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Abstract
Mediation analysis can be applied to investigate the effect of a third variable on
the pathway between an exposure and the outcome. Such applications include
investigating the determinants that drive differences in cancer survival across
subgroups. However, cancer disparities may be the result of complex mecha-
nisms that involve both cancer-related and other-cause mortality differences
making it difficult to identify the causing factors. Relative survival, a commonly
used measure in cancer epidemiology, can be used to focus on cancer-related
differences. We extended mediation analysis to the relative survival framework
for exploring cancer inequalities. The marginal effects were obtained using
regression standardization, after fitting a relative survival model. Contrasts
of interests included both marginal relative survival and marginal all-cause
survival differences between exposure groups. Such contrasts include the
indirect effect due to a mediator that is identifiable under certain assumptions.
A separate model was fitted for the mediator and uncertainty was estimated
using parametric bootstrapping. The avoidable deaths under interventions
can also be estimated to quantify the impact of eliminating differences. The
methods are illustrated using data for individuals diagnosed with colon cancer.
Mediation analysis within relative survival allows focus on factors that account
for cancer-related differences instead of all-cause differences and helps improve
our understanding on cancer inequalities.

KEYWORDS
cancer inequalities, mediation analysis, natural indirect effect, regression standardization, rel-
ative survival

1 INTRODUCTION

Survival after a cancer diagnosis varies considerably across subgroups. For instance, many studies have reported large
disparities between socioeconomic groups that exist irrespective of the various approaches of defining socioeconomic
groups (Danø, Andersen, Ewertz, Petersen, & Lynge, 2003; Ito et al., 2014; Jeffreys et al., 2009; Rachet et al., 2010;
Rutherford, Andersson, Møller, & Lambert, 2015; Syriopoulou et al., 2017). Understanding the factors that drive survival
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differences can be challenging due to complex mechanisms that contribute towards disparities and the methodological
challenges they induce.
Mediation analysis provides a useful tool for such settings as it can be applied to explore the role of a third variable (a

mediator) that may be on the pathway between an exposure and the outcome (De Stavola, Daniel, Ploubidis, & Micali,
2014; Imai, Keele, & Tingley, 2010; VanderWeele, 2011). Thus, we can investigate whether differences in the mediator
distribution are partly responsible for the variation between exposure groups.Mediation analysis helps to explore potential
causal mechanisms of an observed association through an effect decomposition and under certain assumptions it allows
the identification of the direct effect between an exposure and an outcome and the indirect effect due to the mediator
(Pearl, 2001).
Another challenge with population-based cancer data is the presence of competing events. The event of interest, which

is usually death due to cancer, will never be observed for some patients due to an earlier death due to other causes. Cause of
death information is often unreliable preventing a cause-specific approach. The relative survival approach can be applied
instead as it utilizes the expected mortality rates of a comparable group in the general population to represent mortality
due to other causes for the cancer population (Dickman & Coviello, 2015; Ederer , Axtell, & Cutler, 1961; Pohar Perme,
Stare, & Estève, 2012). Under assumptions, relative survival is interpreted as net survival, that is the probability of survival
in a hypothetical world where the cancer of interest is the only possible cause of death (Pavlic & Pohar Perme, 2019).
Relative survival is a useful measure for disentangling the exposure–outcome association as it enables us to focus on

cancer-related differences instead of all-cause differences. All-cause survival differences are the result of complicated
mechanisms that involve both cancer-related and other cause factors. Thus, it may be easier to investigate the underlying
determinants of cancer-related differences and identify interventions of eliminating them. Such interventions would
reduce the cancer mortality rates of those with worse prognosis but would have no impact on other cause mortality rates.
We extend mediation analysis to the relative survival framework and utilize regression standardization to obtain the

marginal survival and related functions.We assess howmuch of the differences between exposure groups can be explained
by differences in the mediator distribution, and we estimate the impact of removing differences in relative survival and
the mediator distribution. For the interpretation of these measures as causal, standard mediation analysis assumptions
are now extended in the relative survival framework and they need to hold both for cancer and other cause mortality.
The paper is structured as follows. First, we introduce the illustrative data and we briefly describe the main measure of

interest for comparing subgroups, that is the marginal relative survival that is estimated by the standardized relative sur-
vival. Then, we investigate the role of a mediator in the exposure–outcome association and explore the impact of interven-
tions that aim to eliminate cancer-related survival differences. Such interventions can also be quantified using the avoid-
able deaths measure. Finally, we conclude the paper by summarizing the methods and discussing potential limitations.

2 INTRODUCING THE ILLUSTRATIVE EXAMPLE

We demonstrate the methods using an example on survival differences between socioeconomic groups of individuals
diagnosed with colon cancer. Data include all individuals diagnosed with colon cancer in England between 2011 and
2013, made available by Public Health England. Available information includes: sex, age and stage at diagnosis as well
as deprivation status. Deprivation status is a categorical variable with the deprivation quintiles calculated using the 2010
Index of Multiple Deprivation of the area of patients’ residence at diagnosis (Department for Communities and Local
Government, 2010; NeighbourhoodRenewal Unit, 2004). Even though deprivation status is a categorical variable with five
categories, as themain purpose of the analysis was to demonstrate themeasures, we utilize a subset of the population, that
is the least andmost deprived groups. In England, completeness of stage at diagnosis has improved dramatically after 2012;
however, there are a large proportion of missing data for earlier years. As a result, stage at diagnosis was missing for 33.9%
of the population. Once again as these data are used only for illustration of the methods, we conducted a complete case
analysis including only those with recorded stage at diagnosis. However, our approach can extend to multiple imputation
approaches formissing data. The final data included 15,630 patients, 57.6% of whichwere in the least deprived group.More
details on the study population can be found in Table 1.

3 MARGINAL RELATIVE SURVIVAL

Let 𝑋 be a binary variable with 𝑋 = 1 for the exposed and 𝑋 = 0 for the unexposed. The conditional all-cause mortality
rate of an individual 𝑖, with exposure value 𝑥𝑖 and confounder pattern 𝒛𝒊, can be partitioned into the conditional expected
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TABLE 1 Number of colon cancer patients (with proportions) for sex, age-groups and stage at diagnosis by deprivation group

Deprivation group
Least deprived Most deprived

Sex
Males 4841 (53.78%) 3500 (52.81%)
Females 4161 (46.22%) 3128 (47.19%)

Age group
18–44 233 (2.59%) 298 (4.50%)
45–54 537 (5.97%) 470 (7.09%)
55–64 1544 (17.15%) 1267 (19.12%)
65–74 2767 (30.74%) 1877 (28.32%)
75–84 2820 (31.33%) 1970 (29.72%)
85+ 1101 (12.22%) 746 (11.25%)

Stage at diagnosisa

I 1338 (14.86%) 912 (13.76%)
II 2644 (29.37%) 1950 (29.42%)
III 2435 (27.05%) 1716 (25.89%)
IV 2585 (28.72%) 2050 (30.93%)

aStage I-IV for the least to the most advanced stage at diagnosis.

mortality rate had they not had the cancer, ℎ∗(𝑡|𝑋 = 𝑥𝑖, 𝒁1 = 𝒛1𝑖), and the conditional excessmortality rate due to cancer,
𝜆(𝑡|𝑋 = 𝑥𝑖, 𝒁2 = 𝒛2𝑖):

ℎ(𝑡|𝑋 = 𝑥𝑖, 𝒁 = 𝒛𝑖) = ℎ∗(𝑡|𝑋 = 𝑥𝑖, 𝒁1 = 𝒛1𝑖) + 𝜆(𝑡|𝑋 = 𝑥𝑖, 𝒁2 = 𝒛2𝑖).

𝒁 denotes the set of all confounders and consists of subsets 𝒁1 and 𝒁2. Subset 𝒁1 denotes the confounders for expected
mortality and subset 𝒁2 denotes the confounders for the excess mortality. Often 𝒁1 will be a subset of 𝒁2 and in that case
𝒁2 will be the equivalent to 𝒁. For instance, sex and age affect other cause mortality but they also affect cancer mortality.
The survival analogue of excess mortality is relative survival. The conditional relative survival, 𝑅(𝑡|𝑋 = 𝑥𝑖, 𝒁2 = 𝒛2𝑖),

is a function of the conditional all-cause survival, 𝑆(𝑡|𝑋 = 𝑥𝑖, 𝒁 = 𝒛𝑖), and the conditional expected survival,
𝑆∗(𝑡|𝑋 = 𝑥𝑖, 𝒁1 = 𝒛1𝑖). The conditional all-cause survival can be written as

𝑆 (𝑡|𝑋 = 𝑥𝑖, 𝒁 = 𝒛𝑖) = 𝑆∗ (𝑡|𝑋 = 𝑥𝑖, 𝒁1 = 𝒛1𝑖) 𝑅 (𝑡|𝑋 = 𝑥𝑖, 𝒁2 = 𝒛2𝑖) . (1)

It is important to point out that there is variation in expected, relative and observed survival between individuals. The
expected survival (as well as the expected mortality rates) is typically obtained by available lifetables for the general
population that are stratified by confounders 𝒁1, such as age, sex, calendar year and deprivation status. In a modelling
context, relative survival is obtained from a relative survival model in which only confounders 𝒁2 are included in the
model. However, the expected survival probabilities of individuals will also be incorporated in this model and these are
obtained by the population lifetables which are stratified by confounders 𝒁1.
Relative survival can be interpreted as net survival, that is survival in a hypothetical world where the only possible cause

of death is the cancer of interest under the following assumptions: (i) the expectedmortality rates that represent mortality
due to other causes for the cancer population are appropriate and (ii) the potential times to death from cancer and other
causes are conditionally independent (Pavlic & Pohar Perme, 2019). For the first assumption to hold, it is important to
include sufficient variables, 𝒁1, in the lifetable to ensure comparability between the cancer and the general populations
(Pohar Perme et al., 2012; Dickman & Coviello, 2015). The second assumption is the same assumption required in a cause-
specific approach.
Many modelling approaches exist to estimate relative survival and our methods in principle could be applied to all,

but in this paper we focus on flexible parametric survival models that use restricted cubic splines to model the base-
line log cumulative excess hazard (Cortese & Scheike, 2008; Dickman, Sloggett, Hills, & Hakulinen, 2004; Estève, Ben-
hamou, Croasdale, & Raymond, 1990; Hakulinen & Tenkanen, 1987; Nelson, Lambert, Squire, & Jones, 2007; Royston,
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2001). Non-proportional excess hazards and interactions can easily be incorporated in the model. After fitting the model,
a summary of the population prognosis can be obtained as marginal effects such as marginal relative survival functions.
We focus on counterfactual marginal relative survival functions within subgroups of the population that are obtained
through regression standardization (Sjölander, 2016; Syriopoulou, Rutherford, & Lambert, 2020). Alternative methods to
estimate marginal measures like inverse probability weights could also be applied (Cole & Hernán, 2004).
The counterfactual marginal relative survival when setting 𝑋 = 𝑥 is defined as

𝜃(𝑡|𝑋 = 𝑥) = 𝐸[𝑅(𝑡|𝑋 = 𝑥, 𝒁2)],

with the expectation taken over 𝒁2. To relate the observed and counterfactual outcomes, the assumptions of conditional
exchangeability, consistency and positivity need to hold (Hernán &Robins, 2006), both for cancer and other causemortal-
ity. These are discussed in more detail in Syriopoulou et al. (2020). Under these assumptions, the counterfactual marginal
relative survival can be estimated as the standardized relative survival. This is given as an average of the predictions of
each individual in a study population with 𝑁 individuals:

�̂� (𝑡|𝑋 = 𝑥) =
1

𝑁

𝑁∑
𝑖 = 1

�̂�(𝑡|𝑋 = 𝑥, 𝒁2 = 𝒛2𝑖).

For the estimation of the counterfactual marginal relative survival, the exposure is set to 𝑋 = 𝑥 for every individual in
the study population. This is different to utilizing the observed exposure value of individuals, 𝑋 = 𝑥𝑖 , as in Equation (1).
On the mortality scale, the marginal net probability of death can be estimated instead by
1 − �̂�(𝑡|𝑋 = 𝑥).
The difference in counterfactual marginal relative survival functions between two different levels of the exposure can

also be defined:

𝜃 (𝑡|𝑋 = 1) − 𝜃 (𝑡|𝑋 = 0) = 𝐸 [𝑅 (𝑡|𝑋 = 1, 𝐙2)] − 𝐸 [𝑅 (𝑡|𝑋 = 0, 𝐙2)] . (2)

This is a comparison of two hypothetical situations: in the first term 𝑋 is set to 1 for everyone, and in the second term
𝑋 is set to 0 for everyone. Under the identifiability assumptions, difference (2) can be estimated by the difference in
standardized relative survival functions

1

𝑁

𝑁∑
𝑖=1

�̂�(𝑡|𝑋 = 1, 𝒁2 = 𝒛2𝑖) − 1

𝑁

𝑁∑
𝑖=1

�̂�(𝑡|𝑋 = 0, 𝒁2 = 𝒛2𝑖).

The relative survival difference is a causal effect in the absence of competing risks (Young, Stensrud, Tchetgen Tchetgen,
& Hernán, 2020). Difference (2) refers to the cancer-related difference if everyone was exposed versus if everyone was
unexposed, in a hypothetical world where the only possible cause of death is the cancer of interest (Lambert, Dickman, &
Rutherford, 2015; Pavlic & Pohar Perme, 2019). All-cause survival differences, in a setting where other causes of death are
present, can also be obtained by incorporating the expected survival:

𝐸[𝑆∗(𝑡|𝑋 = 1, 𝒁1)𝑅(𝑡|𝑋 = 1, 𝒁2) ]−𝐸[ 𝑆∗(𝑡|𝑋 = 0, 𝒁1)𝑅(𝑡|𝑋 = 0, 𝒁2)] (3)

and is estimated by

1

𝑁

𝑁∑
𝑖=1

𝑆∗(𝑡|𝑋 = 1, 𝒁1 = 𝒛1𝑖)�̂�(𝑡|𝑋 = 1, 𝒁2 = 𝒛2𝑖),

−
1

𝑁

𝑁∑
𝑖=1

𝑆∗(𝑡|𝑋 = 0, 𝒁1 = 𝒛1𝑖)�̂�(𝑡|𝑋 = 0, 𝒁2 = 𝒛2𝑖).

In expression (3), survival differencesmay be due to differences in cancermortality, other causemortality or both. More
details on marginal estimates and causal effects using relative survival can be found elsewhere (Syriopoulou et al., 2020).
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F IGURE 1 Directed acyclic graph for the relationship of the exposure X, time to a specific event T and confounding Z in the presence of
a mediatorM

4 EXPLORING THE EFFECT OF AMEDIATOR

Let us assume that we are interested in the potential role of a third variable𝑀, as amediator, in the association of exposure
𝑋 and a time-to-event outcome 𝑇. For instance, Figure 1 demonstrates a setting in which 𝑋 has both a direct (𝑋 → 𝑇)

and an indirect (𝑋 → 𝑀 → 𝑇) effect through 𝑀 to 𝑇 (Pearl, 2012). For simplicity, we have assumed the same set of
confounders, 𝒁, for 𝑋 − 𝑀 and 𝑀 − 𝑇, but this can be generalized to include a different set of confounders for one of
them. The setting of Figure 1 can be extended to the relative survival framework. However, within the relative survival
framework, we only utilize the information on time to death without knowing the exact cause of death. By extending
mediation analysis to relative survival and under certain assumptions, identification of the natural direct and indirect
effects is possible. The mediators that will be considered here are assumed to affect only cancer mortality rates and have
no effect on other cause mortality rates.
Let𝑀𝑥 denote the counterfactual mediator distribution when intervening to set the exposure 𝑋 to level 𝑥. Let 𝑅(𝑡|𝑋 =

𝑦, 𝒁2, 𝑀
𝑥) be the counterfactual relative survival function when intervening to set the exposure 𝑋 to level 𝑦 and the

mediator 𝑀 to 𝑀𝑥. Level 𝑦 is set to values 0 and 1 for the unexposed an exposed, respectively. Sometimes it is possible
to have 𝑥 = 𝑦, that is the relative survival that would have been observed if both the exposure and the counterfactual
mediator distribution have been set to the same exposure level.
Within the relative survival framework, the natural direct effect (NDE𝑅𝑆) is defined as the difference inmarginal relative

survival between the exposed and unexposed if both groups had the samemediator distribution as the unexposed (setting
𝑀 to𝑀0 and thus𝑀 remains the same for each patient in both terms):

NDE𝑅𝑆 = 𝐸[𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀0) ]−𝐸[ 𝑅(𝑡|𝑋 = 0, 𝒁2, 𝑀0)]. (4)

The natural indirect effect (NIE𝑅𝑆), which gives the effect of themediator, is defined as the difference when setting𝑋 = 1

and comparing the effects of having their ownmediator distribution (setting𝑀 to𝑀1) versus if they had the samemediator
distribution as the unexposed (setting𝑀 to𝑀0):

NIE𝑅𝑆 = 𝐸[𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀1) ]−𝐸[ 𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀0)] . (5)

In (5), 𝑋 is allowed to influence relative survival only through its influence on𝑀.
Identification of NDE𝑅𝑆 and NIE𝑅𝑆 is possible under standard mediation analysis assumptions that are now extended

to both outcomes, that is cancer and other causes (De Stavola, et al., 2014; Pearl, 2001). For the rest of this paragraph,
referring to the outcome will imply both cancer and other causes. First, no interference assumption states that a patient’s
exposure has no effect on the outcome of another (both cancer and other cause) and that a patient’s mediator value does
not influence the outcome of another patient. In addition, an individual’s exposure has no effect on themediator of another
individual. Second, consistency states that an individual’s outcome under the actual values of 𝑋 = 𝑥 and𝑀 = 𝑚 is equal
to the outcome that would be observed under an intervention of setting the exposure 𝑋 = 𝑥 and the mediator to𝑀 = 𝑚.
Consistency also expands so that (i) the outcome under the actual value of 𝑋 = 𝑥 is equal to the outcome that would be
observed under an intervention of setting 𝑋 = 𝑥 and 𝑀 = 𝑀𝑥 as well as (ii) 𝑀𝑥 = 𝑀 when the actual value is 𝑋 = 𝑥.

Finally, conditional exchangeability states that there is (i) no unmeasured exposure–outcome confounding conditionally
on confounders, (ii) no unmeasured mediator–outcome confounding conditionally on exposure and confounders, (iii)
no unmeasured exposure–mediator confounding conditional on confounders and (iv) no mediator–outcome confounder
affected by exposure. Achieving conditional exchangeability for other causemortality depends on the level of stratification
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in the lifetables that are used to incorporate expected mortality rates. If the variables of the lifetables are insufficient
then this assumption is violated. Various methods have been suggested to incorporate factors that are not available on
population level (Bower et al., 2017; Ellis, Coleman, & Rachet, 2014; Rubio, Rachet, Giorgi, Maringe, & Belot, 2019).
The NDE𝑅𝑆 and NIE𝑅𝑆 can be estimated by (Pearl, 2001; Pearl, 2012)

N̂DE𝑅𝑆 =
1

𝑁

𝑁∑
𝑖=1

∑
𝑚

�̂�(𝑡|𝑋 = 1, 𝒁2 = 𝒛2𝑖, 𝑀 = 𝑚) �̂�(𝑀 = 𝑚|𝑋 = 0, 𝒁2 = 𝒛2𝑖)

−
1

𝑁

𝑁∑
𝑖=1

∑
𝑚

�̂�(𝑡|𝑋 = 0, 𝒁2 = 𝒛2𝑖, 𝑀 = 𝑚) �̂�(𝑀 = 𝑚|𝑋 = 0, 𝒁2 = 𝒛2𝑖)

N̂IE𝑅𝑆 =
1

𝑁

𝑁∑
𝑖=1

∑
𝑚

�̂�(𝑡|𝑋 = 1, 𝒁2 = 𝒛2𝑖, 𝑀 = 𝑚) �̂�(𝑀 = 𝑚|𝑋 = 1, 𝒁2 = 𝒛2𝑖)

−
1

𝑁

𝑁∑
𝑖=1

∑
𝑚

�̂�(𝑡|𝑋 = 1, 𝒁2 = 𝒛2𝑖, 𝑀 = 𝑚) �̂�(𝑀 = 𝑚|𝑋 = 0, 𝒁2 = 𝒛2𝑖)

with 𝑚 taking values 0 and 1 for a binary mediator 𝑀. For a mediator with more levels, the summation is taken over
all levels. Also, �̂�(𝑀 = 𝑚|𝑋 = 𝑥, 𝒁2 = 𝒛2𝑖) is the estimated probability of being in a specific level of the mediator given
exposure and confounders.
Detailed steps on the estimation can be found in Box 1. To account for the uncertainty on the probabilities estimated

in Step 3 and the survival functions of Step 4, bootstrap-based standard errors are obtained. By performing parametric
bootstrap, the parameters are drawn repeatedly from amultivariate normal distribution and for each draw we obtain both
estimates and the variance covariance matrix that are finally combined (Efron &Tibshirani, 1993). An example of Stata
code for obtaining predictions can be found in the Supporting Information.
The proportion of the total causal effect (TCE𝑅𝑆) that is due to the mediator within the net survival setting is then

defined as

PM𝑅𝑆 =
NIE𝑅𝑆
TCE𝑅𝑆

,

with the TCE𝑅𝑆 = NDE𝑅𝑆 + NIE𝑅𝑆.

The NDE𝑅𝑆 and NIE𝑅𝑆 refer to differences in relative survival between exposure groups in a net-survival setting where
the only possible cause of death is the cancer of interest and therefore yield differences that exist only due to the cancer
of interest and not other causes.
Instead of focusing on the net survival setting as in (4) and (5), it is also possible to obtain estimates in a situation where

both cancer and other causes are present. This can be done by incorporating the expected survival and forming contrasts
of all-cause survival. There are many ways to incorporate the expected survival. For instance, the following contrasts can
be formed:

NDEAC1 = 𝐸[𝑆
∗(𝑡|𝑋 = 1, 𝒁1)𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀0)] − 𝐸[𝑆∗(𝑡|𝑋 = 0, 𝒁1)𝑅(𝑡|𝑋 = 0, 𝒁2, 𝑀0)]

NIEAC1 = 𝐸[𝑆
∗(𝑡|𝑋 = 1, 𝒁1)𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀1)]−𝐸[𝑆∗(𝑡|𝑋 = 1, 𝒁1)𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀0)].

For the NDEAC1, the first term includes the expected survival if exposure was set to 1 for everyone, 𝑆∗(𝑡|𝑋 = 1, 𝒁1),
and the second term includes the expected survival by setting 𝑋 = 0,𝑆∗(𝑡|𝑋 = 0, 𝒁1). Therefore, for NDEAC1, survival
differences may be due to differential cancer mortality, other cause mortality or both. Understanding the mechanisms of
all-cause survival differences can be complex. Thus, it might be of interest to obtain the following measures instead:
NDEAC2 = 𝐸[𝑆

∗(𝑡|𝑋,𝒁1)𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀0)] − 𝐸[𝑆∗(𝑡|𝑋,𝒁1)𝑅(𝑡|𝑋 = 0, 𝒁2, 𝑀0)]

NIEAC2 = 𝐸[𝑆∗(𝑡|𝑋,𝒁1)𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀1)]−𝐸[𝑆∗(𝑡|𝑋,𝒁1)𝑅(𝑡|𝑋 = 1, 𝒁2, 𝑀0)].

For NDEAC2 and NIEAC2, survival differences can only be due to the cancer of interest as the expected survival,
𝑆∗(𝑡|𝑋,𝒁1), is incorporated using the observed distribution of the exposure for both contrasting terms. This is the key
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F IGURE 2 Standardized estimates of relative
survival by years since diagnosis and stage at
diagnosis. Black and grey lines refer to the relative
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difference with NDEAC1 to which the expected survival was incorporated by setting 𝑋 = 1 or 𝑋 = 0 for everyone in the
study population.
The direct and the indirect effects can also be obtained within subsets of the whole population. For instance, the NDE

among the exposed could be estimated by standardizing only to patients of the exposed group, 𝑁𝑋=1. Such contrasts can
be useful for assessing the potential impact of interventions that aim to eliminate differences between groups by either
focusing on the mediator distribution or the cancer-related survival (i.e. relative survival).
It is important to note that the interventions considered in this paper are assumed to have no impact on other cause

mortality rates (i.e. other cause mortality remains unchanged after such interventions). The two competing events are
assumed to be conditionally independent. Even when referring to an all-cause setting, it is assumed that any potential
impact of the intervention on survival is due to changes in cancer mortality. ForNDEAC1, some of the survival differences
will be due to differences in other cause mortality but this would be a result of differential background mortality between
exposed and unexposed and not a result of the intervention. The motivation for this distinction is that the effect of certain
interventions would be separable across the two competing causes; for instance, increased cancer screening engagement
would likely impact only on themortality for the cancer cause specifically, whilst only indirectly impacting on other-cause
death probabilities but not the underlying other-cause mortality rates.

4.1 Example

We explored survival differences following a diagnosis of colon cancer between socioeconomic groups by fitting a flexible
parametric survival model with 5 degrees of freedom for the baseline excess hazard including sex, deprivation status, age
and stage at diagnosis and allowing for time-dependent effects for deprivation, age and stage (3 degrees of freedom). Age
at diagnosis was included in the model as a continuous non-linear variable using restricted cubic splines with 3 degrees
of freedom. An interaction between stage and deprivation was also allowed. A multinomial regression model was fitted
for stage including age as a continuous non-linear variable, deprivation status and sex. The 95% confidence intervals were
obtained using the standard deviation of a parametric bootstrap sample with 𝑘 = 500.
We found differences in standardized relative survival between the least and most deprived groups, especially for the

most advanced stages (Figure 2). Differenceswere also observed in the stage distribution, as a higher proportion of themost
deprived were diagnosed in a more advanced stage (Table 1). The role of stage as a potential mediator in the association
of deprivation and survival time was further investigated by obtaining the N̂DE𝑅𝑆 and N̂IE𝑅𝑆 that are due to stage specific
survival differences and due to the stage differences, respectively, in the net survival setting where the only possible cause
of death is colon cancer (Figure 3). Three years after diagnosis a total difference of 3.38% (95%CI: [0.83, 5.93]) was observed
in standardized net probabilities of death and 1.25% (95% CI: [0.22, 2.28]) of the difference was attributed to differences
in stage at diagnosis. As a result, the proportion of total differences in standardized net probability of death that was
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F IGURE 3 (A) Total causal effect, defined as the difference in standardized net probabilities of death, with 95% confidence intervals and
(B) partitioning of the total causal effect to the natural direct and indirect effect due to stage at diagnosis

mediated through stage at 3 years was 37% (i.e. 1.25∕3.38). To obtain an estimate of cancer-related differences in the all-
cause setting, where other causes of death are present, the N̂DE𝐴𝐶2 and N̂IE𝐴𝐶2 were also estimated (Figure 4). We found
that the indirect effect due to stage was 1.14% (95% CI: [0.24, 2.04]) and the total difference in probabilities of death was
equal to 3.01% (95% CI: [0.77, 5.26]). Thus, 38% of the difference in this all-cause setting was mediated through stage.

5 AVOIDABLE DEATHS UNDER HYPOTHETICAL INTERVENTIONS

The impact of eliminating differences between groups, in the presence of both cancer and other cause mortality, can
also be quantified as the avoidable deaths after an intervention (Syriopoulou et al., 2020). Such an intervention would
be to eliminate differences in the mediator distribution. As mentioned earlier, the mediators considered in this paper are
assumed to affect only the cancer mortality rates and have no effect on the rates of other cause mortality.
The avoidable deaths is a time-specificmeasure and has the interpretation of postponable deaths as eventually all deaths

will be realized. Although the avoidable deaths can also be defined for the whole population, here we focus on the avoid-
able deaths among the exposed, that is obtaining marginal estimates using a subset of the population.
Assume that we are interested in the avoidable deaths under an intervention that aims to eliminate differences in the

distribution of themediator between exposed and unexposed, while keeping other causemortality rates unchanged. First,
we need the number of deaths for the exposed that is given by multiplying the number of exposed patients diagnosed in
a typical calendar year, 𝑁∗ with the probability of death:

𝐷1(𝑡|𝑋 = 1, 𝑀1) = 𝑁∗(1 − 𝐸[𝑆∗(t|𝑋 = 1, 𝒁𝑋=1
1

)𝑅(𝑡|𝑋 = 1, 𝒁𝑋=1
2

, 𝑀1)]), (6)

with 𝒁𝑋=1
1

and 𝒁𝑋=1
2

denoting the covariates for the exposed, for the expected and relative survival, respectively.
Then, the expected number of deaths under the intervention can be derived by shifting the mediator distribution of the

exposed to the one of the unexposed (setting𝑀 to𝑀0):

𝐷𝑀(𝑡|𝑋 = 1, 𝑀0) = 𝑁∗(1 − 𝐸[𝑆∗(t|𝑋 = 1, 𝒁𝑋=1
1

)𝑅(𝑡|𝑋 = 1, 𝒁𝑋=1
2

, 𝑀0)]). (7)
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F IGURE 4 (A) Total causal effect, defined as the difference in standardized all cause probabilities of death, with 95% confidence intervals
and (B) partitioning of the total causal effect to the natural direct and indirect effect due to stage at diagnosis

The avoidable deaths from eliminating differences in the mediator distribution is given by
AD𝑅𝑆 = 𝐷1(𝑡|𝑋 = 1, 𝑀1) − 𝐷𝑀(𝑡|𝑋 = 1, 𝑀0).
For the identification of AD𝑅𝑆 , assumptions similar to the one described for of NDE𝑅𝑆 and NIE𝑅𝑆 are required.
It is important to note that in the above scenario, we keep the expected survival of the exposed group unchanged andwe

assess an intervention that aims to shift the mediator distribution of the exposed to that of the unexposed with no impact
on other cause mortality rates. As a result, the potential impact of the interventions considered here will only be due to
changes in cancer mortality rates.
A key point for the interpretation of the avoidable deaths is the number of patients 𝑁∗ applied in (6) and (7). 𝑁∗ can

be any number relevant to the study population. For instance, it could be the number of exposed patients diagnosed in
the most recent year in our data, or it could be derived by adding all exposed patients diagnosed during the total duration
of the follow-up divided by the number of years available. Some might also consider calculating the avoidable deaths per
1000 patients. When interpreting the results, it is important to keep in mind potential differences between the population
being marginalized over, which in the above example is all the exposed patients of the study (over a range of calendar
years), and the population used for 𝑁∗. In extreme cases, the covariate pattern might have changed over calendar time
suggesting that a choice must be made over the most relevant information to present. It may be preferable to marginalize
over a specific restricted population, with the appropriately calculated N* for that population.

5.1 Example

We estimated the avoidable deaths under two hypothetical interventions:

1. ‘eliminating differences in the stage at diagnosis distribution as well as relative survival differences between the least and
most deprived groups’ (scenario 1).

2. ‘eliminating differences in the stage at diagnosis distribution between the least and most deprived groups’ (scenario 2).

For scenario 1, we shifted the relative survival and stage at diagnosis distribution of themost deprived patients to that of
the least deprived, that is the most advantaged group. For scenario 2, we shifted the stage at diagnosis distribution of the
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F IGURE 5 (A) Total avoidable deaths by removing relative survival and stage differences between the least and most deprived groups
(Scenario 1) with 95% confidence intervals and (B) partitioning total avoidable deaths to those under an intervention of “eliminating differences
in the stage at diagnosis distribution” (Scenario 2)

most deprived to that of the least deprived group. For both scenarios, we kept the expected survival of the most deprived
unchanged. Three years after diagnosis 94 (95% CI: [24, 165]) avoidable deaths would be observed in total, out of 3228
(i.e. 𝑁∗) patients from the most deprived group diagnosed in 2013 the most recent year in our cohort study. Partitioning
that further, we found that 35 (95% CI: [7, 64]) deaths of the total deaths would be from eliminating stage differences
(scenario 2) and the remaining 59 would be from removing relative survival differences (Figure 5).

6 DISCUSSION

We extendedmediation analysis to the relative survival framework as a tool for investigating differences in cancer progno-
sis. Using relative survival enables forming contrasts of either relative survival in which the only possible cause of death
is the cancer of interest or in all-cause survival in which both the cancer and other causes are present. We showed that, if
certain assumptions hold, mediation analysis can be applied to identify the indirect effect due to a mediator both in the
net survival and all-cause setting. For further exploration of the survival differences, the potential impact of interventions
can be estimated as the number of deaths that could be avoided within a time frame. The interventions considered here
focus on cancer-related mortality rates and are assumed to have no impact on other cause mortality rates. Because we are
in a competing risks setting, changing the cancer mortality rates will increase the probability of dying from other causes,
even if the other cause mortality rates remain unchanged.
To account for the uncertainty in the probability weights and the predictions of standardized survival (Step 3 and Step

4 of Box 1), we obtain bootstrap-based standard errors by performing parametric bootstrap for the parameter estimates of
bothmodels. Confidence intervals are obtained using the relevant quantiles of the bootstrap samples estimates distribution
or their standard deviation. Alternative approaches could be applied such as M-estimation methods that would shorten
the computational time (Stefanski & Boos, 2002).
Identifying interventions of eliminating all-cause differences can be challenging. This is because differences in all-cause

survival can be the result of complex mechanisms that involve both cancer-related and other cause differences. In this
paper, we utilized relative survival and focus on cancer-related differences. Quantifying differences in a real-world setting
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BOX 1: Algorithm for obtaining the natural direct and indirect effects

Step 1. Fit a parametric relative survival model for the time-to event outcome including the exposure, mediator,
potential confounders and appropriate interactions and time-dependent effects.
Step 2. Fit a model for the mediator including the exposure and confounders. For example, for a binary mediator
this could be a logistic regression model and for a mediator with more categories this could be a multinomial
regression model.
Step 3. For each individual in the study population obtain predictions for the probability of being in a specific level
of the mediator, �̂�(𝑀 = 𝑚|𝑋 = 𝑥, 𝒁2 = 𝒛2𝑖), at each level of the exposure 𝑋 = 𝑥.
Step 4. Obtain predictions of the standardized relative survival functions at each level of 𝑋 = 𝑥, as a weighted
average of the individual relative survival functions �̂�(𝑡|𝑋 = 𝑥, 𝒁2 = 𝒛2𝑖,𝑀 = 𝑚), using the predictions of Step 3
as weights. Contrasts of these predictions can be formed to obtain the N̂DE𝑅𝑆 and N̂IE𝑅𝑆 .
Step 5. Repeat from Step 3 for 𝑘 times while performing parametric bootstrap for the parameter estimates for both
models.
Step 6. Calculate 95% confidence intervals either by taking the 2.5% and 97.5% quantiles of the N̂DE𝑅𝑆 and N̂IE𝑅𝑆
estimates across the bootstrapped samples or by using the standard deviation of the estimates obtained from the
bootstrap samples.

having focused on eliminating cancer-related differences alone is also possible by incorporating the expected survival
probabilities. An intervention that aims to eliminate cancer-related differences without intervening on the other-cause
mortality might be easier to identify. However, one could argue that our intervention is still not well defined (Hernán
& Robins, 2006). Changing the cancer mortality of one exposure group while keeping the others the same might not be
straightforward in practice. For instance, an intervention that aims to increase cancer awareness in the most deprived
patents will most probably increase awareness also in the least deprived group. If this is the case, our estimates will
provide a lower bound of the actual population benefit of the intervention. Nevertheless, quantifying the impact of such
a conceptual intervention in a formalized causal framework gives a firm basis to improve our understanding on cancer
disparities even if such an intervention is difficult to identify in practice (Glymour & Spiegelman, 2017; Krieger & Davey
Smith, 2016; Pearl, 2018; Vandenbroucke, 2016).
Interpretation as causal effects depends on the validity of standard mediation analysis assumptions that are now

extended to the relative survival framework and therefore need to hold for both outcomes, cancer and other cause survival
times. These are no interference, consistency and conditional exchangeability (De Stavola et al. 2014; Pearl, 2001). Achiev-
ing conditional exchangeability for the other causemortality depends on the availability of relevant lifetables that are used
to represent the other cause mortality of the cancer population. Causal interpretation is only appropriate when lifetables
are sufficiently stratified, but in principle lifetables can be constructed for any number of factors. To deal with this issue
and consider other risk factors that are not always available on a population level, adjustments at the expected mortality
rates have been suggested (Bower et al., 2017; Ellis et al., 2014; Rubio et al., 2019). Finally, we have assumed no intermediate
confounders, that is no mediator–outcome confounder affected by the exposure (cross-world independence assumption).
Methods that do not require the cross-world assumption have been suggested before by either using a weighting-based
approach with the limitation of not adding to the total effect or a Monte Carlo–based regression approach that applies
also to multiple mediators (VanderWeele, Vansteelandt & Robins, 2014; Vansteelandt & Daniel, 2017). In principle, our
methods can be extended to settings with intermediate confounders and this consists part of future work.
Further assumptions that relate to relative survival should also hold: appropriate expected mortality rates and con-

ditional independence of the outcomes. The former highlights the importance of representative lifetables, and the latter
requires that relative survival and expected survival are independent after adjusting for sufficient variables (Lambert et al.,
2015; Seppä, Hakulinen, Läärä, & Pitkäniemi, 2016). Under these assumptions, relative survival can be interpreted as a
net survival measure in a hypothetical world with cancer being the only possible cause of death. If interest is in obtain-
ing “real”-world probabilities, we can estimate measures such as standardized crude probabilities and avoidable deaths
measures, by incorporating expected mortality rates.
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The exposures and confounders considered in this paper are time-fixed. However, appropriate methodology that
accounts for time-varying exposures or confounders has been suggested before and this can be extended in the relative
survival framework to allow the estimation of relevant causal parameters (Robins, Hernán, & Brumback, 2000).
Even though cancer inequalities had been well documented, understanding the underlying determinants of these dif-

ferences is a challenging task. In this paper, we utilizedmediation analysis methods and incorporated the relative survival
framework to address these challenges. The proposed method has the advantage of allowing us to focus on cancer-related
differences, the underlying determinants of which may be easier to identify in comparison with all-cause differences.
Adjusting for sufficient confounders is essential, and caution is required when interpreting the findings.
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