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Abstract

This paper presents a novel method on the optimization of bi-objective Flexible Job-shop

Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart

model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the

bi-objective FJSP with consideration of the completion time and the total energy consump-

tion under stochastic processing times. The case study on GM Corporation verifies that the

NSGA-II used in this paper is effective and has advantages to solve the proposed model

comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized

widely in the manufacturing industry, because it can reduce the energy consumption of the

energy-intensive manufacturing enterprise with less investment when the new approach is

applied in existing systems.

1. Introduction

Nowadays, energy efficiency is a very important issue in the world, which is attracting more

and more attention from the researchers. As a result, various methods have been proposed to

solve the problem [1–6]. In the past 50 years in China, the energy consumption of manufactur-

ing enterprises has accounted for a big proportion of production cost [7]. With the energy

prices rising and gradual enhancement of environmental protection awareness, the

manufacturing enterprises are facing increasing pressure to reduce energy consumption.

According to previously known work, most research has been done on cutting down

manufacturing energy consumption by designing more energy efficient machines or improv-

ing the machining processes [8]. However, some previously known work also showed this

method was not effective enough because the major energy consumed by functions was not

directly related to the production of components [9]. Besides, it was implied that there was still

a lot of energy consumption margin needed to be reduced at the system-level during the whole

production process, so more operational methods needed to be employed as the energy saving

approach. Flexible Job-shop Scheduling Problem (FJSP) model was a feasible and effective

approach for manufacturing enterprises to reduce the energy consumption, and the machine
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assignment and the sequencing problem should be solved to satisfy the shortest completion

time objective by using the FJSP model.

The actual production process is influenced by many uncertain factors, which makes the

FJSP become more complex [10] and some researchers had taken uncertainty into consider-

ation when solving the problem. According to the previous studies, due to the variability of

environmental data and the lack of accurate processing models, the processing time of the

FJSP was usually uncertain. Based on previous studies, there were usually three methods to

describe uncertain factors of the processing times such as random number [11–13], fuzzy

number [14–15] and the interval number [16–17]. The application of random number [11–12]

and fuzzy number [15] method depended on the large amounts of sample data in advance.

However, the large amounts of sample data of the processing times were very difficult to be

obtained in practice, and there were limitations in the application process of these methods.

Interval number method [17] did not need to consider the specific value or distribution law in

the interval, so the applicability and operability of this method seemed better. This method

could get a feasible scheduling scheme to a certain extent, but the robustness of the scheduling

scheme was not strong and the anti-interference ability to absorb random disturbance in the

process was poor. In order to further improve the robustness of the scheduling scheme, Janak

et al. [18] proposed a new robust optimization method for kinds of uncertain factors. Tang

et al. [19] introduced two uncertain parameters to describe the fluctuation degree and the

allowable violation degree of stochastic processing times, and successfully applied the robust

optimization method for the single-objective FJSP.

Besides the impact of uncertain factors, the FJSP also belongs to a kind of multi-objective

optimization problem. Fattahi P et al. [20] proposed a mathematical model to get an optimiza-

tion solution. Ozguven C et al. [21] developed a mixed-integer linear programming model for

this problem. Models of FJSP proposed by Demir Y et al. [22] included a sequence-position

variable-based model, precedence variable-based model and the time indexed model. Further-

more, a multi-objective optimization was a set of Pareto optimal solutions which could be

obtained in an optimizing process, and was consistent with an actual scheduling problem.

Through the review of the previously known work, the algorithms frequently used to solve

FJSP are the artificial intelligence algorithm and its improved algorithms, mainly including:

(1) genetic algorithm (GA) and its improved algorithms [23–28], such as the MOGA [29],

NPGA [30], NSGA and NSGA-II [31–32] and so on; (2) particle swarm optimization algo-

rithm (PSO) and its improved algorithms [33]. Among them, the NSGA-II algorithm was

widely used due to its numerous advantages.

From the review above, it is obvious that most of previous studies considered either the

uncertainty problem or the multi-objective FJSP, separately. However, the research on the

multi-objective FJSP under uncertain stochastic processing times is relatively rare. The bi-

objective FJSP with consideration of the total completion time and the total energy consump-

tion under stochastic processing times is a difficult problem to be solved mainly due to the fol-

lowing issues:

1. How to build the mathematic model of bi-objective FJSP under stochastic processing times.

Since the completion time and the total energy consumption are selected as optimal objec-

tive and the stochastic processing times should be considered, the mathematic model

should be established to consider all these factors.

2. How to propose an effective algorithm for the bi-objective FJSP under stochastic processing

times. It is worth noting that the previous algorithms which were designed for solving a sin-

gle objective easily converged to local optimization. In addition, the performance of the
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proposed algorithm should also be considered in order to get high quality and many more

solutions while spending less time to deal with stochastic process.

In this paper, the robust counterpart model and NSGA-II algorithm are used to solve bi-

objective FJSP with consideration of the completion time and the total energy consumption

under stochastic processing time. Then the feasibility and advantages of the method should be

verified while comparing it with conventional methods by experiment and the results. A

graphical research framework for this paper has been shown in Fig 1.

2. Model and Algorithm

2.1 The Mathematic Model of Bi-objective FJSP under Stochastic

Processing Time

Bi-objective FJSP under stochastic processing times can be described as: there are jobs and

machines, each job contains multiple processes, the sequence of each process is determined,

and each process can be processed on a number of different processing machines; the process-

ing time of each job on each machine is different, and the processing time can be changed in a

certain range, which must satisfy a certain probability distribution. The efficient solution of

the problem, also known as robust scheduling, is achieved by assigning appropriate machines

to each process, determining the execution order of each process on each machine such that

certain objectives are optimized, with the behavior not affected by random factors.

The notations and assumptions used in the problem statement and throughout the paper

are listed as follows:

Notations:

i: Job number; (i = 1,2,. . .. . .,n)
j: Process number; (j = 1,2,. . .. . .,s)
k: Machine number; (k = 1,2,. . .. . .,m)
t: Event point; (t = 1,2,. . .. . .,m)
Oij: The jth process of job i;
Mij: The finite machine set of Oij;
Pijk: The nominal processing time of Oij on machine k;

~Pijk: The true processing time of Oij on machine k;

MAX: A large enough real number;

Skt: Starting time of machine k on event point t;
Fkt: Finishing time of machine k on event point t;
STij: Starting time of Oij;
FTij: Finishing time of Oij;
Etotal: The total energy consumption of the whole production process. The calculation of

the Etotal can be found in S1 Fig and S1 Table.

Assumptions:

1. The processing plan is determined, and all jobs have the same priority;

2. All the machines are available at the beginning time;

3. Each machine can only process one job at a time;

4. Processing cannot be interrupted;

5. Each process has a number of optional processing machines, and the nominal value of pro-

cessing time on the optional machine is known, but the true value of processing time is

obtained from the nominal value by random fluctuation.

Bi-Objective FJSP Considering Energy Consumption under Stochastic Processing Times

PLOS ONE | DOI:10.1371/journal.pone.0167427 December 1, 2016 3 / 13



There are two kinds of decision making, machine allocation and sequence of operations on

each machine. To this end, the variable Zijk is introduced. When Zijk = 1, the jth process of the

ith job is allocated to the kth machine at the tth event point; otherwise Zijk = 0. The event point t
is used to order each process on one machine. Therefore, the mathematical model of the bi-

objective FJSP under stochastic processing times is as follows:

Cm ¼ minCmax
Em ¼ minEtotal

)

ð1Þ

s.t.

X

k2Mij

X

t

Zijkt ¼ 1 8i; j ð2Þ

Fig 1. The graphical research framework of this paper.

doi:10.1371/journal.pone.0167427.g001
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X
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~Pijk � ZijktÞ 8k; t ð6Þ

FTij � FTi;j� 1 þ
X

k2Mij

X

t

ð
~Pijk � ZijktÞ 8i; j > 1 ð7Þ

FTij � FTkt þMAX � ð1 � ZijktÞ 8i; j; k 2 Mij; t ð8Þ

FTij � FTkt � MAX � ð1 � ZijktÞ 8i; j; k 2 Mij; t ð9Þ

Cmax � Fkt 8k; t ¼ r ð10Þ

Formula (1) is the two objective functions of the problem which means to minimize the

total completion time and the total energy consumption. The model is subject to the con-

straints (2) to (10) to ensure its integrity. Constraint (2) ensures the uniqueness of the machine

allocation, that is, any process needs and only needs to be allocated to a machine. Constraint

(3) limits any machine at any time to perform one process at most. Constraint (4) strictly indi-

cates that the machine must be sorted in the previous order. Constraints (5)–(9) ensure that

the processes of each machine are in accordance with the time sequence of orderly implemen-

tation, including two aspects: (1) after the completion of a task on the machine, a new task can

be started (constraint (5)); (2) once a task is started, it is not allowed to be interrupted (con-

straint (6)) and the next process can only be started after the completion of the last process

(constraint (7)). Constraints (8)–(10) calculate the maximum completion time of a batch of

jobs and constraints (8) and (9) establish the one-to-one relationship between the process’

completion time and the machine’s event point. Constraint (10) defines the completion time

constraint, indicating the maximum value of all the machines’ finishing time of the last task. It

is emphasized that the processing time in the above constraints (6) and (7) is a random vari-

able, which cannot be solved by the conventional deterministic method, so the robust optimal

scheduling method needs to be further studied to solve this problem.

In order to generalize this research, the robust counterpart model is established for the bi-

objective FJSP under stochastic processing times. The specific transformation process of the

bi-objective FJSP model under stochastic processing times into the robust counterpart model

with the processing time subjected to the uniform distribution can be found in S1 File.

2.2 The NSGA-II Algorithm

NSGA-II is one of the most efficient evolutionary algorithms to solve multi-objective problem.

As an improvement of conventional GA, it has the following advantages:

1. The non-dominated sorting operator is proposed in NSGA-II to reduce the computational

complexity. According to the previous study in a large number of experimental results [34],
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the improved fast sorting method is adopted in this paper to shorten the operation time

and make more intensive use of CPU resources, which especially has more advantages in

solving robust problems.

2. The individual crowding distance operator is used in NSGA-II as the standard of individual

comparison in population, so that the individual in the quasi Pareto domain can be

extended to the whole Pareto domain to ensure the diversity of the population. At present,

the commonly used strategies are niche technology, information entropy, density based

clustering, grid and so on. In this paper, the density based clustering strategy is adopted to

effectively characterize the distribution and diversity of the population and to maintain the

high diversity as well.

3. The elite strategy selection operator is introduced in NSGA-II to enlarge the sampling

space. Besides, the parent population and the offspring population is combined together to

ensure that some excellent individuals will not be discarded in the evolution in order to

improve the accuracy of the optimization results.

Above all, because of the advantages of NSGA-II in solving the multi-objective program-

ming problem, it is considered that NSGA-II still has the applicability in solving the multi-

objective FJSP under stochastic processing times. In this paper, the algorithm is applied to the

specific case to demonstrate its feasibility. The process of NSGA-II to solve the bi-objective

FJSP under stochastic processing times has been shown in Fig 2.

3. Case Study

3.1. Background

GM Corporation is an equipment-manufacturing enterprise. Its main products include trans-

portation equipment and coal mining equipment. Currently, because the market of selling

coal mining equipment has become tight, GM Corporation encounters order reduction. More-

over, under the pressure of energy-saving and emission-reduction policies in China, it has

become very urgent to solve the energy-saving problem in GM Corporation. Therefore, the

forging job shop in GM Corporation is selected for the case analysis in this paper, because it is

the greatest energy consuming job shop in the corporation.

There are several kinds of equipments used in the forging job shop, and different types of

equipments are used to complete the same processing function with different energy con-

sumption. According to the data of assembly line in forging job shop, a FJSP is consisted with

10 machines and 6 jobs. And each job goes through 6 operations, including feeding, heating,

forging, heat treatment, repair grinding and testing. The data required for analysis of the bi-

objective FJSP under stochastic processing time is from the investigation and research of the

Science-technology Support Plan of Hebei Province in China, and can be found in S2–S5

Tables.

3.2. Analysis and Discussion

The applied algorithm is essential to be considered, in this section, the feasibility of the model

and NSGA-II algorithm in solving the multi-objective FJSP under stochastic processing times

is verified by experiments and the results. Firstly, the specific implementation process of the

NSGA-II algorithm is introduced and the optimal solution as a standard is obtained, then the

sensitivity testing for the parameters to further test the model’s performance on two objectives

is carried out.
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After that, there is an experimental comparison of the proposed algorithm with previous

algorithm to conclude the feasibility and advantages of the robust counterpart model and the

NSGA-II. Comparing with HPSO and PSO+SA, NSGA-II algorithm is better than these two

algorithms in terms of the high quality and many more solutions while spending less operation

time under stochastic processing times.

Fig 2. The process of NSGA-II.

doi:10.1371/journal.pone.0167427.g002
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3.2.1 Process of the algorithm and the results. In this section, the NSGA-II can be used

to solve the proposed model. The related parameters of the algorithm are set as follows: the

population size is 50, the maximum evolution generation is 100, the crossover rate is 100% and

the mutation rate is 10%. The encoding schema used in this paper is the two-level encoding

and decoding based on procedure and machine which is proposed by Tang [19]. The steps of

the NSGA-II to solve the model are as follows:

1. Initial parent population P0 with the size N is generated randomly, and the fast non-domi-

nated sorting is implemented on P0.

2. Individual with each rank is sorted again based on the density based clustering strategy to

evaluate the population density.

3. Individuals selected are implemented by the binary tournament operator in the mating

pool. And between two individuals, the selected individual is the one with the lower rank. If

two individuals are on the same level, the winner is the one with the larger value in the

crowding distance.

4. The offspring population Qt is generated by the genetic operations such as crossover and

mutation where “t” denotes the number of generations in the mating pool. In this paper,

the crossover and mutation operators are defined referring to Tang [13].

5. An integrated population Pt is created by combining Pt and Qt, and fitness values are

designed to all individuals by the non-dominated sorting and crowded distance sorting.

6. Finally, individuals with better fitness are selected by elitist sorting and these become the

parent individuals Pt+1.

7. Steps 2–6 are repeated until t = tmax. In this case, tmax = 100.

8. Individuals with rank 1 among parents at Pmax are pareto-optimal solutions.

After the operation of the NSGA-II according to the data from S2–S5 Tables, the optimal

solution of the original problem could be obtained, that is f1 = 44 (min), f2 = 250.8 (kwh),
which is used as basic scenario for the subsequent parameter sensitivity analysis.

3.2.2. Parameter sensitivity analysis. This analysis involved changing the values of k and

ε to observe the change of the average values of the completion time and total energy con-

sumption. k represents the allowable violation degree of constraints, and ε (ε>0) is a given

uncertainty level to control the fluctuation degree of the uncertain variables. The disturbance

of the processing time is subject to [0, 1] uniform distribution. The value of k is taken in the

range of 0%~25%evenly, and the value of ε is taken as 5%, 10%, 15% respectively. When the

values of k and ε change, the average values of the completion time and total energy consump-

tion is found with 10 runs as shown in Figs 3 and 4.

Through the analysis of the curves in Figs 3 and 4, optimal solution value of the robust

counterpart problem is larger than that of under deterministic conditions, and that is because

the robust scheduling scheme can more effectively absorb random disturbances of the process-

ing time. The values of two objective functions are steadily increasing with the increase of ε,

which means the fluctuation degree of stochastic processing times has great impact on the

value of two objective functions. However, the values of them gradually decrease with the

increase of k, which means there is a tradeoff between the allowable violation degree of con-

straints and the performance loss of scheduling scheme.

In addition, when ε decreases with the increase of k, the optimal solution value of the robust

counterpart problem under uncertain conditions is close to the original problem under
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deterministic conditions, then less redundancy is need to absorb random disturbances and the

performance loss of scheduling scheme is minimal. For example, when ε = 0.15 k = 0, the val-

ues of objective functions of the robust counterpart problem are much higher than these of the

original problem under deterministic conditions, it shows that much redundancy is need to

absorb random disturbance to ensure the feasibility and resulting in large performance loss of

the scheduling scheme.

3.2.3. Algorithm feasibility analysis. In section 3.2.2, the feasibility of the algorithm is

verified in terms of the high quality and many more solutions. Because the PSO and its

improved algorithm is usually the common algorithm to solve the FJSP problem, the NSGA-II

Fig 3. The influence of uncertain parameters on the completion time.

doi:10.1371/journal.pone.0167427.g003

Fig 4. The influence of uncertain parameters on the total energy consumption.

doi:10.1371/journal.pone.0167427.g004
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is compared with HPSO and PSO+SA in this paper. The results are shown in Table 1. f1, f2 are

the objective functions, C1, C2 and t1, t2 (unit: second) are the solutions and the needed time of

the deterministic problem and the robust counterpart problem with ε = 0.1 and k = 0.15

respectively, -t1, -t2 (unit: second) represents the average time to run 10 times in a row.

Table 1. Comparison of case results.

Number of times Deterministic problem Robust counterpart problem with the

parameter (ε = 0.1 and k = 0.15)

PSO+SA HPSO C1 C2

f1/f2 f1/f2 f1/f2 t1 Average time of t1 f1/f2 t2 Average time of t2

1 (45/248.6) (45/248.8) (47/225.8) 9.26 9.34 (47.3/226) 9.48 9.48

(45/248.2) (45.2/248.5)

(46/236.4) (44/250.8) (46/236.1) (46.6/238)

(44/250.8) (45/251.1)

2 (45/248.5) (44/251.2) (47/225.5) 9.31 (47.6/226.5) 9.52

(46/237.1) (46.3/237.5)

(47/226.2) (46/237.1) (45/248.2) (46.1/248.3)

(44/251) (44.2/251.8)

3 (45/248.3) (45/249.1) (47/225.5) 9.44 (47.8/226.5) 9.73

(46/237.1) (46.4/237.8)

(44/250.9) (47/226.8) (45/248.3) (46.1/248.3)

(44/250.8) (44.8/252.3)

4 (45/248.6) (46/237.4) (47/226.5) 9.32 (48.2/227.8) 9.54

(46/236.7) (47.1/238.7)

(46/236.8) (44/251.8) (45/248.2) (46.8/250.2)

(44/251) (44.6/253.1)

5 (45/248.3) (45/248.5) (47/225.5) 9.22 (47.8/226.5) 9.45

(46/237.2) (46.5/238.2)

(44/251) (45/248.2) (46.1/249.2)

(44/251) (44.3/251.6)

6 (46/247.1) (46/247.3) (47/225.5) 9.18 (48.1/225.8) 9.34

(45/248.1) (45.6/248.5)

(44/250.9) (44.3/251.4)

7 (45/248.5) (45/248.5) (46/237.1) 9.44 (46.6/238.1) 9.52

(45/248.5) (46.3/248.7)

(44/251.2) (44.2/251.8)

8 (46/237.2) (46/238.8) (47/225.5) 9.34 (47.6/225.9) 9.48

(46/237.2) (46.8/238.2)

(44/251) (45/247.6) (45.4/248.6)

(44/250.8) (45.1/251.2)

9 (45/248.5) (46/237.1) (47/225.5) 9.21 (48.3/226.5) 9.28

(44/252) (46/237.1) (47.8/239.1)

(44/251.2) (45.9/253.2)

10 (45/248.4) (47/225.6) (47/225.3) 9.17 (48.9/226.1) 9.43

(46/237.1) (47.2/240.5)

(45/248.2) (46.7/249.2)

At the environment of huge amount of data, this algorithm is also effective with the tests.

doi:10.1371/journal.pone.0167427.t001
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As shown in Table 1, it can be found that the quality of the non-dominated solutions

obtained by NSGA-II is better or equal than that of PSO+SA and HPSO, and the quantity of

the non-dominated solutions is also more than that of others. It means that the elite strategy

selection operator of NSGA-II can ensure that the excellent individuals can be preserved in the

evolution, so as to improve the accuracy of the optimization results. Moreover, the density

based clustering strategy is used in the calculation of individual crowding distance, and it can

effectively maintain the high diversity of the population and generate more non-dominated

solutions. In solving the robust counterpart problem, if the processing time has much uncer-

tain disturbance, the operation time of the proposed algorithm is just slightly longer than that

of under deterministic conditions, indicating that NSGA-II can quickly and effectively deal

with uncertain disturbance.

So the NSGA-II has more advantage when it is used to deal with the increase of operation

time caused by the stochastic processing times, to ensure the operation time of FJSP under sto-

chastic processing times is acceptable. The NSGA-II is feasible to solve bi-objective FJSP with

consideration of the total completion time and the total energy consumption under stochastic

processing times.

4. Conclusion and Future Work

The bi-objective FJSP with consideration of the total completion time and the total energy con-

sumption under stochastic processing times is a difficult problem to solve because of the com-

plexity of this problem. For this problem, in this paper a robust counterpart model assuming

the processing time which is subjected to the uniform distribution is established, and then

NSGA-II is used to solve the model. By the case study and comparing with PSO+SA and

HPSO, the results all can prove that the NSGA-II is feasible and has advantages to solve bi-

objective FJSP with consideration of the completion time and the total energy consumption

under stochastic processing times. As for further research directions, reducing the energy con-

sumption in a dynamic flexible job shop should be further studied.
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