28e–5, Spearman r = 0.79 and P-value
= 1.25e–5 Supplementary Figure S4), these results demon-
strate CCRA measures binding energy landscapes in vivo
with an accuracy comparable to in vitro methods.

The reported binding constant (K) for Cbf1p and MAX
is (6.2 ± 1.4) × 107 M−1 at 20 ◦C (Kd = 1.6 nM) and (7.8
± 2.6) × 106 M−1 (Kd = 130 nM) respectively (50,51), and
therefore the binding energy �G for Cbf1p is about –45
kJ/mol (−18 KBT) and –39 kJ/mol (–16 KBT) for MAX.
Given the largest ��G calculated from the consensus to
the mutant motif, Cbf1p loses 1

4 of its binding energy with
one nucleotide difference (e.g. ��G is 9.6 kJ/mol from GT-
CACGTG to GTCACGTA) and therefore the Kd on the
mutated motif GTCACGTA becomes 71 nM, a 40-fold in-
crease relative to the consensus motif. MAX loses 1

12 of its
binding energy with one nucleotide difference in vivo (e.g.
��G is 3.4 kJ/mol from CACGTG to CACTTG), and
therefore the Kd on the mutant motif is 500 nM.
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Figure 3. Binding energy measurements on alternative TF motif are quantitative. (A) Scheme of the experimental flow. A CCRA library was designed
containing all possible alternative E-box motifs that are one base away from the consensus sequence and flanked with a nucleosome disfavoring site
and analyzed for Cbf1p binding. Cbf1p directed transpositions were further processed using an expectation maximization algorithm (see Materials and
Methods). The change of free energy was then calculated using the binding occupancy of the alternative motif and the consensus. (B) Cbf1p binding
measurement on all alternative E-Box motif with four replicates. Standard deviation is indicated by the error bar. (C) The measured change of free energy
for each alternative TF motif for Cbf1p was compared to the measurement by MITOMI. Pearson r of 0.75 and P-value = 1.90 e-5, Spearman r of 0.70 and
P-value = 9.40e–5. (D) The same as (C) but compared to the measurement by PBM. Pearson r of 0.72 and P-value = 5.29e–5, Spearman r of 0.73 and P-
value = 3.97e–5. (E) The same as (B) but with MAX transcription factor binding measurement. (F) The same as (C) but with MAX binding measurement.
Pearson r of 0.72 and P-value = 1.42e–4, Spearman r of 0.74 and P-value = 9.06e–5. (G) The same as (D) but with MAX binding measurement. Pearson
r of 0.80 and P-value = 7.24e–6, Spearman r of 0.77 and P-value = 2.36e–5.
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Quantitative measurement of the cooperative binding of
Cbf1p

Understanding the mechanisms by which TFs select their
targets in vivo will likely require more than just a character-
ization of their cognate DNA binding preferences, since it
has been shown that many TFs achieve binding specificity
through cooperative interactions with other DNA-binding
proteins (10–15). Investigations into the cooperative inter-
actions that occur between TFs are usually performed in
vitro, under conditions that may not reflect the actual cel-
lular environment (e.g. the lack of histones). In vivo investi-
gations, which are less common, typically involve genome
editing followed by quantitative binding measurement in
vivo, which is experimentally challenging and time consum-
ing (23,52,53). Given that CCRA is able to measure small
changes in the free energy of TF binding, we sought to ex-
tend this approach to analyze TF–TF cooperativity. We fo-
cused on a pair of paralogous bHLH proteins, Cbf1p and
Tye7p, both of which recognize the E-box motif CACGTG
in vitro but bind to two distinct sets of target genes through
different types of cooperative interactions.

We first set out to investigate Cbf1p, which has been
shown to bind with homotypic cooperativity when two or
more sites are present (23). This cooperativity was demon-
strated by analyzing Cbf1p binding at mutated versions
of the IDH1 NCE103 divergent promoter, which normally
contains three Cbf1p binding sites. This study showed that
Cbf1p occupancy at the wild-type promoter was much
stronger than the sum of the binding occupancies at three
mutated promoters, each containing only a single Cbf1p
binding site, demonstrating that Cbf1p binding is not ad-
ditive but instead cooperative at this locus. However, in this
study, Cbf1p’s cooperativity was investigated at only a sin-
gle promoter, so it is unclear to what extent this result can
be generalized. We therefore sought to use CCRA to deter-
mine if this phenomenon occurs at other loci. We selected
seven promoters with two or three Cbf1p sites including
IDH1 NCE103 pr and designed a CCRA library in which
these promoter sequences contained either zero, one or two
mutated Cbf1p sites. If Cbf1p binds cooperatively at these
loci, we expect that, for each series of synthetic promoters,
the sum of the binding scores from sequences with a single
Cbf1p site will be significantly less than the binding at the
‘wild type’ promoter sequence with multiple Cbf1p sites. In
all seven cases, we found that Cbf1p binding at the wild type
promoter was significantly higher than would be expected
under an additive binding model (Figure 4A), suggesting
that Cbf1p binds cooperatively at all target promoters that
contain multiple recognition sites.

We next sought to characterize the relationship between
the strength of Cbf1p cooperative binding and the distance
between binding sites. Because the DNA double helix is
thought to be rigid over length scale less than ∼140 bp due
to vertical base-stacking interactions and intra-helix phos-
phate charge repulsion (54,55), one might expect that Cbf1p
dimers would be unable to bind cooperatively at promot-
ers with two recognition sites in close proximity. However,
Cbf1p has been shown to sharply bend DNA upon bind-
ing (56–58), and, furthermore, DNA is clearly malleable to
some proteins, as it is tightly wrapped around nucleosomes

and can be twisted and untwisted during replication and
transcription (59–61). To investigate the relationship be-
tween Cbf1p cooperativity and the distance between recog-
nition sites, we designed synthetic promoters where we var-
ied the distance between two Cbf1p consensus motifs from
9 to 41 bp with 2 bp intervals. We used CCRA to measure
Cbf1p binding on these synthetic sequences, and plotted
binding occupancy as a function of the distance between
two sites. We found that the strength of Cbf1p binding at
these synthetic promoters varied periodically with the dis-
tance between the binding sites (Figure 4B). We observed
strong binding at the shortest distance of 11 bp, and we ob-
served additional peaks at 22, 32 and 41 bp apart. These dis-
tances are all shorter than the persistence length of DNA,
and at the longest distance investigated, 41 bp, the binding
sites are separated by >65 Å, so it seems unlikely that the in-
teraction between Cbf1p dimers could be explained by pro-
tein domain flexibility. Therefore, these results suggest that
Cbf1p’s ability to bend DNA allows the two dimers to in-
teract with one another. We next hypothesized that the ob-
served periodicity could be explained by the fact that Cbf1p
makes its base pair contacts in the major groove of DNA so
that at some motif distances, contact between Cbf1p dimers
would require the rotation of the major groove around the
axis of the double helix, incurring an energetic penalty. To
test this, we fitted the binding to a cosine function. The cal-
culated period was 10.65 bp, almost exactly the number of
base pairs required for DNA to make one complete helical
turn about its axis. We evaluated the fit of this model us-
ing analysis of variance (ANOVA) and obtained a P-value
1.4e–6, indicating that the data follows the assumed model
significantly better than expected by chance. This result sug-
gested to us Cbf1p dimers that are not bound on the same
side of the DNA helix must twist the DNA and incur an en-
ergetic cost. In contrast, two Cbf1p molecules on the same
face of the helix are able to achieve the optimal coopera-
tive binding efficiency. We next sought to compute the free
energy cost associated with twisting the DNA double helix.
Since we observed a 3.8-fold difference between the highest
and the lowest occupancy, we calculated that the free energy
lost due to twisting is 3.40 kJ/mol (1.37 KBT). Compared to
��Gs calculated for the consensus to mutant motif from
the previous section, the energic cost of DNA twisting is
comparably to a mild nucleotide change in the E-box mo-
tif (e.g. from GTCACGTG to GTCTCGTG). Interestingly,
over the distance range examined in this experiment, the
amplitude of the periodic function did not change appre-
ciably, suggesting that, in contrast to twisting, Cbf1p bends
DNA efficiently, with little energetic cost.

We next asked if the phase of Cbf1p binding sites influ-
enced the binding of this transcription factor at native ge-
nomic loci. We took published genome-wide Cbf1p Calling
Cards data (23) and grouped all intergenic regions with two
Cbf1p binding sites within 100 bp according to the relative
phase of the two sites. We found that promoters contain-
ing two Cbf1p binding sites separated by a multiple of 10.5
bp (i.e. with major grooves on the same side of the DNA
helix) were bound significantly more tightly by Cbf1p than
promoters with binding sites whose major grooves were on
opposite sides of the DNA helix (Figure 4C, P = 0.007).
This result demonstrates that the periodicity in cooperative
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Figure 4. Cbf1p homotypic cooperativity is dependent on DNA structure. (A) Left and middle panel: experimental strategy to test if cooperativity exists
between Cbf1p molecules when bind to sequences with multiple sites. Higher binding occupancy is expected than the sum of single site occupancy if
cooperativity exists. Right Panel: Seven wild type promoters with either two or three motifs that are bound by Cbf1p were mutated such that only one
motif was left. Binding on mutated sequences was combined and then compared to the binding on the wild type sequence to verify the existence of
cooperativity between two Cbf1p molecules. The light blue bar represents the sum of the binding from individual motif, and the dark blue bar represents
the observed binding on the wild type sequence. Error bar is the standard deviation across three biological replicates. One star indicates P-value less than
0.05, two stars indicate P-value <0.01 and three stars indicate P-value <0.001 by t-test. (B) Two Cbf1p motifs were positioned from 9 to 41 bp apart in 2
bp intervals. Cbf1p binding was measured with four replicates. A trigonometric function model was used to fit the observed data, and the period obtained
was 10.65 bp. An ANOVA test was performed to assess the learned parameter with a P-value of 1.4e–6. (C) Genomic loci with two Cbf1p sites within 100
bp of each other were grouped according to whether they occur on the same side or opposite sides of the DNA helix (i.e. either separated by a multiple of
10.5 bp or by a multiple of 10.5 + ∼5 bp). Genomic Calling Cards score was compared between two groups, and a t-test was performed with P-value of
0.007.

binding that we observed in our CCRA experiments also
influences Cbf1p binding in the yeast genome.

The binding logic of the Tye7p/Gcr1p/Gcr2p/Rap1p TF col-
lective

Unlike Cbf1p, many of the promoters bound by Tye7p do
not encode an E-box, this factor’s preferred binding motif
(23). It has previously been shown that Tye7p binds cooper-
atively with the Gcr1p/Gcr2p/Rap1p complex and that by
taking into account the DNA binding preferences of these
proteins, the in vivo binding of Tye7p can be more accurately
predicted (23). However, the biophysical principles that gov-
ern the binding of this complex are still unclear. For exam-
ple, the binding of this complex does not appear to follow
either of the two most well-studied models for TF binding,
the Enhancesome model or the Billboard model (62,63), be-
cause these models both posit a one-to-one correspondence
between the binding of a TF and the presence of its recog-
nition site. Instead, Tye7p binding appears to be consistent
with the recently described TF collective model, in which a
group of TFs bind together, but the motif positioning and
composition at target sites is flexible (26,27). However, the

TF collective model is ambiguous with regard to the mech-
anistic details of binding, so important questions about the
function of the Tye7p/Rap1p/Gcr1p/Gcr2p collective re-
main.

We first assessed the predictive power of the collec-
tive model by attempting to reprogram yeast promoters
that normally bind Cbf1p, a Tye7p paralog, into pro-
moters that bind Tye7p. To do so, we took two pro-
moters, OYE3 DAP1 pr and RPL1 RHO3 pr, that are
normally bound by Cbf1p, and removed their E-boxes
(i.e. Cbf1p/Tye7p binding sites), and added Gcr1/2p and
Rap1p sites with a design based on the TDH3 promoter,
which is bound by Tye7p. We then assessed the binding
of Tye7p to these reprogrammed promoters using CCRA.
Both showed significant decreases in Cbf1p binding (6.1-
fold and 2.4-fold respectively) and significant increases in
Tye7p (3.3-fold and 2.4-fold respectively) (Figure 5A). We
also observed an increase in Gcr1p binding at these repro-
grammed promoters. Since neither of these reprogrammed
promoters contain a consensus Tye7p binding site, we con-
clude that Tye7p binding is consistent with the collective
model and that this TF can be recruited to promoters via
cooperative interactions with Gcr1/2p and Rap1p.
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Figure 5. The molecular logic of Tye7p binding collective. (A) To test if Tye7p is able to bind without its motif through protein-protein interactions with
Gcr1/2p and Rap1p, the Cbf1p motifs on the Oye3 Dap1 and Rpl1 Rho3 intergenic regions were mutated and two Gcr1p and two Rap1p motifs from
TDH3 promoter were added. Binding measurements were performed on the wild type and reprogrammed sequences for Tye7p, Gcr1p and Cbf1p. Tye7p
bound to both reprogrammed promoters at significantly higher levels than the wild type Oye3 Dap1 and Rpl1 Rho3 sequences, as did Gcr1p. Cbf1p binding
was abolished on these regions after mutation. T test was performed to assess the significance, and two stars indicate P-value <0.01 and three stars indicate
P-value <0.001. (B) The BMH1 promoter, bound by Tye7p, contains one Tye7p motif, three Gcr1/2p motif and one Rap1p motif; a CCRA library was
created in which all combinations of sites were mutated to create 32 sequences, including the wild-type sequence. Tye7p binding was measured on these
sequences and plotted. Intact sites are indicated as the x-axis label. All 32 sequences were classified into two sections, those with and without the Tye7p
motif. Error bars represents the variation between four biological replicates. (C) The total binding free energy on each sequence based on the PWM score of
the remaining sites was correlated with Tye7p binding result, and the total free energy of binding to DNA for the binding collective predicts Tye7p binding
with R2 = 0.48, Pearson r = 0.69 and P-value = 1.07e-5, Spearman r = 0.63 and P-value = 1.04e–4. (D) The same as (B) but with Gcr1p, and these 32
sequences are classified into with and without any Gcr1/2p motif. (E) PWM score of Gcr1/2p sites remained on the sequences was correlated with Gcr1p
binding result, and Gcr1/2p sites alone predicts Gcr1p binding with R2 of 0.69, Pearson r = 0.83 and P-value = 3.15e-9, Spearman r = 0.83 and P-value
= 3.59e-9. (F) Expression was measured for all mutated sequences derived from BMH1 promoter and was correlated with the summation of Gcr1/2p and
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Next, we wanted to better understand the molecular logic
by which this collective binds. While Tye7p clearly does not
require its motif to be present at a regulatory target, is this
true for other members of the collective? When more than
one binding site is present for a single TF, do the addi-
tional sites contribute to complex stability, or is one site
sufficient and the others redundant? How is transcriptional
output correlated with binding of each TF member? To an-
swer these questions, we took a Tye7p bound promoter,
BMH1 pr, which contains one Tye7p site, three Gcr1/2p
sites and one Rap1p site, made every possible combination
of mutated sites, and measured Tye7p binding using CCRA.
Since Tye7 does not require its recognition sequence for
binding, we first wanted to know if its motif made any en-
ergetic contribution to stabilize this factor. We divided the
mutated sequences into two categories, those with and with-
out a Tye7p motif. Sequences without a recognition site
were still significantly bound by Tye7p (Figure 5B, right
group), consistent with previous observations, but Tye7p
binding at the wild-type BMH1 pr is reduced by 45% when
the Tye7p recognition site is mutated (P-value = 0.012).
Furthermore, when the 16 pairs of BMH1 pr mutants are
compared across groups, we observe a significant reduc-
tion in Tye7p when the recognition motif is mutated (P-
value = 0.010). These results demonstrate that while the
Tye7p motif is not required for Tye7p binding, it makes
an energetic contribution when present. Notably, the posi-
tional distributions of Tye7p insertions across the BMH1 pr
were essentially unaffected by the presence or absence of
its cognate motif (Supplementary Figure S6), suggesting
that the recruitment of Tye7p may be largely mediated by
Gcr1/2p and Rap1p, even though the presence of a Tye7p
binding site clearly makes an energetic contribution. Con-
sistent with this hypothesis, we found that Tye7p binding
is strongly dependent on Gcr1/2p and Rap1p sites (Figure
5B). In general, we observed a gradual decrease in binding
as more collective sites are mutated, and we did not observe
large decrease in binding (>2 fold) upon the removal of any
one site, suggesting that no single binding site is necessary
for Tye7p binding at this promoter, but instead that all sites
contribute to the binding affinity of this TF. Based on this
observation, we reasoned that Tye7p binding might be pre-
dicted by the total free energy from all sites combined on
a promoter. Therefore, we performed a regression analysis
to understand how well the total sites information explains
Tye7p binding (Figure 5C). Given that PWM scores reflect
the binding energy of TF to specific DNA sequences, we
used the sum of PWM scores for all sites present on the
promoters for the analysis and we found that the combined
sites information correlates well with Tye7p binding (Pear-
son r = 0.69 and P-value = 1.07e–5, Spearman r = 0.63 and
P-value = 1.04e–4).

We then measured Gcr1p and Gcr2p occupancy on this
promoter library. As before, we divided the mutated pro-

moters into two categories based on whether they contained
a Gcr1/2p motif. In contrast to what was observed for
Tye7p, we found that neither Gcr1p nor Gcr2p was able to
bind at any promoters without their shared recognition site
(Figures 5D & Supplementary Figure S7A), suggesting that
these factors bind independently from the rest of the collec-
tive. To confirm this, we regressed Gcr1p and Gcr1p bind-
ing against the free energy of binding of Gcr1/2p or the full
collective. We found that only Gcr1p/2p sites are required
to explain Gcr1p and Gcr2p binding and that incorporat-
ing information from the other TF in the collective weakens
the predictive power (Figure 5E & Supplementary Figure
S7D for Gcr1p and Supplementary Figure S7B & CS for
Gcr2p). Thus, the binding of the Gcr1/2p complex appears
to be solely dependent on the presence and the number of
Gcr1/2p sites. Furthermore, Gcr1/2p binding appears to
saturate at two sites. Our Gcr2p binding measurements were
more variable and weaker than our Gcr1p measurement, es-
pecially at sequences with only one Gcr1/2p motif, which
might be due to the fact that Gcr2p is known to bind DNA
indirectly through Gcr1p and depends on Gcr1p to function
(64,65).

We next sought to investigate the relationship between
the binding of the Tye7p collective and its transcriptional
output. To do so, we performed Sort-Seq to measure the
reporter gene expression from this library. We regressed re-
porter gene expression against the sum of the free energies
of the binding sites (Supplementary Figure S7E). We ob-
served a good correlation, and we found that expression
level correlated with the combined TF occupancy (Figure
5F, Pearson r = 0.70 and P-value = 8.34e–6, Spearman r =
0.67 and P-value = 2.95e–9), suggesting that transcriptional
output is determined by the whole complex. Similar analysis
was done for TDH3 promoter containing two Gcr1/2p sites
and two Rap1p sites but no Tye7p site, and again the com-
bined Tye7p, Gcr1p and Gcr2p occupancy correlated well
with the expression (Supplementary Figure S7F & GS).

Rap1p binding was not measured in this study due to its
inability to be tagged by Sir4p. However, Rap1p has been
shown to interact with Gcr1p and Gcr2p as an activat-
ing complex (66,67). With expression we measured on both
BMH1 and TDH3 promoters, we compared sequence pairs
that are with and without Rap1p site (Supplementary Fig-
ure S7H). We performed a paired T-test on these sequence
in terms of expression, and the P-value is 0.018, indicating
Rap1p motif is contributing the genetic regulation.

Taken together, our experiments suggest that Tye7p is re-
cruited to promoters by Gcr1p/Gcr2p/Rap1p complex and
that Tye7p binding often occurs in the absence of its recog-
nition site. However, it appears that Tye7p binding is stabi-
lized by the presence of its motif. In contrast, the Gcr1/2p
recognition site is necessary and sufficient for the binding
of these proteins, suggesting a hierarchy in which these fac-
tors can recruit Tye7p but not vice versa (Figure 5G). The

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Tye7p binding results. The binding of three factors from the collective predicts the expression with R2 of 0.49, Pearson r = 0.70 and P-value = 8.34e–6,
Spearman r = 0.67 and Spearman P-value = 2.95e–5. (G) The suggested model for Tye7p/Gcr1p/Gcr2p/Rap1p binding collective. (i) Tye7p is recruited to
promoters by Gcr1/2p and the Tye7p motif, and the expression output is the strongest when all sites are available; (ii) Tye7p can be recruited in the absence
of a Tye7p motif via a protein-protein interaction with Gcr1/2p, but Tye7p binding occupancy is lowered and the overall expression output is lowered as
well; (iii) Gcr1/2p occupancy and Tye7p occupancy are lowered with fewer Gcr1/2p motifs, and the overall expression output is further reduced.
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transcriptional output at promoters bound by this complex
correlates with the combined occupancy of all TFs, suggest-
ing that each TF in the collective aides in the recruitment of
the RNA Polymerase II holoenzyme.

DISCUSSION

In this study, we demonstrated that the CCRA method is a
useful tool to study many different aspects of TF binding in
vivo. Using CCRA, we first measured the DNA binding en-
ergy landscapes for Cbf1p and MAX, and we showed that
the free energy differences measured by CCRA are strongly
correlated with those measured by PBM and MITOMI,
suggesting CCRA is a quantitative measure of equilibrium
binding. This is likely because the rate of transposon inser-
tion is slow relative to the typical on rates and off rates for
TF binding to DNA; in contrast, crosslinking based meth-
ods may capture transient TF-DNA binding events as TFs
sample weak binding sites (68), and thus the measured oc-
cupancies may reflect a combination of on-rate and equi-
librium binding. Next, we set out to understand TF co-
operativity by studying a pair of paralogues bHLH TFs,
Cbf1p and Tye7p; we observed that Cbf1p binding occu-
pancy is dependent on the DNA helix turn, revealing the
biophysical relations between DNA structure and a homo-
typic cooperative TF; Finally, we characterized the molec-
ular binding logic of Tye7p, which is Tye7p finds its targets
via protein-protein interaction with Gcr1/2p and Rap1p
without requiring its own motif, further delineating the col-
lective binding model.

Transcription factors orchestrate the gene expression
changes that lie at the heart of most biological processes;
however, the principles by which TFs locate their target
genes and the functional consequences of binding are not
well understood. Detailed investigations into the molecu-
lar mechanisms that govern TF binding have traditionally
used in vitro methods (30,38–49), which provide limited in-
sights into TF binding in vivo, or employ genome editing
(23,52,53), which is slow and costly. Due to these difficul-
ties, many studies that have tried to understand the rules
of TFs binding and function have focused on a finite set of
loci and a limited number of genetic alternations (23,52,53).
Recently, powerful high-throughput methods, such as Sort-
Seq (17,18) and barcoded MPRAs (19,20), have been devel-
oped to allow more comprehensive investigations into the
regulatory code, but these rely solely on reporter gene ex-
pression and must indirectly infer TF binding and its impact
on gene expression. Two recent studies have coupled ChIP-
based binding measurement with parallel reporter assays to
reveal the correlations between chromatin marks and TF
binding (21) and to examine the predictive power of ther-
modynamically motivated models of gene expression (22).
These studies demonstrated the parallel measurement of TF
binding on synthetic promoters and represent an important
advance; however, neither demonstrated the ability to quan-
titatively measure binding energies or to analyze coopera-
tive interactions, which are critical measurements for under-
standing how TFs function. Methods in which TFs direct
transposon insertion (24,25,69) or the enzymatic cleavage
of DNA (70,71) show promise for going beyond a qualita-
tive description of TF binding. Here, we demonstrate that

CCRA is able to quantitatively measure TF binding and
reporter gene expression on synthetic sequences in a high-
throughput manner. It is a sensitive and accurate method
that is amenable to the analysis of complexes of TFs. There-
fore, CCRA should be a useful tool to better understand the
regulatory principles of TFs localization and functionality.

When designing a CCRA library, certain considerations
should be accounted for in order to ensure the accurate
quantification of TF binding. It is important to collect
enough transpositions events in each experiment relative to
the size of the CCRA library. Although chip-based oligonu-
cleotide synthesis allows for very large libraries (up to 244
000 unique oligos) to be synthesized in a cost-effective man-
ner, we have found that it is advantageous to design the li-
brary so that smaller subsets (e.g. 100–1000 sequences) can
be amplified with unique primer pairs. Since we typically
collect 10 000–50 000 transpositions for each CCRA exper-
iment (using 10 yeast plates), limiting the sub-libraries to
this size ensures high statistical power for each experiment,
while still allowing for the analysis of different TFs or the
testing of different hypotheses in a single experiment. The
optimal number of transpositions for a particular CCRA
experiment will also depend on the transcription factors to
be analyzed and the specifics of the library design (e.g. a li-
brary consisting of many high affinity sequences may yield
more transpositions than library consisting of many low
affinity sequences). In our experience, CCRA libraries with
500 or fewer unique sequences yield high-quality binding
results, but this could be easily scaled by using more plates
or through future improvements to the method. In the fu-
ture, it should be possible to analyze multiple TFs simul-
taneously with CCRA technology by adding different TF
barcodes during the first amplifying step and then trans-
forming the barcoded libraries into different yeast strains,
each containing a different TF-Sir4p fragment fusion.

The CCRA method is able to analyze a number of user-
defined sequences in parallel, providing quantitative and
well-controlled measurements that would be difficult to ob-
tain using genome-wide methods. For example, the free en-
ergy binding landscape we described for Cbf1p was gener-
ated by analyzing all 1bp substitutions to this factor’s con-
sensus motif in exactly the same sequence context, a design
which enabled the detection of small free energy changes.
In contrast, small changes in binding energy cannot be
inferred from genome-wide calling card measurements of
Cbf1 (Supplementary Figure S5), although the broad trends
are generally the same. This is likely due to the fact that
while all 1bp substitutions to Cbf1p’s consensus binding
sequence are indeed present in the genome, they exist in
different local sequence contexts, so the measurements are
not well controlled. For example, in the yeast genome, one
Cbf1p binding site might compete with a nucleosome, while
another binding site may not, so the different local contexts
confound the accurate measurement of binding energies. In-
deed, we observed in our CCRA experiments that when a
Cbf1p binding site is flanked with a nucleosome disfavour-
ing sequence, Cbf1p binding consistently increases (Fig-
ure 2B). The ability to make well-controlled measurements
likely also contributed to our ability to detect the periodic
phase dependence of Cbf1p’s cooperativity. This phase de-
pendence is an interesting phenomenon, and to our knowl-
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edge cooperative binding of a transcription factor complex
has not been previously shown to be influenced by helical
phase. However, an important related result was found by
Kosuri and colleagues where they found that the expression
output of a reporter gene depended on the helical phase be-
tween the transcription start site and the binding site of a
transcriptional activator (72).

We envision CCRA will be broadly applied to study three
different aspects of TF binding: (i) quantitative investiga-
tions into TF–DNA interactions in the native cellular en-
vironment; for example, mapping TF binding energy land-
scapes in vivo or evaluating the effect of flanking sequences
on motif recognition; (ii) studies into the mechanisms by
which TFs bind cooperatively; for example, evaluating the
energetic contributions of different TF binding sites to the
binding of a TF complex; (iii) dissection of the relationship
between TF occupancy and transcriptional output. Fur-
thermore, it is likely that CCRA can be extended to mul-
ticellular eukaryotic systems in the future using the appro-
priate transposon machinery. The Calling Card method has
been applied to study mammalian TFs such as SP1 and
BAP1 with PiggyBac transposon (73,74), so this transpo-
son system is an excellent candidate for performing CCRA
in mammalian cells. Such investigations should ultimately
lead to a better understanding of the roles that TFs play in
orchestrating the transcriptional networks that allow cells
to carry out their diverse functions.

DATA AND SCRIPT AVAILABILITY

Synthetic DNA library and the analyzed results are pro-
vided as a excel spreadsheet. Scripts and samples for anal-
ysis of sequencing reads for TF binding quantification
and expectation maximum algorithm for filtering are pro-
vided in https://gitlab.com/JiayueLiu/ccra codes.git. Raw
sequencing reads are available in GEO with series number
GSE144437.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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