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Simple Summary: Glioblastoma is the most common primary brain tumor in adults, and its aggres-
sive nature yields a poor prognosis despite current treatment strategies. The aim of our literature
review is to discuss various immunotherapeutic strategies currently being investigated in the treat-
ment of glioblastoma. Checkpoint inhibitors, various vaccination strategies, and CAR T-cell therapies
serve as some of the most investigated immunotherapeutic strategies. However, all strategies face
various limitations, such as the low relative mutational burden, the immunosuppressive tumor
microenvironment, and genetic heterogeneity, which serve as the current challenges.

Abstract: Glioblastoma (GBM) is a lethal primary brain tumor. Despite extensive effort in basic,
translational, and clinical research, the treatment outcomes for patients with GBM are virtually
unchanged over the past 15 years. GBM is one of the most immunologically “cold” tumors, in
which cytotoxic T-cell infiltration is minimal, and myeloid infiltration predominates. This is due to
the profound immunosuppressive nature of GBM, a tumor microenvironment that is metabolically
challenging for immune cells, and the low mutational burden of GBMs. Together, these GBM char-
acteristics contribute to the poor results obtained from immunotherapy. However, as indicated by
an ongoing and expanding number of clinical trials, and despite the mostly disappointing results
to date, immunotherapy remains a conceptually attractive approach for treating GBM. Checkpoint
inhibitors, various vaccination strategies, and CAR T-cell therapy serve as some of the most investi-
gated immunotherapeutic strategies. This review article aims to provide a general overview of the
current state of glioblastoma immunotherapy. Information was compiled through a literature search
conducted on PubMed and clinical trials between 1961 to 2021.

Keywords: glioblastoma; immunotherapy; glioblastoma immunotherapy; checkpoint inhibitors;
vaccine; CAR-T

1. Introduction

Glioblastoma (GBM) is the most malignant of the glial tumors (grade IV) and rep-
resents more than half of all primary brain tumors in the United States, with an annual
prevalence of roughly 3.19 per 100,000 people [1,2]. GBMs provide a unique challenge
due to their highly invasive nature, leading to a nearly 100% recurrence rate even in cases
of gross total resection based on radiographic criteria [3]. Moreover, a poor response to
existing treatment is usually seen due to the inherent intra-tumor heterogeneity [4–6]. The
median survival of patients with GBM is approximately 14 months, even with aggressive
treatment regimens [2,7].

The Stupp protocol remains the standard of care for GBM, with virtually no improve-
ments since it was developed in 2005. The Stupp protocol entails the administration of
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temozolomide (TMZ) (75 mg/m2) with concomitant radiotherapy (RT) (60 Gy) for 42 days
followed by six cycles of adjuvant TMZ (150 to 200 mg/m2) administered for five days
during each 28-day cycle [8]. In 2017, tumor-treating fields and maintenance temozolomide
were shown to increase progression-free survival and overall survival in patients when
compared to maintenance temozolomide alone [9]. Still, there is much necessity for novel
treatment strategies and novel therapeutic targets. The FDA’s approval of interferon-alpha
2 (IFN-α2) for the treatment of hairy cell leukemia in 1986 marked a major transitional
point in cancer-directed immunotherapy [10]. Since then, there have been many pre-clinical
and clinical developments in the treatment of solid and hematologic malignancies [11,12];
immunotherapy has emerged as a promising approach for GBM therapy.

No longer thought to be an immune privilege, the dynamic immune response and
active immune-surveillance of the central nervous system (CNS) have been highlighted in
numerous studies [13–16]. The roles that microglia, macrophages, and dendritic cells play
as potent antigen presenter cells (APCs) in the CNS have been further established [17–20].
In 2015, Louveau et al. provided experimental evidence for the meningeal lymphatic vessels
(MLVs) and their role in facilitating the transport of APCs to the nasal and deep cervical
lymph nodes [21]. These APCs go on to subsequently prime B- and T-lymphocytes. These
studies, along with emerging evidence from ongoing studies, help highlight the potential
of immunotherapy in GBM treatment. This literature review covers the established and
emerging immunotherapeutic treatment modalities and discusses unique challenges faced
when targeting GBMs. Table 1 summarizes our findings.

2. Results
2.1. Checkpoint Blockade

Checkpoint inhibitors are tumor-directed monoclonal antibodies that have established
therapeutic efficacy in the treatment of various solid tumors such as lung, head-and-neck,
and renal cancers in addition to melanoma [22–25]. These antibodies specifically target
immune checkpoint molecules (ICs), which normally function to attenuate T-cell function
(Figure 1). Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell
death protein 1 (PD-1) are two of the most researched ICs. Inhibiting them has been
shown to significantly augment the antitumor response [26,27]. CheckMate 143 served
as the first randomized phase I clinical trial that targeted the PD pathway in recurrent
GBM. In this study, nivolumab (a PD-1 inhibitor), in addition to ipilimumab (a CTLA-4
inhibitor), were evaluated for safety and efficacy. All 40 patients in this study received
surgical resection, radiation, and temozolomide before being divided into three treatment
arms. Objective response rates (ORR) of 11% and 10% were observed in the NIVO3 and
NIVO1+IPI3 treatment arms, respectively. The phase I trial highlighted that nivolumab
monotherapy was better tolerated than nivolumab plus ipilimumab. Additionally, the
tolerability of the combination therapy was seen to be influenced by ipilimumab dosage [28].
The subsequent phase III clinical trial randomized 369 recurrent GBM patients to receive
either nivolumab or bevacizumab, an antiangiogenic antibody that targets VEGF-A, which
received accelerated FDA approval in recurrent GBM in 2009 [29,30]. Results from this
study did not demonstrate an improved OS in patients with recurrent GBM when compared
to bevacizumab monotherapy. When investigating the overall response rate (ORR), which
describes the number of patients who have experienced a complete or partial response to
therapy, it was noted to be lower with nivolumab than with bevacizumab [31].

Durvalumab (durva) is a human IgG1 monoclonal antibody that specifically targets
PD-L1. Durva has already been approved in the treatment of non-small cell lung can-
cer in addition to bladder cancer in select patients [32,33]. A phase II trial is currently
investigating the efficacy and safety of durva in the treatment of newly diagnosed GBM.
This trial served as the first study of anti-PD-L1 antibodies in the treatment of newly
diagnosed GBM. There are five GBM cohorts; the data was published for cohort A. Cohort
A evaluated durva, in addition to the radiotherapy (60 Grays over 30 fractions), followed
by durva monotherapy in 40 patients with newly diagnosed GBM. No significant dif-
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ferences in overall survival were noted with this treatment regimen. The treatment was
well tolerated when combined with radiotherapy and the adverse events (grade ≥ 3), as
defined by the Common Terminology Criteria for Adverse Events (CTCAE), occurred
in 35% of patients (14)—with the most common adverse event being the asymptomatic
increase in lipase (six patients) and amylase (two patients). Another ongoing phase II
study aims to determine the safety and efficacy of tremelimumab (CTLA-4 inhibitor) and
durva as monotherapies or in combination as adjuvant therapy for recurrent GBM [34].
The combination of varlilumab, an agonist anti-CD27 monoclonal antibody, and nivolumab
has been investigated for refractory solid tumors [35] in a phase I/II trial that monitored
for adverse effects, dose-limiting toxicities, and laboratory abnormalities 100 days from
the last study drug dose in 36 patients. CD27 is a known costimulatory molecule that is
able to stimulate T-cells to proliferate, differentiate, and increase their effector response.
The solid tumors investigated were ovarian carcinoma, colorectal cancer, melanoma, and
squamous cell carcinoma of the head and neck. There were no unexpected toxicities, and
there was encouraging evidence of antitumor activity in subsets of patients prompting
further investigation. The subsequent trial will investigate the efficacy of the combination
varlilumab and nivolumab at different dosages as measured by the overall survival of 12
months in GBM, along with the other previously investigated solid tumors.
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Aside from the Checkmate 143 phase III trial, ORR has been demonstrated in two
other checkpoint inhibitor studies [36,37]. A single practice case series demonstrated an
ORR of 31% in a total of 20 patients with recurrent GBM who were treated with ipilimumab
plus bevacizumab [36]. Although two patients could not complete the treatment regimen
due to grade 2 adverse events, the treatment combination was well-tolerated overall [36].
A phase I study of atezoliumab, an antibody targeting programmed cell death-ligand 1
(PD-L1), demonstrated an ORR of 6% in 16 patients with recurrent GBM [37]. Despite the
limited therapeutic efficacy of the checkpoint blockade in recurrent GBM, there has been
enthusiasm in evaluating their efficacy in the neoadjuvant setting. In 2019, a single-arm
phase II clinical trial analyzed pre- and post-surgical administration of nivolumab for
30 GBM patients, 27 with recurrent disease and 3 with newly diagnosed tumors. Despite
the promising results of higher immune cell infiltration and T-cell receptor clonal diversity
among tumor-infiltrating T lymphocytes, no clear clinical benefit was shown following
salvage surgery for recurrent cases [38]. Another multi-institutional randomized controlled
trial evaluating the PD-1 inhibitor pembrolizumab was conducted by the Ivy Foundation
Early Phase Clinical Trials Consortium in 35 patients with recurrent GBM. In this study,
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patients who received neoadjuvant and adjuvant pembrolizumab had a median OS of
417 days versus a median OS of 228.5 days in patients receiving adjuvant pembrolizumab
only [39]. Although limited by small sample size, the early results supported the expansion
of the study and the pursuit of future clinical trials.

Ongoing trials continue to investigate CTLA-4, PD-1, and other potential checkpoint
inhibitors such as indoleamine 2,3-dioxygenase (IDO). IDO is an endogenous enzyme that
plays an important role in the regulation of the immune system functioning to augment
suppressor activity of regulatory T-cells and consequently inhibit CD8+ T-cells [40,41].
Studies have shown that 50 to 90 percent of GBMs express IDO, which is correlated with
poor prognosis [42,43]. In vitro, IDO inhibitors have been shown to slow tumor growth
through the improvement of anti-tumor T-cell responses [44]. A phase Ib/II trial is currently
ongoing to evaluate the IDO inhibitor indoximod in newly diagnosed GBM patients [45].
Their early work in mouse models has highlighted a synergistic effect of indoximod when
used in conjunction with temozolomide and radiation. The primary endpoint of the phase
II trial will be six months PFS. Epacadostat, another IDO inhibitor, is being investigated
in an ongoing phase I/II trial. This trial aims to identify the safety and feasibility when
administered with nivolumab in subjects with advanced solid tumors and lymphomas [46].
Phase II will include expansion cohorts in 7 tumor types, including GBM.

2.2. Peptide-Based Vaccines

Vaccination is another method in immunotherapy in which a tumor-specific response
is provoked with the use of a foreign antigen. Vaccines can be either cell or peptide-based,
and both types have been successfully investigated in clinical trials. Rindopepimut is a
peptide-based vaccine targeting the EGFR deletion mutation in variant III of the epidermal
growth factor receptor (EGFRvIII), commonly seen in GBM. It was first studied in the
single-group phase II trial ACTIVATE, where 100 patients with EGFRvIII positive GBM
were given rindopepimut alone, following gross total resection and lack of progression,
following standard treatment of radiotherapy with concomitant temozolomide [47]. This
was subsequently followed up with two additional phase II trials, ACT II and ACT III. Both
trials focused on rindopepimut with adjuvant temozolomide following gross total resection
and no evidence of progression after standard treatment. The results in these three studies
were promising as they resulted in progression-free survival of roughly 15 months from the
time of diagnosis and overall survival of 24 months when compared to the cohort which
received the standard treatment [48,49]. ACT IV was a randomized, double-blind phase
III trial that investigated whether rindopepimut plus standard treatment would improve
overall survival in patients with minimal residual disease (MRD). MRD was defined as
having an enhancing tumor that is less than 2 cm2 following surgery and chemoradiation.
Around 370 patients were randomized into each arm, and at the final analysis, there was
no significant difference in overall survival for patients with MRD. This was unexpected
due to the multiple, independent phase II trials that seemed to suggest benefits from the
use of rindopepimut [50].

Another peptide-based vaccine being investigated in the treatment of GBM utilized
the Wilm’s tumor (WT1) gene. The WT1 gene plays an important role in controlling
cell proliferation and apoptosis. The WT1 gene is a widely recognized oncogene that is
overexpressed in various solid malignancies [51–53]. It is diffusely present in various
grades of glioma, including GBM. Furthermore, it is associated with negative prognostic
factors such as IDH-wild type expression and older age [54]. Izumoto et al. conducted a
phase II study in which they enrolled 21 patients with WT1/HLA-A*2402-positive recurrent
GBM that had failed standard therapy. Although no patient showed a complete response,
two patients showed partial responses. The median PFS was 20 weeks, with a 6-month
PFS rate of 33.3% [55]. Hashimoto et al. investigated the safety profile of a WT1 peptide-
based vaccine and temozolomide for the treatment of newly diagnosed GBMs. This study
also demonstrated an acceptable safety profile, and from the time of diagnosis, the seven
patients enrolled had a progression-free survival ranging from 5.2 to 49.1 months [56].
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The IDH1 peptide and Survivin are the other two molecules being investigated in
peptide-based vaccines. SurVaxM(SVN53-67/M57-KLH) is a peptide vaccine synthesized
to target survivin, a protein that aids in the inhibition of apoptosis. Survivin is expressed
on GBM tumors and is associated with a poor prognosis [57]. Early studies using murine
GL261 tumor cells and human glioma cells ex vivo showed that SurVaxM could incite an
anti-tumor immune response [58,59]. There is a current phase II clinical trial (NCT02455557)
evaluating the clinical effects of the vaccine as well as its immunogenicity [60]. Similarly,
based on promising results in murine models, the German National Cancer Center in
2015 launched the NAO-16 phase I trial (NCT02454634) of the IDH1 peptide vaccine. This
vaccine is engineered to specifically target the IDH1R132H mutation [61]. Additionally,
Duke University also has an ongoing clinical trial (NCT02193347) investigating the use of
an IDH1 peptide vaccine in the treatment of recurrent grade II gliomas [62]. The German
National Cancer Center’s trial focuses on grade III and IV gliomas versus Duke’s trial,
which is also using this peptide-based vaccine but in recurrent grade II gliomas.

In the past decade, targeting multiple tumor-related peptides in a single vaccine
has also become another approach in treating GBM. In 2012, Dutoit et al. used liquid
chromatography-mass spectrometry to identify over 3000 peptides specifically expressed in
HLA-A*02-positive GBM. From this pool of peptides, 11 (baculoviral inhibitor of apoptosis
protein repeat-containing 5, brevican, chondroitin sulfate proteoglycan 4, fatty acid-binding
protein 7- brain, insulin-like growth factor 2 mRNA binding protein 3, neuroligin 4- X-
linked, neuronal cell adhesion molecule, Met proto-oncogene, protein tyrosine phosphatase
-receptor-type, tenascin C, Z polypeptide 1, and hepatitis B virus core antigen) were
selected and used in the creation of the IMA950 [63]. Forty-five patients were enrolled
in the first phase I/II trail of IMA950 plus GM-CSF for newly diagnosed GBM following
surgical resection and standard therapy. At six months PFS was 74%, and at nine months
PFS was 31% [64]. A second phase I trial investigating IMA-950 in combination with
cyclophosphamide, GM-CSF, and imiquimod was terminated early due to poor accrual [65].
Clinical trials investigating other multi-peptide vaccines are also underway. SL701 is
another newly developed multi-peptide vaccine that targets three peptides that are over
overexpressed in gliomas, ephrin A2, survivin, and IL-13 receptor α-2 [66].

Heat shock proteins (HSP) can also be utilized in peptide-based vaccines. Heat shock
proteins function to control the degradation of misfolded proteins along with modulation
protein aggregation in response to cellular stress. HSP70 and HSP96 are two heat shock pro-
teins that have been found to elicit a pro-inflammatory response to GBM tumor-associated
antigens (TAAs) [67]. Clinical trials up to this point have focused mainly on HSP96 and
the used HSP–peptide complex-96 (HSPPC-96) vaccine. A phase I trial investigating an
HSPPC-96 vaccine demonstrated specific immune responses in 11 of the 12 patients en-
rolled [68]. A follow-up single-arm phase II trial demonstrated a median progression-free
survival of 19.1 weeks and OS of 42.6 weeks following gross total resection in patients
with recurrent GBM [69]. Phase II trials of HSPPC-96 yielded promising results prompting
sponsorship by the Alliance for Clinical Trials in Oncology to conduct a multi-institutional
trial (NCT01814813) of HSPPC-96 for the treatment of recurrent GBM. This study aims
to provide evidence that the adjuvant treatment with the HSPPC-96 vaccine can prolong
overall survival. This is a three-armed study that includes HSPPC-96 with the adminis-
tration of bevacizumab at tumor progression, HSPPC-96 with concomitant bevacizumab,
and bevacizumab alone. The primary outcome being measured is OS, in addition to the
secondary outcomes evaluating PFS, safety, and tolerability of the combined therapy [67].

Neoantigens are proteins derived from tumor-specific mutations that arise in protein
coding and are also attractive candidates for peptide vaccine development. These neoanti-
gens have been shown to generate a robust immune response and can function to facilitate
tumor rejection [70–72]. GAPVAC-101 was a phase I trial that investigated highly individu-
alized vaccinations with both neoepitopes and unmutated antigens when administered
with the standard of care [73]. The primary aim of the study was to evaluate the immuno-
logic response, efficacy, and safety of this treatment modality in 15 patients with newly
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diagnosed GBMs. The vaccination schedule consisted of the APVAC1, which targeted
human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02, followed by treatment with
APVAC2, which selectively targeted neoepitopes. Through analyses of immunopeptidomes
and transcriptomes from each patient’s tumor, mutations that resulted in neoepitopes were
identified. The APVAC1 vaccines were able to elicit a sustained CD8 T-cell response, while
APVAC2 was able to elicit a primarily CD4 T-cell response, particularly the Th1 type.
In these patients, reactivity to APVAC1 was seen in 12 of 13 patients, and responses to
APVAC2 being seen in 8 of 10 patients who were able to be evaluated. Reactivity was
defined by CD4+ response utilizing an IFNγ enzyme-linked assay. In addition to the
strong immunologic response, the vaccines proved to be well tolerated. Consequently, a
phase Ib study was conducted with eight patients that were immunized with personalized
neoantigen vaccines [74]. Two of eight patients generated a primarily CD4+ T-cell response
to several of the vaccine antigens; however, there was no significant difference in median
PFS or OS when compared to historical controls.

2.3. Cell-Based Vaccines

Dendritic cells (DCs) are antigen-presenting cells (APCs) that serve as a vital connec-
tion between innate and adaptive immunity. They are found in nearly every tissue and
are known to be potent stimulators of T- and B-cells [75]. Consequently, DCs have been an
area of interest when developing cellular vaccination strategies against tumors. Previous
studies have been able to highlight the effectiveness of DC vaccination (DCV) for gliomas
in preclinical models as well as early-stage clinical trials [76,77]. Wheeler et al. conducted a
study in which 32 patients were given a DC-based vaccine, loaded with autologous tumor
lysate, and vaccine responders and non-responders were compared. Of these patients, 53%
exhibited enhanced IFN-y responses, and responders exhibited longer time to progression
and time to survival [78]. A pivotal phase I/II clinical trial by Yamanaka et al. enrolled
18 patients with recurrent GBM. This study examined the use of a DCV that was generated
with IL-4, GM-CSF, and pulsed together with autologous tumor lysate with or without
OK-432 (agent derived from killed Streptococcus pyogenes). This study also included a
subset of patients who received intratumoral administration of the DCV via an Ommaya
reservoir in addition to the standard intradermal injections. This study demonstrated the
safety of DCV with no observed adverse events or radiographic evidence of autoimmune
reactions. In addition to a statistically significant median OS seen in the treatment group
(480 days vs. 400 days), there was an increased T-cell reactivity to tumor lysate observed
post-vaccination [79]. Fadul et al. also investigated the use of a DC-based vaccine in which
the DCs were loaded with autologous tumor lysate. In this study, after TMZ and radia-
tion therapy, 10 patients received the vaccine. In these patients, the overall survival was
28 months, with a median PFS of 9.5 months [80]. In 2013, Vik-Mo et al. investigated the
use of a DC-based vaccine for targeting GBM stem cells and found that all seven patients
in the study exhibited an immune response, and consequently, a PFS that was 2.9 times
longer than their matched controls [81].

ICT-107 is a patient-specific DC-based immunotherapy for newly diagnosed GBM
patients. This immunotherapy utilizes TAAs present on GBM cells to create six synthetic
peptides that are then pulsed with the patient’s DCs. In 2013, ICT-107 was studied in a
double-blind, placebo-controlled phase II trial to evaluate its safety and efficacy when
administered in conjunction with the Stupp protocol for patients with newly diagnosed
GBM [82]. This trial highlighted that prolonged OS correlated with the expression of four
ICT-107 targeted-antigens in pre-vaccinated tumors. Despite this encouraging result, the
OS benefit was not shown in the later phase II trial when compared to the standard of
care [83]. In 2015, a randomized, double-blind phase III trial was conducted to compare the
standard of care to ICT-107. The study was suspended before reaching its primary outcome
due to insufficient financial resources [84]. Another DC vaccine study, called GlioVax, is
currently ongoing and is a phase II randomized-controlled clinical trial (NCT03395587)
seeking to confirm promising results of earlier, smaller phase I/II trials [85]. This study
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aims to recruit 136 patients with newly diagnosed, IDH-wildtype GBMs, and assign them
to the standard of care of radiotherapy with temozolomide chemotherapy or the standard
of care plus DCV. A phase III trial analyzing DCVax®-L, an autologous tumor lysate-pulsed
DCV, showed great potential for this vaccination strategy when combined with standard
therapy for a newly diagnosed GBM [86]. Blinded interim survival data showed the median
OS for the intent-to-treat (ITT) population was 23.1 months from surgery. This was an
improvement from the median OS for the standard of care. Interestingly, patients with
MGMT methylation had a median OS of 34.7 months from surgery with a 3-year survival of
46.4%. Furthermore, there was a population of extended survivors (n = 100) with a median
OS of 40.5 months, which will be further analyzed. However, the study did not provide
the IDH status of these patients. The adverse events with DCVax®-L were comparable to
standard therapy alone. Final results from further analyses and follow-up have not yet
been published.

Human umbilical vein endothelial cell (HUVEC) vaccines are less commonly inves-
tigated for the treatment of GBM. It is believed that HUVEC antigens elicit cellular and
humoral immune responses that are antiangiogenic; thus, inhibiting tumor growth [87–89].
This is particularly important because bevacizumab has only shown limited clinical benefits
in recurrent GBMs [90]. Thus far, clinical trials investigating HUVEC for recurrent GBM
have shown to be well tolerated and have yielded encouraging early results [90,91]. Other
techniques for tumor cell vaccine delivery involve formalin fixation of the tumor cells
before injection of the vaccine. It has been demonstrated that fixation with formalin allows
for better preservation of the tissue, which allows for the most robust immune response
against the tumor cells [92]. The safety and efficacy of autologous formalin-fixed tumor
vaccines (AFTVs) were tested in two clinical trials examining its use with only fractionated
radiotherapy and with chemoradiation in patients with newly diagnosed GBM [92,93].
Both trials were able to demonstrate a tolerable safety profile, and both trials yielded a
median OS of greater than 19 months. These encouraging results prompted a prospective
placebo-controlled phase IIb/III trial evaluating AFTV therapy in combination with stan-
dard chemoradiotherapy [94]. Although preliminary results confirmed the safety of AFTV
therapy, this trial was not able to find a statistically significant difference in median PFS
between the two experimental arms.

2.4. Oncolytic Viruses

Several studies have been able to establish that Cytomegalovirus (CMV) proteins
and are expressed in over 90% of GBM tumors [95–97]. Furthermore, these proteins are
not expressed in the surrounding normal brain tissue [95,96,98,99]. In 2014, Nair et al.
demonstrated that T-cells specifically targeting CMV were able to effectively target and
kill GBM tumor cells that express the pp65 antigen [100]. A subsequent randomized pilot
trial was able to demonstrate the efficacy of CMV pp65-specific dendritic cells (pp65-DCs)
when combined with vaccine site pre-conditioning using tetanus-diphtheria toxoid [101].
This treatment modality resulted in a significantly improved PFS and OS when compared
to controls. These promising results prompted a phase I trial to evaluate the feasibility
and safety of pp65-DCs in combination with GM-CSF following host conditioning with
dose intensified (DI)-TMZ. This trial was able to highlight that this treatment modality
enhanced antigen-specific immunity and increased long-term PFS of 25.3 months and OS
of 41.1 when compared to historical controls. Still, profound lymphopenia and increased
Treg proportions following DI-TMZ were noted in patients.

Vocimagene amiretrorepvec (Toca 511), a retroviral virus vector encoding cytosine
deaminase, demonstrated a durable response rate of 21.7% in addition to a tolerable safety
profile when compared to the standard of care in a newly diagnosed GBM [102]. In 2015,
following this dose-escalation phase I trial, Toca 511 was investigated in the phase III
Toca 5 trial (NCT02414165); however, this trial was later terminated [103]. ASPECT was a
phase III trial that investigated sitimagene ceradenovac, an oncolytic vaccine comprised of
replication-deficient human adenovirus type 5 that contains the HSV-TK gene as well as E1
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and partial E3 deletions [104]. This trial randomized 250 patients to either standard therapy
or standard therapy in addition to sitimagene ceradenovec. The primary endpoint was time
to reintervention, defined as any kind of treatment (including chemotherapy, radiotherapy,
or surgery) given to prolong survival following tumor progression, recurrence, or death.
The time to recurrence was longer in the experimental arm, at 308 days, as compared to the
control group, who had a time to reintervention of 268 days. Nevertheless, no difference
in OS survival was observed between the two groups. More recent work has begun to
explore alternative delivery strategies for oncolytic virus therapy in malignant gliomas. For
example, Fares et al. investigated the delivery of an engineered oncolytic adenovirus via
neural stem cells in their NSC-CRAd-S-pk7 vaccine. In addition to being able to provoke
an immune response, encouraging survival outcomes were noted in their patient cohort,
particularly with patients with MGMT-unmethylated tumors.

2.5. Cytokine Therapy

Cytokines are secretory molecules that help facilitate communication for the innate
and adaptive immune systems. Interferons (IFN) and interleukins (IL) represent two
important types of cytokines that are capable of provoking antitumor effects [105,106]. IL-2
and IFN-α have been established as FDA-approved treatments for various hematological
and nonhematological malignancies [107–110]. Therapies utilizing intratumoral injections
of IL-2 genes in conjunction with herpes simplex virus type 1 thymidine kinase (HSV-TK)
genes carried by retroviral vector-producing cells (RVPCs) have generated an antitumor
response in select patients [111]. Other ILs have also been investigated. In another study,
Okada et al. investigated the use of autologous fibroblasts containing HSV-TK and IL-4-
encoding genes, when combined with irradiated autologous glioma cells, for the treatment
of high-grade gliomas (grade III astrocytoma and GBMs). They were able to demonstrate a
radiological and clinical improvement in two out of six patients who were able to complete
the experimental regimen [112]. Weber et al. demonstrated a tolerable safety profile of their
intratumorally injected vaccine consisting of IL-4 and Pseudomonas exotoxin (IL-4-PE)
recombinant protein vaccine. In post-contrast MRI sequences, a decrease in signal intensity
within the tumor was seen in patients following the administration of the vaccine; this is
consistent with tumor necrosis [113].

IL-13 shares the same receptor as IL-4 and was used to create IL-13-PE38QQR, a
recombinant protein vaccine composed of IL-13 and Pseudomonas aeruginosa exotoxin
A [114]. Although the safety profile of this vaccine was confirmed in a phase I trial,
a subsequent phase III study showed no significant difference in OS between the two
groups [115]. Two phase II single-arm trials also highlighted the improved efficacy of
TMZ with interferon-α in the treatment of recurrent GBM when compared to historical
controls [116]. Interestingly, the radiological assessment showed that the use of cationic
liposome-mediated interferon-beta (IFN-β) gene transfer treatment was able to induce
a 50% tumor reduction in two out of five patients included in a pilot clinical trial [117].
Additionally, when compared to historical controls, this treatment lengthened the median
OS. IFN-γ has also been investigated—however, improved efficacy of radiotherapy and
chemoradiotherapy when combined with IFN-γ has not been noted for the treatment of
GBM [118].

2.6. Chimeric Antigen Receptor (CAR) T-Cell Therapy

Chimeric antigen receptor (CAR) T-cell therapy utilizes specially engineered immune
cells to target malignancies and is effective in treating certain hematologic malignancies
(Figure 2). This treatment modality is unique in that it targets specific TAAs, which are
commonly expressed on the surface of tumors and not on normal cells. EGFRvIII is a
truncated receptor caused by mutations in the EGFR gene and serves as a common TAA in
GBM. EGFRvIII is expressed in over one-third of newly diagnosed GBM patients and is not
expressed on normal tissues, rendering it tumor-specific [119–121]. Johnson et al. showed
that EGFRvIII-directed CAR T-cells were able to activate the immune system resulting
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in the regulation of tumor growth in xenogeneic subcutaneous and orthotopic models
of human EGFRIII+ GBMv [122]. This study led to the creation of a phase I clinical trial
to test the safety of EGFRvIII-directed CAR T-cells in patients with recurrent or residual
GBM. This study was terminated early due to the sponsor’s decision to pursue combination
therapies. In 2017, O’Rourke et al. conducted the first in-human study of EGFRvIII-directed
autologous CAR T-cells delivered as a single intravenous dose [123]. This study included
10 patients with recurrent GBMs and sought to determine the safety and efficacy of this
treatment modality. The results of this study were promising in that all patients exhibited
detectable levels of EGFRvIII-directed CAR T-cells in peripheral blood. Additionally, seven
patients received the surgical intervention after the CAR T-cell therapy, and tissue analysis
showed in all seven patients. CAR T-cells were found in the region of active GBM. In
five of the seven patients, there was a decrease in the EGFRvIII antigen. Nevertheless,
when analyzing the tumor microenvironment, an increase in expression of Treg cells and
inhibitory molecules were noted after treatment. Although CAR T-cell therapies showed
promising initial results, overcoming the immunosuppressive tumor microenvironment
remains a major challenge.
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Another widely investigated target is IL-13 receptor variants, as they have been
previously shown to have increased expression in adult glioma cells [124,125]. Normally,
activation of IL-13Rα1 has downstream effects, most notably the phosphorylation and
activation of the STAT6 protein. A variant of the IL-13Rα1, IL-13Rα2, can be expressed
in GBM, and this serves as a target TAA for CAR T-cell therapy. It is believed that the
IL-13Rα2 receptor functions as a decoy receptor that binds IL-13 with higher affinity than
IL-13Rα1 [126]. The subsequent alteration of this pathway contributes to the oncogenic
nature of IL-13Rα2. Interestingly, IL13Rα2 expression alone stimulates GBM cells to invade
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surrounding structures, and the co-expression of IL13Rα2 in addition to EGFRvIII has been
noted to confer GBM cell proliferation [127]. Studies of GBM have found IL-13Rα2 to be
expressed in as many as 70% of analyzed cases [128,129].

The IL-13/STAT6 pathway is important in the transcription initiation of various
downstream genes, including genes important for immune function [130,131]. Although
there was an early promise for IL-13Rα2-directed CAR T-cell therapy, previous studies
highlighted the limited persistence of these T-cells resulting in the recurrence of antigen-
positive gliomas [132]. There is an open-label phase I trial (NCT04003649) evaluating the
efficacy and safety of IL13Rα2-targeted CAR T-cells as a monotherapy as well as together
with nivolumab and ipilimumab [133] in both recurrent and refractory GBMs.

Human epidermal growth factor receptor 2 (HER2) is another TAA that is expressed in
roughly 80% of GBMs [134,135]. The HER-2 receptor functions normally to activate various
signal transduction pathways that ultimately allow for cell growth and differentiation [136].
Early work has highlighted the safety of HER2-specific CAR T-cell therapy and the potential
clinical benefit for patients with progressive GBM. This was done through a phase I dose-
escalation trial that evaluated the safety of HER2-specific CAR T-cells and their feasibility
in augmenting antitumor activity in patients with GBM [137]. In addition to being well-
tolerated, HER2-specific CAR T-cells were found in peripheral blood up to 12 months after
administration.

Hedge et al. aimed to establish the utility of a bispecific CAR molecule in improv-
ing the antitumor activity of T-cells [138]. The authors of the study targeted HER2 and
IL13Rα2, two commonly found tumor antigens. A HER2-binding scFv and an IL13Rα2-
binding IL-13 mutein were joined to make a tandem CAR exodomain (TanCAR) and a
CD28.ζ endodomain. The TanCAR T-cells showed activation dynamics similar to those
of monospecific CAR T-cells, as well as displaying antitumor capabilities. Interestingly,
a super-additive effect on T-cell activation was observed, and authors attributed this to
the induction of HER2-IL13Rα2 heterodimers by the TanCAR T-cells. Bispecific CAR
T-cell therapy has been shown to enhance T-cell antitumor effects in addition to mitigating
antigen escape. Still, patient variability of tumor surface antigens limits the use of therapies
targeting 1 or 2 antigens. Bielamowicz et al. highlighted the feasibility of targeting three
antigens using a single CAR T-cell product in their clinical trial [139]. Trivalent CAR T-cells
targeting ephrin-A2 [EphA2], HER2, and IL13Rα2 were tested in 15 ex-vivo samples of
primary GBM. The data from this study show that interpatient variability was overcome
with the use of a trivalent CAR T-cell therapy in nearly all samples. Additionally, these
CAR T-cells improved cytokine release and subsequently cytotoxicity when compared to
monospecific or bispecific CAR T-cells in patient-derived xenograft models. Improved
efficacy coupled with the ability to overcome variability among patient tumors highlights
the potential utility of trivalent CAR T-cell therapy.

In Sweden, a randomized phase II multicenter trial was conducted in 2015 to evaluate
the efficacy and safety of immunotherapy called ALECSAT (Autologous Lymphoid Effector
Cells Specific Against Tumor Cells) [140]. ALECSAT is an example of a form of adoptive
cell transfer and uses ex-vivo activated autologous cytotoxic CD8+ T-cells as well as NK
cells [141]. A pre-clinical trial was performed to determine the effect of ALECSAT on GBM
cancer stem cells in vitro. This is of particular importance due to the role of cancer stem
cells in the recurrence of GBM and their resistance to conventional therapy [142,143]. The
results of this study helped to elucidate that, in fact, ALECSAT causes a robust cytotoxic
dose-dependent response that preferentially targets GBM cancer stem cells. In addition to
the cytotoxic response, a decrease in the proliferation of surviving cancer stem cells was
also noted. Still, the optimal number of infused cells is an important parameter that must
be established.

Cytokine-induced killer (CIK) cells are a population of T-cells that have also been able
to co-express natural killer (NK) cell surface molecules such as CD56 [144]. To create CIK
cells, peripheral blood mononuclear cells are harvested and created in vitro through the
addition of a CD3 monoclonal antibody (CD3mAb), IL-2, and IFN-γ [145]. CIK cells are a
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promising modality for the treatment of cancers due to their antitumor activity, as well as
their high proliferation rate [146]. Additionally, they do not need to first recognize major
histocompatibility complexes or antibodies to activate their cytotoxic activity. This allows
for a potent and robust antitumor response with minimal cytotoxic effects on normal tissues.
The efficacy of this immunotherapy has been validated in several clinical trials and has been
demonstrated to be well-tolerated [147–149]. A multi-center, open-label phase III clinical
trial conducted in South Korea aimed to evaluate the potential benefits of autologous CIK
cells in the treatment of newly diagnosed GBM [150]. The CIK cell immunotherapy was
evaluated in conjunction with the standard of care, while the control arm consisted of the
standard of care alone. From December 2008 to October 2012, 180 patients were randomly
assigned to the treatment or the control arm. The intention-to-treat analysis yielded a PFS
of 8.1 months in the treatment arm versus 5.4 months in the control arm. Additionally, there
was no significant difference between grade 3 or higher adverse events, performance status,
or health-related quality of life between the two arms. Nevertheless, when comparing the
two arms, there was no significant difference in OS.

Table 1. Current immunotherapeutic strategies used in clinical trials.

Class Target Intervention Comments References

Checkpoint Inhibitor PD-1 &
CTLA-4

Treatment Arm 1: nivolumab
Treatment Arm 2: nivolumab

+ ipilimumab

Overall survival (OS) at 6
months was 75% among the 20

treated patients; promising
compared to historical controls

Omuro, A; Vlahovic, G;
Lim, M; et al. [28]

Checkpoint Inhibitor PD-1 Nivolumab + RT Discontinued due to inability
to meet primary endpoint

Bristol Meyer Squibb
press release [151]

Checkpoint Inhibitor PD-1 Nivolumab No statistically significant
improvement in PFS noted

Bristol Meyer Squibb
press release [152]

Checkpoint Inhibitor PD-1 Neoadjuvant Nivolumab

Increased immune cell
infiltration and T-cell receptor

clonal diversity; no clear
benefit shown following

salvage surgery

Schalper, K.A.;
Rodriguez-Ruiz, M.E.;

Diez-Valle, R.; et al. [38]

Checkpoint Inhibitor PD-1

Treatment Arm 1:
Neoadjuvant

pembrolizumab with
continued adjuvant therapy

following surgery
Treatment Arm 2: Adjuvant
pembrolizumab following

surgery only

Prolonged overall survival was
found to be statically

significant in the neoadjuvant
group

Cloughesy, T.F.;
Mochizuki, A.Y.;

Orpilla, J.R. et al. [39]

Checkpoint Inhibitor PD-L1

Durvalumab in addition to
the radiotherapy (60 Grays
over 30 fractions) followed

by durva monotherapy

Median OS was 15.1 months
with OS of 12 months seen in

60% of patients from this study

Reardon, D; Kaley, T;
Dietrich, J; et al. [153]

Checkpoint Inhibitor CTLA-4 Adjuvant
Ipilimumab Ongoing Clinical Trial

NCT03460782 [154]

Checkpoint Inhibitor IDO Indoximod + standard of
care Ongoing Clinical Trial

NCT02052648 [155]

Checkpoint Inhibitor PD-1 &
CTLA-4

Treatment Arm 1:
Ipilimumab

Treatment Arm 2:
Nivolumab

Treatment Arm 3:
Ipilimumab + Nivolumab

Ongoing Clinical Trial
NCT02311920 [156]
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Table 1. Cont.

Class Target Intervention Comments References

Checkpoint Inhibitor PD1 &
CTLA-4

Treatment Arm 1: Adjuvant
trememlimumab

Treatment Arm 2: Adjuvant
durvalumab

Treatment Arm 3: Adjuvant
trememlimumab +

durvalumab

Ongoing Clinical Trial
NCT02794883 [34]

Checkpoint Inhibitor PD-1 &
anti-CD27 Varlilumab + nivolumab Ongoing Clinical Trial

NCT02335918 [157]

Checkpoint Inhibitor IDO-1 Epacadostat + Nivolumab Ongoing Clinical Trial
NCT02327078 [46]

Checkpoint Inhibitor

Anti-LAG-3
&

anti-CD137
& PD-1

Treatment Arm 1:
BMS-986016

Treatment Arm 2: Urelumab
Treatment Arm 3:

BMS-986016 + Nivolumab
Treatment Arm 4: Urelumab

+ Nivolumab

Ongoing Clinical Trial
NCT02658981 [158]

Peptide-based
Vaccine EGFRvIII

ACTIVATE: Investigated use
of rindopepimut alone with

standard of care
ACT II and ACT III:
Investigated use of

rindopepimut with adjuvant
TMZ

ACT IV: rindopepimut +
standard of care in patients

with minimal residual
disease

ACT II and ACT III: PFS of
roughly 15 months from time

of diagnosis and OS of 24
months compared to cohort

that received standard of care
ACT IV: No significant

difference in OS

Sampson, J.H.;
Heimberger, A.B.;

Archer, G.E.; et al. [47]
Sampson, J.H.; A, K.D.;
Archer, G.E.; et al. [48]

Schuster, J; Lai, R.K.;
Recht, L.D.; et al. [49]

Weller, M; Butowski, N;
Tran, D.D.; et al. [50]

Peptide-based
Vaccine

Tumor
associated
antigens

Treatment Arm 1: ICT-107
Treatment Arm 2: Standard

of care

Trial suspended due to lack of
funding

Clinical Trial
NCT02546102 [84]

Peptide-based
Vaccine IDH1 Safety and feasibility trial Ongoing

Clinical Trial
NCT02454634 [61]

Clinical trial
NCT02193347 [62]

Peptide-based
Vaccine

Neoantigen
vaccine

(APVAC1 &
APVAC2)

Safety and feasibility trial The 15 vaccinated patients had
a median OS of 29 months

Keskin, D.B.;
Anandappa, A.J.; Sun,

J.; et al. [74]

Peptide-based
Vaccine

Heat
Shocked
Proteins

HSPPC-96 vaccine
Treatment Arm 1: HSPPC-96

with concomitant
bevacizumab

Treatment Arm 2: HSPPC-96
with administration of
bevacizumab at tumor

progression

Ongoing Clinical Trial
NCT01814813 [159]
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Table 1. Cont.

Class Target Intervention Comments References

Peptide-based
Vaccine

Tumor
Associated
Antigens:

Antineoplastons

Treatment Arm 1: Radiation
and chemotherapy alone

Treatment Arm 2:
antineoplaston

In the RGBM population, 6.7%
of patients had complete

responses; 6.7% had partial
responses, with 16.7% PFS
seen at 6 months Overall

survival for the RGBM group
was 34.7% at one year and
3.47% at 2, 5, and 10 years

In the ERGBM cohort,
complete responses occurred

in 8.3% of patients; partial
response occurred in 8.3% of

patients
Progression-free survival at 6

months was 20.8%, overall
survival was 39.3% at 1 year
and 4.4% at 2, 5, and 10 years

Burzynski, S; Janicki, T;
and Burzynski, G. [160]

Peptide-based
Vaccine

APVAC1 &
2:

which
targeted
(HLA)-

A*02:01 or
HLA-

A*24:02
neoantigens

APVAC1&2 vaccines

APVAC1 vaccines were able to
elicit sustained CD8+ T-cell

response, while the APVAC2
elicited a CD4+ T-cell response;

both vaccines were well
tolerated

Hilf, N.;
Kuttruff-Coqui, S.;

Frenzel, K.; et al. [73]

Peptide-based
Vaccine

CMV
protein-

pp65
antigen

CMV pp65-specific dendritic
cells (pp65-DCs) when

combined with vaccine site
pre-conditioning using

tetanus-diphtheria toxoid

Highlighted that this treatment
modality enhanced

antigen-specific immunity and
increased long-term PFS and

OS
Profound lymphopenia and
increased Treg proportions

following DI-TMX

Batich, K.A.; Reap, E.A.;
Archer, G.E.; et al. [101]

Peptide-based
Vaccine

Ad-RTS-hiL-
12

Ad-RTS-hiL-12 is a
non-pathogenic form of an
adenovirus that has been
genetically modified to

encode the IL-12 protein;
Veledimex serves as an oral
ligand activator for IL-12.

Ongoing Clinical Trial
NCT03636477 [161]

Cell-based Vaccine Autologous
glioma cells

Autologous glioma cells
mixed with irradiated

GM-K562 cells

T- lymphocyte activation with
significant increased

expression of PD-1 and 4-1BB
by CD8+ cells and CTLA-4,
PD-1, 4-1BB, and OX40 by

CD4+ cells
Vaccination resulted in
increased frequency of

regulatory CD4+
T-lymphocytes

Curry, W; Gorrepati, R;
Piesche, M; et al. [162]

Cell-based Vaccine Autologous
glioma cells DCV vaccine

Statistically significant median
overall survival seen in

treatment group (480 vs. 400
days)

Yamanaka, R.; Homma,
J.; Yajima, N.; et al. [79]



Cancers 2021, 13, 4548 14 of 25

Table 1. Cont.

Class Target Intervention Comments References

Cell-based Vaccine Autologous
glioma cells Gliovax vaccine Ongoing Rapp, M.; Grauer, O.M.;

Kamp, M.; et al. [85]

Cell-based Vaccine Autologous
glioma cells DCVax®-L vaccine

Median OS (mOS) for the
intent-to-treat (ITT) population
was 23.1 months from surgery;

an improvement from the
typical mOS for the standard

of care

Patente, T.A.; Pinho,
M.P.; Oliveira, A.A.;

et al. [75]

Cell-based Vaccine

Autologous
glioma cells

Target:
EGFRvIII

EGFRvIII-directed CAR T-cells
were able to activate the

immune system resulting in
regulation of tumor growth in
xenogeneic subcutaneous and
orthotopic models of human

EGFRIII + GBM

Johnson, L.A.; Scholler,
J; Ohkuri, T; et al. [122]

Cell-based Vaccine

Autologous
glioma cells

Target:
IL13Rα2

Vaccine

Anti-glioma responses
observed in 2 patients, 1 had

increased tumor necrotic
volume on MRI at
administration site

Brown, C; Badie, B;
Barish, M; et al. [163]

Cell-based Vaccine

Autologous
glioma cells

Target:
IL13Rα2

Vaccine Ongoing Clinical Trial
NCT004003649 [133]

Cell-based Vaccine

Autologous
glioma cells

Target:
IL13Rα2

Vaccine

IL13Rα2-CAR.IL15 T-cells
in vivo had a greater

persistence and anti-tumor
activity than IL13Rα2-CAR

T-cells

Krenciute, G; Prinzing,
B; Yi, Z; et al. [164]

Cell-based Vaccine

Autologous
glioma cells

Targets:
IL13Rα2 &

HER2

Vaccine Super-additive effect on T-cell
activation

Hegde, M.; Mukherjee,
M.; Grada, Z.; et al.

[138]

Cell-based Vaccine

Autologous
glioma cells

Targets:
IL13Rα2 &

HER2 &
EphA2

Vaccine
Improved survival of treated

animals highlight the utility of
trivalent CAR T-cell therapy

Bielamowicz, K.;
Fousek, K.; Byrd, T.T.;

et al. [139]

Cell-based Vaccine Autologous
glioma cells Vaccine

ALECSAT exhibited a robust
cytotoxic dose-dependent

response that preferentially
targets GBM CSCs

Decreased proliferation of
surviving CSC

Number of infused cells is
important and must be

established.

Wenger, A.; Werlenius,
K.; Hallner, A.; et al.

[141]

Cell-based Vaccine Autologous
glioma cells Vaccine

Intention-to-treat analysis
yielded a PFS of 8.1 months in
the treatment arm versus 5.4

months in the control arm

Kong, D.S.; Nam, D.H.;
Kang, S.H.; et al. [150]
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Table 1. Cont.

Class Target Intervention Comments References

Cell-based Vaccine

Autologous
glioma cells

Target:
EGFRvIII

Vaccine

In 7 patients, CAR T-cells were
found in the region of active
GBM; 5/7 seven patients had
decreased EGFRvIII antigens

O’Rourke, D.M.;
Nasrallah, M.P.; Desai,

A.; et al. [123]

3. Conclusions and Limitations

GBM presents unique challenges when approaching treatment from an immunother-
apeutic angle. GBM is largely immunosuppressive to the systemic immune system as
well as to neighboring cells alike [165]. This largely arises from the complex interactions
of cytokines, extracellular matrix proteins, and other diverse cell populations. Although
their complex interactions are not fully understood, studies have highlighted numer-
ous examples of the far-reaching consequences of this microenvironment. Microglia and
macrophages are examples of important players in the tumor microenvironment and adja-
cent regions. Along with myeloid-derived suppressor cells (MDSCs), these cells work in
conjunction to inhibit cytotoxic T-cells as well as accentuate the effect of Treg cells [166–168].
More than just tumor cells influence immunosuppression; the tumor microenvironment is
also a site of chronic inflammation. It is believed that these inflammatory stimuli serve to
impact the blood-brain barrier (BBB) as well as activate microglia cells within the CNS [169].
These cells are recruited via various chemoattractants, and they can make up as much as
50% of the tumor mass [170].

One chemoattractant that has been studied is CX3CL1 which binds to the CX3CR1, a re-
ceptor found on a majority of microglia as well as some tumor-associated macrophages [171].
Once activated, the CX3CL1/CX3CR1 system is a source for the upregulated expression of
gelatinases, such as MMP9, and the membrane-associated endopeptidase, MT1-MMP [172].
Multiple studies have proposed that microglial MMP9 enhances angiogenesis through
VEGF regulation as well as promotes glioma motility [173–175]. Interestingly, tumor-
associated macrophages are known to increase MMP9 expression via their release of
TFG-β1 [176]. The release of TFG-β1 has also been noted to contribute to the enhanced
invasive nature of glioma stem-like cells (GSLCs) [177].

Another important component of the tumor microenvironment is the endothelial cells
of the vasculature surrounding the tumor. Through their interactions with the microen-
vironment, these cells contribute to poor outcomes seen in patients with GBM. In 2010,
Ricci-Vitiani et al. showed that 20–90% of endothelial cells making up GBM-associated
vasculature had the same mutations as the GBM cells themselves [178]. Another study was
able to identify a population of CD133(+) tumor cells that express vascular-endothelial
cadherin (CD144), signifying a majority of GBM-associated endothelial cells may arise
from these specific tumors cells [179]. CD133(+) tumor cells have also been identified as
a source of elevated expression of cytokines such as TGF-β and IL-10, which have been
correlated with poorer outcomes [180,181]. Additionally, patients with recurrent grade III
and IV gliomas following standard treatment were found to have tumors that contained a
significantly larger amount of CD133+ cells [182,183]. Cytokines such as TGF-β and IL-10
are also secreted by T-reg cells and contribute to suppressing the antitumor response [184].
These cytokines also limit the amount of IFN-γ and IL-2 production, further contributing
to the CD8+ T-cell anergy antitumor response seen [185–187]. In patients with GBM, an
increased proportion of Tregs to CD4+ T-cells can be seen both at the location of the tumor
as well as systemically [186,188].

T-cell sequestration is another unique challenge that arises in the setting of GBM. It has
been shown that tumors in the CNS, specifically intracranial tumors, can cause extensive se-
questration of immunocompetent cells in the bone marrow [189]. Furthermore, commonly
used treatments such as temozolomide and high-dose corticosteroids also contribute to
immunosuppression and lymphopenia [190,191]. Thus, there is no development of an
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effective antitumor response. The limited success of some immunotherapeutic strategies
can also be accounted for by the T-cell exhaustion that is oftentimes attributed to the limited
efficacy of checkpoint blockade treatment in GBM [192]. It is thought that continual inter-
action with antigens in suboptimal conditions contributes to T-cell exhaustion [193]. These
T-cells go on to upregulate inhibitory immune checkpoints such as TIM3 and LAG3 [28].
The upregulation of these two immune checkpoints along with others such as 2B4, CD160,
CD39, BTLA, and TIGIT have been shown, in other cancers, to be strongly associated with
resistance to immune checkpoint blockade treatment [192].

Finally, another major challenge in treating GBM is the genetic heterogeneity these tu-
mors display. This genetic heterogeneity can also be seen within individual tumors, which
makes creating treatment plans based on a single biopsy extremely difficult [194–196].
Moreover, single-target therapies create selective pressures that can lead to antigen es-
cape [197]. This phenomenon describes the expression of alternative forms of the original
target antigen after initial treatment. Therefore, creating epitopes that cannot be recognized
by CAR T-cell therapy is vital in maximizing therapeutic efficacy. Compared to other
malignancies, GBM is also notable for a relatively low mutational burden [198]. It has been
shown that GBM tumors contain only 30 to 50 non-synonymous mutations [199]. Usually,
proteins encoded from mutated genes within tumors yield antigens that are exclusive to
the tumor. A small percentage of these tumor-specific antigens (TSAs) are processed into
neoepitopes, which are subsequently presented to T-cells eliciting a response [200]. TAAs
are antigens that can be found expressed by both tumor cells and normal cells. Attempting
to target these antigens can result in collateral autoimmunity, and side effects such as
encephalitis have been demonstrated in animal models [201]. This highlights the difficulty
in creating vaccine-based strategies due to the relative lack of TSAs.
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