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A B S T R A C T   

Ghrelin increases in the circulation prior to entrained mealtimes, with the acylated (AG) form functioning to 
stimulate food intake and growth hormone release. Acutely, AG induces whole-body insulin resistance, poten-
tially to maintain glycemia between meals. Alternatively, chronic administration of both AG and the unacylated 
isoform of ghrelin (unAG) is associated with improved skeletal muscle insulin sensitivity as well as reduced 
intramuscular lipids and inflammation. This may be due to effects on lipid metabolism, with ghrelin promoting 
storage of fat in adipose and liver while stimulating oxidation in skeletal muscle, preventing ectopic lipid 
accumulation. This is of specific relevance in the handling of meal-derived lipids, as ghrelin rises preprandially 
with effects persisting for 2–3 h following exposure in skeletal muscle, coinciding with elevated plasma FFAs. We 
hypothesize that ghrelin acts as a preparatory signal for incoming lipids, as well as a regulatory hormone for their 
use and storage. The effects of ghrelin on skeletal muscle are lost with high fat diet feeding and physical inac-
tivity, potentially being implicated in the pathogenesis of metabolic disease. This review summarizes the 
metabolic effects of both ghrelin isoforms on peripheral tissues including the pancreas, adipose, liver, and 
skeletal muscle. Additionally, we speculate on the physiological relevance of these effects in vivo and suggest 
that ghrelin may be a key regulatory hormone for nutrient handling in the postprandial state.   

1. Introduction 

Ghrelin is classically known as the “hunger hormone”, rising in cir-
culation prior to entrained mealtimes to stimulate food intake through 
interactions with hypothalamic neurons [1–4]. The central orexigenic 
function of ghrelin is attributed to its acylated (AG) form [5–7]. Tradi-
tionally, AG has been considered the only biologically active ghrelin 
isoform. However, both AG and unacylated ghrelin (unAG) have 
recently been the focus of a growing body of research for their effects on 
peripheral tissue metabolism (Fig. 1) [8–15]. In this review, we sum-
marize the metabolic effects of both AG and unAG on peripheral tissues. 
In addition, we suggest that ghrelin serves a physiological role as a 
prominent regulatory signal for the handling of mealtime nutrients, and 
that the disruption of this process may contribute to the development of 
metabolic disease. 

2. Overview of ghrelin and its kinetics 

Ghrelin, a 28-amino acid peptide, was originally isolated from the rat 
stomach following its identification as the endogenous ligand for the 

growth-hormone secretagogue receptor (GHSR) [16]. Rat and human 
ghrelin are highly homologous, with both undergoing octanoylation 
modification at the serine 3 residue by ghrelin O-acyltransferase (GOAT) 
[16,17]. This distinguishes between the unacylated and acylated iso-
forms of ghrelin, the latter which is responsible for the 
well-characterized central functions to stimulate food intake [4] and 
growth hormone (GH) release [16]. 

In humans, ghrelin is produced largely by endocrine P/D1 cells of the 
gastric fundus [18]. In circulation, unAG is the more abundant isoform, 
representing 65–80% of total circulating ghrelin in healthy humans 
[19–21]. Ghrelin exhibits a distinct rhythm in the circulation, rising 
prior to entrained meals followed by a reduction upon feeding [22,23]. 
These fluctuations are associated with scheduled mealtimes [24,25], 
and differ with individual eating patterns [26]. 

Ghrelin release in response to mealtimes is facilitated by the para-
sympathetic nervous system, likely through vagus nerve transmission 
[27]. Treatment with norepinephrine [28] and propranolol (β-adren-
ergic receptor (β-AR) agonist) [27] also increase ghrelin secretion, 
suggesting that the sympathetic nervous system may stimulate its 
release under certain conditions. Ghrelin also has a reciprocal rela-
tionship with insulin postprandially. Hyperinsulinemic conditions have 
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been shown to reduce circulating ghrelin levels in humans [29,30], 
suggesting a role of insulin in its postprandial suppression. In line with 
this, lipid ingestion results in a smaller decrease in circulating ghrelin 
levels when compared to carbohydrates and amino acids [31–33]. 
Deacylation enzymes are thought to exist in the circulation, potentially 

regulating the ratio of ghrelin isoforms [21,34], however this area of 
research is ongoing and outside the scope of this review. Only AG is able 
to stimulate GH release; therefore, investigating the regulation of 
ghrelin acylation by GOAT, as well as the processes that control its 
deacylation, may provide insight into the importance of endogenous GH 

Abbreviation list 

AC Adenylyl cyclase 
ACC Acetyl-CoA carboxylase 
ADP Adenosine diphosphate 
AG Acylated ghrelin 
AKT AKT/Protein Kinase B 
AMPK Adenosine monophosphate-activated protein kinase 
ATGL Adipose triglyceride lipase 
ATP Adenosine triphosphate 
AUC Area under the curve 
β-AR β-adrenergic receptor 
CAMKII Calcium-calmodulin-dependent protein kinase II 
cAMP Cyclic adenosine monophosphate 
CPT-1 Carnitine palmitoyltransferase-1 
CRF-2R Corticotropin releasing factor receptor 2 
DAG Diacylglycerol 
Db-cAMP Dibutyryl-cyclic adenosine monophosphate 
EDL Extensor digitorum longus 
EGP Endogenous glucose production 
FABPc Fatty acid binding protein - cytosol 
FABPpm Fatty acid binding protein - plasma membrane 
FAS Fatty acid synthase 
FAT/CD36 Fatty acid translocase/cluster of differentiation 36 
FFA Free fatty acid 
FAO Fatty acid oxidation 
GH Growth hormone 
GHS Growth hormone secretagogue 
GHSR Growth hormone secretagogue receptor 

GLUT4 Glucose transporter protein 4 
GOAT Ghrelin O-acyltransferase 
GSK Glycogen synthase kinase 
G6Pase Glucose-6-phosphatase 
HFD High fat diet 
HOMA-IR Homeostatic model of Assessment for Insulin Resistance 
HSL Hormone sensitive lipase 
ICV Intracerebroventricular 
IR Insulin receptor 
IRS Insulin receptor substrate 
LFD Low fat diet 
LPL Lipoprotein lipase 
MAG Monoacylglycerol 
MGL Monoacylglycerol lipase 
mTOR Mammalian target of rapamycin 
NE Norepinephrine 
PDE Phosphodiesterase 
PDH Pyruvate dehydrogenase 
PEPCK Phosphoenolpyruvate carboxykinase 
PI3K Phosphoinositide 3-kinase 
PKA Protein kinase A 
Pparγ2 Peroxisome proliferator-activated receptor γ2 
SCD-1 Stearoyl-Coenzyme A desaturase-1 
SREBP1 Sterol regulatory-element binding protein 
TAG Triacylglycerol 
TCA Tricarboxylic acid cycle 
UCP Uncoupling protein 
UnAG Unacylated ghrelin 
WAT White adipose tissue  

Fig. 1. An overview of the effects of ghrelin on peripheral tissues. ↑, increase; ↓, decrease; ?, unknown/unclear effect; FAO, fatty acid oxidation; TAGs, tri-
acylglycerols; EGP, endogenous glucose production. Created with BioRender.com. 
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release in response to ghrelin. 

3. Ghrelin receptors 

GHSR is the primary receptor through which ghrelin signals. GHSR 
was first identified as the receptor responsible for mediating the GH- 
releasing effects of synthetic growth hormone secretagogue (GHS) 
molecules [35], representing a previously unknown hormonal pathway 
regulating the release of GH. GHSR has two isoforms, GHSR1a and 
GHSR1b, with only GHSR1a active for GHS binding [36]. While GHSR1b 
is expressed widely [37], GHSR1a mRNA is detected in limited tissues, 
including the pituitary, hypothalamus, pancreas, adipose tissue, and 
liver [35,37–39]. In addition to GH-release, GHSR1a mediates the 
orexigenic action of AG in the arcuate nucleus [4,40,41]. GHSR binding 
is unique to the acylated isoform of ghrelin [16]. 

In addition to GHSR, the corticotropin releasing factor receptor 2 
(CRF-2R) has been suggested to mediate some of the peripheral effects of 
ghrelin, particularly in skeletal muscle. The existence of an alternative 
ghrelin receptor was first proposed by Baldanzi et al. [42]; both AG and 
unAG exerted protective effects on cardiomyocytes, despite only AG 
activating GHSR-1a, and GHSR-1a being undetectable in the cell line 
used. CRF-2R was implicated in ghrelin signaling in muscle by Gershon 
and Vale [43]. Treatment with AG was able to increase glucose uptake in 
C2C12 myocytes through CRF-2R, and both ghrelin isoforms were able 
to bind and upregulate CRF-2R mRNA [43]. CRF-2R is likely to be, at 
least in part, responsible for mediating the effects of both ghrelin iso-
forms in muscle. 

4. Ghrelin and glucose metabolism 

4.1. Insulin and glucagon release from the pancreas 

Glucose stimulates the release of insulin from pancreatic β-cells via 
an increase in the ratio of ATP/ADP. This results in the closure of ATP- 
sensitive potassium channels and subsequent depolarization of β-cells, 
increasing intracellular Ca2+ and the exocytosis of insulin granules [44]. 
It is generally accepted that AG has an inhibitory effect on 
glucose-stimulated insulin secretion from the pancreas, although a few 
studies do not show this [45–48]. The inhibitory effect of AG on insulin 
release has been observed in both rodents [49–52] and humans [8, 
53–57], with AG causing a reduction in circulating insulin despite an 
increase in glucose. Additionally, administration of AG 
dose-dependently reduces acute insulin response to a glucose bolus [58]. 
This suppression of insulin release with AG has been measured along 
with a reduction in C-peptide, indicating this change is independent of 
insulin clearance [58]. 

AG has no effect on insulin release under basal non-stimulatory 
glucose concentrations [49–52,58]. When directly measured in iso-
lated mouse islets, no effect of AG was observed at 3.3 or 5.5 mM 
glucose, with a suppressive effect evident at 8.3, 11.1, and 22.2 mM 
[51]. AG inhibits glucose-induced Ca2+ oscillations through a 
GHSR-dependent mechanism [50,59], however this exact pathway re-
mains to be elucidated. No direct effect of unAG on insulin secretion in 
humans has been observed [8,57], however unAG has been reported to 
oppose the insulin-suppressing effects of AG [8]. 

The effects of AG on glucagon have also been controversial with 
several studies showing no change in glucagon release [47,49,50,56, 
60]. However, a comprehensive study by Chuang et al. found that AG 
administration in mice dose-dependently increased plasma glucagon 
independent of changes in insulin [61]. Additionally, AG was shown to 
stimulate glucagon from isolated islets and α-cells [61]. A stimulatory 
effect is also supported in humans, with AG administration countering 
the suppression of glucagon in hyperinsulinemic conditions [62]. 
Plasma glucagon levels remain unchanged following unAG administra-
tion [60]. 

4.2. Whole body insulin sensitivity and glucose tolerance 

Infusion of AG into healthy human subjects consistently results in an 
increase in plasma glucose [8,11,53,54,56,57,63,64]. Furthermore, a 
positive relationship between HOMA-IR and AG has been identified 
[65], as well as a negative association between insulin resistance and 
unAG, and the ratio of unAG/AG [65,66]. AG was first directly impli-
cated in the regulation of whole body insulin sensitivity by Gauna et al. 
[64], with AG administration resulting in a decrease in insulin sensi-
tivity estimated from glucose, insulin, and free fatty acid (FFA) AUCs for 
4 h following a meal. Accordingly, Vestergaard et al. [11] reported AG 
administration to increase both plasma glucose and FFAs with no 
changes in circulating insulin, suggesting a reduction in insulin sensi-
tivity. Euglycemic-hyperinsulinemic clamp testing has been somewhat 
inconclusive, with one study showing AG to increase the rate of glucose 
infusion required to maintain euglycemia [67] indicating an insulin 
sensitizing effect. However, the majority of studies have shown AG to 
reduce glucose disposal rates [62,68–70], implying a worsening of in-
sulin sensitivity. This reduction in insulin sensitivity has been measured 
independently of changes in endogenous insulin, and when GH release is 
largely suppressed by somatostatin administration [68]. Additionally, 
this diabetogenic effect is not due to acute changes in circulating FFAs, 
as it persists when lipolysis is pharmacologically suppressed [70]. 

In contrast, unAG administration alone is not typically associated 
with changes in plasma glucose and insulin concentrations [8]. How-
ever, coadministration of unAG with AG has been shown to abolish the 
hyperglycemia associated with AG administration [8,64]. Additionally, 
transgenic mice overexpressing unAG are more insulin sensitive [71]. 
These findings overall indicate that AG may impair glucose handling, 
with unAG having the ability to counter these insulin-desensitizing 
effects. 

4.3. Skeletal muscle insulin signaling and glucose uptake 

Skeletal muscle is the primary site for insulin-mediated glucose 
disposal, with up to 80% of a glucose load taken up by this tissue in the 
hyperinsulinemic condition [72]. Both ghrelin isoforms have been 
identified as potential modulators of glucose uptake and insulin 
signaling in skeletal muscle. Repeated administration of UnAG for 4 days 
has been shown to increase AKT phosphorylation and insulin-stimulated 
glucose uptake in the gastrocnemius muscle of mice [13]. Furthermore, 
unAG reduces fasting blood glucose and improves insulin signaling in 
db/db mice when administered over a 10-day period [73]. These find-
ings are in agreement with unAG administration improving whole-body 
insulin sensitivity [8,64,71]. Alternatively, the direct effects of AG on 
skeletal muscle glucose metabolism do not consistently reflect the 
insulin-desensitizing effects reported at the whole body level. Following 
4 days of injections, Barazzoni et al. [12] reported AG to increase AKT 
phosphorylation and GLUT4 mRNA in rat soleus muscle. It is possible 
that repeated treatments with AG result in some AG being endogenously 
deacylated to unAG, and the insulin-sensitizing effects of this isoform 
being observed. However, the relative amounts of each ghrelin isoform 
was not measured [12]. 

In order to minimize the confounding effects of AG administration in 
vivo (e.g., GH release, AG deacylation), several studies have utilized 
isolated cell cultures and muscle incubations to assess its direct influence 
on skeletal muscle glucose metabolism. In agreement with the findings 
of Barazzoni et al. [12], a 72-h AG treatment was found to increase 
insulin-stimulated GLUT4 translocation and subsequent glucose uptake 
in C2C12 cells [43]. In contrast, work from our own lab using isolated 
oxidative soleus and glycolytic EDL muscles found no acute (i.e., 1 h) 
impact of either AG or unAG on glucose uptake or AKT phosphorylation 
under basal or insulin-stimulated conditions [74]. The inconsistency in 
these findings may indicate a potential dissociation between the acute 
and more chronic effects of AG on skeletal muscle glucose metabolism. 
Improvement of insulin sensitivity observed with chronic treatment may 
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be due in part to the effects of ghrelin on lipid metabolism and inflam-
mation [9,15,75–78]. This will be discussed later in the review. 

4.4. Hepatic insulin sensitivity and glucose production 

A potential effect of AG on hepatic glucose metabolism was first 
identified in hepatoma cells, with AG treatment reducing insulin action, 
including insulin’s suppression of PEPCK [79]. Further studies showed 
that AG directly increases glucose output in primary hepatocytes [80], 
as well as endogenous glucose production (EGP) and the expression of 
glucogenic genes (i.e., PEPCK, G6Pase) when administered in rodents 
[67,81]. These effects also occur chronically, with 4 days of twice-daily 
AG administration reducing hepatic AKT and GSK phosphorylation, and 
increasing G6Pase expression [9,12]. Ghrelin’s regulation of EGP in vivo 
has been suggested to be the result of a gut-brain-liver axis [81], how-
ever studies using isolated hepatocytes suggest a direct effect [79,80]. 
These findings have yet to be confirmed in humans, with no effect of AG 
on EGP being observed [68]. UnAG is able to antagonize the effects of 
AG on EGP as well as suppress it when administered independently [80]. 

4.5. Physiological role of acylated ghrelin for blood glucose control 

To summarize, AG acutely reduces insulin sensitivity in skeletal 
muscle and liver, reducing glucose uptake and increasing EGP. Along 
with its effects on pancreatic hormones, AG appears to promote hyper-
glycemia through several mechanisms, a finding that has been consis-
tently reported in the literature [8,11,53,54,56,57,63,64]. It is 
important to remember, however, that ghrelin is elevated in the circu-
lation in the postabsorptive state and prolonged fasting conditions, 
when blood glucose must be maintained to prevent hypoglycemia. It is 
tempting to suggest that AG may have physiological relevance as a blood 
glucose regulator during times of an energy deficit, such as between 
meals (Fig. 2). Notably, GOAT-null mice, which do not synthesize AG, 
are unable to maintain blood glucose in prolonged fasting conditions, 
which decrease to life-threatening levels [82]. Moreover, GHSR-null 
mice show reduced plasma glucose levels in prolonged fasting 

conditions compared to controls [61]. The physiological relevance of the 
ratio of ghrelin isoforms should also be examined, given the opposing 
effects of unAG on AG action. Clarifying the role of both ghrelin isoforms 
in the regulation of glycemia between meals remains an area for further 
investigation. 

5. Ghrelin and lipid metabolism 

5.1. Adipose and liver lipogenesis 

Due to its orexigenic effects, chronic AG treatments lead to an in-
crease in body weight and the expansion of adipose tissue [4]. However, 
treatments with AG have also been shown to increase fat mass inde-
pendently of food intake [10,38,83]. It has been demonstrated in iso-
lated adipocytes that direct treatment of AG increases the expression of 
lipogenic genes encoding LPL, ACC, and FAS, accompanied by the 
accumulation of lipids [84]. Similar effects are seen in rodent white 
adipose tissue (WAT) with AG administration in vivo [10,85]. AG may 
also have adipogenic effects, increasing the expression of perilipin in 
differentiating adipocyte cultures, which is only present in mature adi-
pocytes [84]. AG treatment is also associated with a reduction of CPT-1 
mRNA in WAT and UCP1/3 expression in brown adipose tissue, poten-
tially reducing fat oxidation and further promoting lipid storage [10]. 
Similar to its effects in adipose tissue, repeated AG administration in rats 
increases the hepatic expression and activity of several key enzymes in 
lipogenesis while reducing those involved in fatty acid oxidation (FAO) 
[9,86]. This is accompanied by an increase in hepatic triacylglycerol 
(TAG) content, independent of food intake [9]. Chronic AG infusion in 
rodents can also cause hepatic steatosis [38]. 

In both adipose tissue and the liver, AG increases the expression of 
the transcription factors SREBP1 and PPARγ [38,39,84,87], potentially 
mediating the effects of ghrelin on lipogenic gene expression. This effect 
is likely the result of mTOR signaling, which upregulates these tran-
scription factors in both adipose tissue and the liver [39,88]. Moreover, 
in cultured hepatocytes, the effects of AG on lipogenesis are abolished 
with the mTOR inhibitor rapamycin [39]. In both adipose and hepatic 

Fig. 2. Proposed physiological roles of ghrelin. A preprandial rise in ghrelin is proposed to maintain normoglycemia in the postabsorptive state by decreasing 
insulin release and sensitivity, increasing EGP and reliance on fat. Postprandially, ghrelin is proposed to facilitate the storage of meal-derived lipids in the adipose and 
liver, while increasing oxidation in skeletal muscle. The effects of unAG on skeletal muscle FAO persist for 2–3 h following exposure, aligning with the rise of meal- 
derived lipids in the circulation. Chronically, the summation of these acute effects is proposed to preserve insulin response by reducing ectopic lipid accumulation. 
EGP, endogenous glucose production; FAO, fatty acid oxidation; unAG; unacylated ghrelin. Created with BioRender.com. 
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tissue, the effect of AG on lipogenesis seems to be direct, mediated by 
GHSR [38,39]. However, it has been reported that AG does not stimulate 
lipogenic gene expression in βAR-null mice, indicating these effects are 
partially mediated by the SNS [10]. In support of a non-GHSR mecha-
nism, unAG has been reported to increase lipogenic protein content as 
well as mRNA for SREBP1 and PPARγ in cultured human adipocytes 
[84]. Overall, these findings suggest that administration of both ghrelin 
isoforms promotes lipid storage as opposed to oxidation in the liver and 
adipose tissue. 

5.2. Lipolysis and reesterification 

Adipose tissue lipolysis is stimulated following the activation of β-AR 
by catecholamines, triggering adenylyl cyclase and the production of 
cAMP. This results in the activation of PKA and its phosphorylation of 
HSL [89]. In isolated rat adipocytes, both ghrelin isoforms exhibit 
antilipolytic effects under conditions that stimulate lipolysis, such as 
treatment with isoproterenol (β-AR agonist) [87,90,91] and forskolin 
(increases cAMP) [91]. Both AG and unAG have been shown to reduce 
β3AR-stimulated phosphorylation of HSL in adipose tissue organ cul-
ture, with a corresponding decrease in glycerol release [14]. A similar 
effect was observed in skeletal muscle, with epinephrine-stimulated 
lipolysis blunted by both ghrelin isoforms [15]. This suppression of 
lipolysis is likely mediated through the degradation of cAMP by phos-
phodiesterases (PDEs), as AG and unAG reduce isoproterenol-induced 
cAMP accumulation [91]. PDE3D inhibitors and db-cAMP (analog of 
cAMP not hydrolyzed by PDEs) prevent the lipolytic-suppressive effects 
of both ghrelin isoforms [91]. Increased adipose tissue AKT phosphor-
ylation by AG and unAG [91,92], as well as the attenuation of their 
suppressive effects on lipolysis by wortmannin (PI3K inhibitor) [91], 
provide a potential mechanism for ghrelin to act on adipose tissue via 
insulin signaling. 

In vivo findings regarding the effects of ghrelin on lipolysis are 
inconsistent. In rats, AG and unAG show no effect on β3AR-stimulated 
circulating glycerol or FFA concentrations [14]. Conversely, a study by 
Vestergaard et al. [68] in humans showed infusion of AG to relieve 
insulin-induced suppression of glycerol release. However, these results 
may be confounded by a rise in circulating GH [68]. GH is known to 
cause increased lipolytic sensitivity to catecholamines in adipose tissue 
[93]. Indeed, when the effects of AG on lipolysis were directly assessed 
using microdialysis, no change in interstitial glycerol levels was reported 
[94], suggesting that GH may be confounding whole body results. 

To address the confounding issue of GH release in vivo, the effects of 
AG infusion on lipolysis have been examined in hypopituitary patients 
[69]. In contrast to the findings in isolated adipocytes [14,87,90], AG 
infusion caused an 80% rise in FFAs [69]. However, it is important to 
note that this study found no increase in glycerol. It has been shown ex 
vivo that both AG and unAG significantly blunt the reesterification of 
FFAs in adipose tissue [14,95]. This effect of ghrelin on reesterification 
questions the accuracy of drawing conclusions regarding lipolysis based 
on FFA levels. Furthermore, there was increased insulin resistance in 
response to AG, which may have resulted in a reduced clearance of FFAs 
by muscle, leading to elevated circulating FFA levels [69]. There has 
been no observed effect on basal (unstimulated) lipolysis by either 
ghrelin isoform [14,87,90]. 

Overall, both ghrelin isoforms demonstrate an inhibitory effect on 
lipolysis. Additionally, ghrelin promotes fat storage in adipose tissue, 
increasing lipogenesis and adipogenesis. It is interesting that both 
ghrelin isoforms may modulate FFA release from adipose tissue through 
reduced reesterification, with a reported increase in circulating FFAs 
occurring in some studies [47,60,64,96], but not others [38,64]. The 
physiological significance of these findings is unclear. 

5.3. Skeletal muscle lipid metabolism: uptake and oxidation 

In mice, daily injections of AG reduce whole-body lipid utilization, 

measured as an increase in the respiratory exchange ratio [83]. Despite 
this initial finding suggesting a reduction in muscle fat use with ghrelin, 
a number of studies from our lab have demonstrated both AG and unAG 
to directly stimulate palmitate oxidation in isolated glycolytic [15] and 
oxidative [15,75–77] muscles. Both ghrelin isoforms have a protective 
effect on insulin-stimulated glucose uptake under high palmitate con-
ditions that would normally result in impaired insulin signaling [75,97]. 
This protective effect has been attributed to increased FAO as it is 
associated with a reduction in muscle TAG content [97] and is abolished 
when muscle is treated with the CPT-1 inhibitor etomoxir [75]. Similar 
findings have been observed in vivo, with 4 days of twice-daily AG 
administration reducing TAG content while increasing mitochondrial 
cytochrome c oxidase and citrate synthase content [9]. Daily AG injec-
tion has also been shown to completely abolish high fat diet (HFD)-in-
duced muscle TAG accumulation in rats [78]. 

A crucial point of regulation in skeletal muscle fatty acid metabolism 
is their uptake at the sarcolemma. We recently assessed the effect of 
unAG on fat transporters and found that while the stimulation of FAO 
persists for 2–3 h following an initial acute exposure to unAG, this was 
not associated with increased translocation of FAT/CD36 or FABPpm to 
the sarcolemma [77]. It is important to note, however, that in this study, 
transporter content was measured from prepared giant sarcolemmal 
vesicles, and therefore excluded t-tubules, which is also an important 
location for the transport-mediated uptake of glucose and FFAs [98,99]. 
Furthermore, vesicles were not produced (after harvesting of the muscle 
tissue) in the presence of FFAs, which are known to directly stimulate fat 
transport [100] and would more accurately reflect physiological post-
prandial conditions 2–3 h after a mixed meal. Interestingly, ghrelin has 
been shown to decrease serum FFA levels following a meal [64]. A direct 
measurement of FFA transport in giant sarcolemmal vesicles may be 
valuable to conclusively determine if unAG has an effect on fatty acid 
uptake or the intrinsic activity of these proteins. 

The increase in FAO observed in skeletal muscle with ghrelin has 
been associated with activation of the AMPK-ACC axis [15,77]. This is 
similar to ghrelin signaling in the hypothalamus, with intra-
cerebroventricular (ICV) AG administration phosphorylating AMPK and 
ACC, and with the AMPK inhibitor Compound C abolishing its orexi-
genic effects [101,102]. This signaling event has been inconsistently 
detected in muscle in response to ghrelin [9,74,77] potentially due to 
the transient phosphorylation of these proteins. Further testing is 
required to confirm the role of AMPK-ACC in mediating 
ghrelin-stimulated FAO in skeletal muscle. 

While the mechanism underlying ghrelin-induced stimulation of 
FAO is unclear, there remains several possibilities. CPT-1 is part of the 
rate-limiting entry of FFAs into the mitochondrion. In the hypothalamus 
of rats, ICV ghrelin administration decreases malonyl-CoA levels with 
subsequently increased CPT-1 activity [101]. Whether this effect occurs 
in muscle is an area for further investigation. AG has also been impli-
cated in upregulating UCP2 expression in several tissues including 
skeletal muscle [9], potentially mediating its effects of FAO by 
increasing energy expenditure. Lastly, ghrelin has been shown to acti-
vate CAMKII in muscle, albeit inconsistently [74], providing opportu-
nities for further research into its role in stimulating FAO. 

5.4. Physiological relevance of ghrelin in the handling of meal-derived 
lipids: more than just a fasting hormone 

Ghrelin has typically been considered a fasting hormone, increasing 
food intake and energy substrate supply [4,6,7,103]. However, this idea 
is not consistent with the inhibitory effect of ghrelin on FFA release by 
decreasing lipolysis, or the promotion of fat storage in the liver and 
adipose tissue. Instead, we hypothesize that ghrelin is functioning as a 
preprandial signal to prepare peripheral tissues for incoming 
meal-derived lipids. 

It takes 2–3 h for meal-derived lipids to peak in circulation [104]. 
Insulin’s stimulatory effects on FFA transport are no longer evident 1 h 
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after exposure [100], and there is currently no identified hormone 
thought to be responsible for the postprandial handling of lipids in 
skeletal muscle. It has recently been determined by our lab that the acute 
FAO-stimulating effects of unAG persist at least 2–3 h in isolated rat 
skeletal muscle following its removal [77]. As ghrelin rises in the cir-
culation prior to entrained meal times [22] with effects that may persist 
for up to 3 h following its postprandial decrease [77], we hypothesize 
that ghrelin has a preparatory role in priming tissues for incoming fat, 
and that these effects continue to persist throughout the period in which 
lipids are elevated post meal, facilitating their use and storage (Fig. 2). 
Consistent with this, administration of both ghrelin isoforms 2 h prior to 
a test meal results in reduced serum FFA levels compared to control 
conditions [64]. Moreover, a reduction in serum FFAs was consistently 
observed over a 16 h infusion of unAG, during which two meals were 
consumed [105]. Further research in this area is warranted. 

Skeletal muscle insulin resistance is caused by the ectopic accumu-
lation of lipids, which disrupt the insulin signaling cascade [106]. 
Increasing the oxidation of FFAs has the potential to be beneficial in 
maintaining insulin sensitivity. Indeed, chronic treatment with AG has 
been reported to be insulin sensitizing [12,43]. In ex vivo models, acute 

treatment of skeletal muscle with both AG and unAG is able to preserve 
insulin-stimulated glucose uptake in high palmitate conditions that 
would normally result in acute impairments to the actions of insulin [75, 
97]. Additionally, 4 days of twice-daily AG administration in rats is able 
to prevent intramuscular TAG accumulation and inflammation typically 
following 30 days of HFD-feeding [78]. These changes were associated 
with an increase in mitochondrial enzymes, and independent of changes 
in antioxidant enzymes [78]. Overexpression of unAG also reduces in-
flammatory cytokines and maintains insulin signaling during 
HFD-feeding compared to wildtype controls [13]. These benefits may 
extend to other tissues such as the liver, as HFD-induced hepatic lipid 
accumulation and inflammation are also attenuated with AG adminis-
tration [107]. Overall, we hypothesize that ghrelin postprandially 
shunts the storage of meal-derived lipids to tissues equipped for lipid 
storage (e.g. adipose tissue and liver) by increasing lipogenesis and 
decreasing lipolysis, while stimulating FAO in skeletal muscle. Chroni-
cally, the summation of these acute effects exerts a protective effect on 
skeletal muscle function (Fig. 2). 

Fig. 3. Disruptions of cellular signaling pathways in adipose tissue and skeletal muscle observed with ghrelin resistance compared with normal func-
tioning. Normally in adipose tissue, AG stimulates lipogenesis, and both isoforms inhibit lipolysis through degradation of cAMP by PDEs. In normal skeletal muscle, 
AG and unAG stimulate FAO by activation of the AMPK-ACC axis. In ghrelin resistance, AG and unAG are no longer able to suppress lipolysis, resulting in increased 
FFA release in circulation. In skeletal muscle, both ghrelin isoforms lose their ability to stimulate FAO. With more FFAs arriving at the muscle and less oxidation, 
intramuscular lipids accumulate and disrupt the insulin signaling cascade. AG, acylated ghrelin; unAG, unacylated ghrelin; NE, norepinephrine; FFA, free fatty acid; 
GHSR, growth hormone secretagogue receptor; CRF-2R, corticotropin release factor receptor 2; AC, adenylyl cyclase; β-AR, β-adrenergic receptor; PDH, pyruvate 
dehydrogenase; SREBP1, sterol regulatory element-binding protein; PPARy, peroxisome proliferator-activator receptor y; TCA, tricarboxylic acid cycle; ACC, acetyl- 
CoA carboxylase; FAS, fatty acid synthase; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; PDE, phosphodiesterase; AMP, adenosine 
monophosphate; TAG, triacylglycerol; DAG, diacylglycerol; MAG, monoacylglycerol; ATGL, adipose triglyceride lipase; HSL, hormone sensitive lipase; MGL, mon-
oacylglycerol lipase; FAT/CD36, fatty acid translocase/cluster of differentiation 36; FABPpm, fatty acid binding protein - plasma membrane; CPT-1, carnitine 
palmitoyl transferase; FAO, fatty acid oxidation; IR, insulin receptor; GLUT4, glucose transport protein 4; FABPc, fatty acid binding protein cytosol; IRS, insulin 
receptor substrate; PI3K, phosphoinositide 3-kinase; AKT; protein kinase B. ↑, increase; ↓, decrease. Created with BioRender.com. 
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6. Peripheral ghrelin resistance 

Skeletal muscle becomes less responsive (i.e., resistant) to AG and 
unAG following chronic HFD-feeding [75,76]. Specifically, 6 weeks of 
HFD-feeding abolishes the FAO-stimulating ability of both unAG and AG 
in isolated soleus muscle, as well as the stimulation of the AMPK-ACC 
axis by ghrelin (Fig. 3) [75]. Implementation of a high-intensity exer-
cise training protocol concurrent with a HFD protects against skeletal 
muscle ghrelin resistance [76]. Unexpectedly, however, the low fat diet 
(LFD)-sedentary control animals in this study also became less respon-
sive to unAG following 6 weeks [76]. We speculate that this is due to the 
prolonged sedentary nature of these animals. However, this study did 
not have a LFD-exercise group, making it difficult to positively attribute 
this loss of effect to sedentary behaviour. It is also possible that age- or 
size-related changes contributed to the loss of ghrelin response. Adipose 
tissue similarly becomes resistant to both ghrelin isoforms following as 
little as 5 days of HFD-feeding, as indicated by a loss of ghrelin’s ability 
to blunt β3AR-stimulated lipolysis (Fig. 3) [95]. In contrast to muscle, 
adipose tissue ghrelin resistance does not seem to be recoverable with 
exercise [95]. 

The mechanism underlying the loss of ghrelin signaling in HFD/ 
sedentary animals is unknown. Six weeks of HFD-feeding has been 
shown to reduce CRF-2R receptor content in soleus muscle [75], which 
is the putative receptor through which AG and unAG exert their effects 
on muscle [43]. Interestingly, there was no reduction in CRF-2R content 
in LFD-fed sedentary animals, despite the fact that they also demon-
strated ghrelin resistance [76]. This suggests that there may be multiple 
mechanisms underlying the loss of ghrelin’s effects on FAO, and further 
work should aim to dissect the importance of diet and physical activity. 

Circulating ghrelin acutely increases in fasted mice immediately 
following high-intensity treadmill exercise [108]. The relationship be-
tween physical activity and ghrelin may shed light on the development 
and functional significance of ghrelin resistance. Acutely, an increase in 
ghrelin following exercise may function to prioritize fat utilization and 
allow glycogen replenishment. It seems logical that this function would 
be preserved in high exercise situations with frequent glycogen deple-
tion, but may be lost with physical inactivity. Interestingly, glycogen 
depletion is a known activator of the AMPK-ACC pathway [109], 
through which ghrelin may also signal to increase FAO. Ghrelin 
neutralization results in slower replenishment of liver glycogen in fast-
ing conditions following refeeding, suggesting a glycogen sparing effect 
of ghrelin exists [86]. An examination of ghrelin response following a 
low-exercise training protocol where glycogen is not depleted, or 
whether an acute exhaustive bout of exercise can restore ghrelin action, 
may provide clarification. 

A loss of ghrelin’s FAO-stimulating effects is associated with both 
HFD-feeding and sedentary behaviour, and each of these are indepen-
dently associated with metabolic disease. It is logical to speculate that 
the loss of ghrelin’s effects may be a key event in the development of 
insulin resistance. As discussed previously, ghrelin may have physio-
logical relevance as a regulatory hormone for the handling of dietary 
lipids in the postprandial period, promoting storage in adipose tissue. A 
loss of these effects could result in increased ectopic lipid accumulation 
in skeletal muscle. Indeed, the inability to stimulate FAO in ghrelin 
resistance was associated with a loss of ghrelin’s protective effects on 
insulin-stimulated glucose transport in high palmitate conditions [75]. 
Given this, we speculate that a loss of ghrelin response may exacerbate 
HFD lifestyle-induced insulin resistance. 

7. Challenges and perspectives in ghrelin research 

It is important to acknowledge the limitations of using ex vivo 
research to suggest a physiological role for ghrelin in vivo. To isolate the 
direct effects of AG on peripheral tissue metabolism from secondary 
effects due to GH release, researchers have utilized ex vivo models to 
study the effects of ghrelin. These studies have been extremely useful in 

developing our understanding of the tissue-specific effects of both 
ghrelin isoforms. However, it is important to be cautious when specu-
lating about the physiological role of ghrelin based on these findings, as 
they do not reflect the interactions between tissues in vivo. For example, 
changes in adipose tissue lipolysis by ghrelin may in turn affect FFAs in 
circulation, and consequently glucose uptake and utilization in skeletal 
muscle. Additionally, the acylation status of circulating ghrelin is likely 
regulated by a circulating serum factor in both human and rats, resulting 
in the rapid deacylation of AG to unAG [34]. Consequently, the infusion 
of AG in vivo results in a rise in both ghrelin isoforms [21]. This con-
version between isoforms remains largely uninvestigated, and the 
intrinsic regulation of the ratio of AG/unAG, as well as their subsequent 
effects, may be largely missed in ex vivo work. 

It is important to note that while ex vivo models aim to minimize the 
indirect peripheral metabolic effects due to GH, the release of GH in 
response to gastrointestinal-derived AG is still physiologically relevant, 
and the effects of GH are important to consider when hypothesizing the 
in vivo role of ghrelin. GH elicits numerous direct metabolic effects, such 
as increasing lipolytic sensitivity to catecholamines in adipose tissue 
[93], and antagonizing the effects of insulin in several peripheral tissues 
[110–113]. This may explain some contrasting results in the literature, 
with AG inhibiting adipose tissue lipolysis ex vivo [15,87,90,91], in 
contradiction to several studies reporting AG to increase circulating 
FFAs in vivo [47,60,64,96]. Future work should expand on the isolated 
direct effects of ghrelin demonstrated in peripheral tissues by deter-
mining their significance in vivo. 

8. Summary and conclusion 

Overall, the literature demonstrates the functions of ghrelin to 
extend beyond stimulating food intake, with a role in regulating glucose 
and lipid metabolism in peripheral tissues. AG is acutely associated with 
a reduction in insulin action, antagonizing insulin release from the 
pancreas and impairing insulin response in several tissues, potentially to 
maintain normoglycemia between meals. Chronic treatment with both 
ghrelin isoforms improves insulin signaling, potentially by optimizing 
storage of lipids in adipose tissue while increasing skeletal muscle FAO, 
thereby preventing ectopic lipid accumulation. We have shown that 
these effects on muscle and adipose tissue can be lost with both chronic 
HFD-feeding as well as sedentary behaviour. Future research should 
focus on clarifying the mechanisms underlying the effects of ghrelin in 
peripheral tissues, and its physiological relevance in the handling of 
mealtime lipids. Additionally, exploring the loss of ghrelin response in 
peripheral tissues may further our understanding of the pathogenesis of 
metabolic disease. 
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Tschöp MH, Shanabrough M, Cline G, Shulman GI, et al. UCP2 mediates ghrelin’s 
action on NPY/AgRP neurons by lowering free radicals. Nature 2008;454:846–51. 
https://doi.org/10.1038/nature07181. 

[103] Nagaya N, Itoh T, Murakami S, Oya H, Uematsu M, Miyatake K, Kangawa K. 
Treatment of cachexia with ghrelin in patients with COPD. Chest 2005;128: 
1187–93. https://doi.org/10.1378/chest.128.3.1187. 

[104] Dubois C, Beaumier G, Juhel C, Armand M, Portugal H, Pauli A, Borel P, Latgé C, 
Lairon D. Effects of graded amounts (0–50 g) of dietary fat on postprandial 
lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr 1998;67:31–8. 
https://doi.org/10.1093/ajcn/67.1.31. 

[105] Benso A, St-Pierre DH, Prodam F, Gramaglia E, Granata R, van der Lely AJ, 
Ghigo E, Broglio F. Metabolic effects of overnight continuous infusion of 
unacylated ghrelin in humans. Eur J Endocrinol 2012;166:911–6. https://doi. 
org/10.1530/EJE-11-0982. 

[106] Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat. Med. 
2010;16:400–2. https://doi.org/10.1038/nm0410-400. 

[107] Barazzoni R, Semolic A, Cattin MR, Zanetti M, Guarnieri G. Acylated ghrelin 
limits fat accumulation and improves redox state and inflammation markers in 
the liver of high-fat-fed rats. Obesity 2014;22:170–7. https://doi.org/10.1002/ 
oby.20454. 

[108] Mani BK, Castorena CM, Osborne-Lawrence S, Vijayaraghavan P, Metzger NP, 
Elmquist JK, Zigman JM. Ghrelin mediates exercise endurance and the feeding 
response post-exercise. Mol Metabol 2018;9:114–30. https://doi.org/10.1016/j. 
molmet.2018.01.006. 

[109] Hingst JR, Bruhn L, Hansen MB, Rosschou MF, Birk JB, Fentz J, Foretz M, 
Viollet B, Sakamoto K, Færgeman NJ, et al. Exercise-induced molecular 
mechanisms promoting glycogen supercompensation in human skeletal muscle. 
Mol Metabol 2018;16:24–34. https://doi.org/10.1016/j.molmet.2018.07.001. 

[110] Takano A, Haruta T, Iwata M, Usui I, Uno T, Kawahara J, Ueno E, Sasaoka T, 
Kobayashi M. Growth hormone induces cellular insulin resistance by uncoupling 
phosphatidylinositol 3-kinase and its downstream signals in 3T3-L1 adipocytes. 
Diabetes 2001;50:1891–900. https://doi.org/10.2337/diabetes.50.8.1891. 

[111] Castro FCP, Delgado EF, Bezerra RMN, Lanna DPD. Effects of growth hormone on 
insulin signal transduction in rat adipose tissue maintained in vitro. Endocr Res 
2004;30:225–38. https://doi.org/10.1081/ERC-120039578. 

[112] Rabinowitz D, Klassen GA, Zierler KL. Effect of human growth hormone on muscle 
and adipose tissue metabolism in the forearm of man. J Clin Invest 1965;44: 
51–61. https://doi.org/10.1172/JCI105126. 

[113] Rizza RA, Mandarino LJ, Gerich JE. Effects of growth hormone on insulin action 
in man. Mechanisms of insulin resistance, impaired suppression of glucose 
production, and impaired stimulation of glucose utilization. Diabetes 1982;31: 
663–9. https://doi.org/10.2337/diab.31.8.663. 

N.M. Notaro and D.J. Dyck                                                                                                                                                                                                                  

https://doi.org/10.1016/j.bbalip.2011.03.001
https://doi.org/10.1210/me.2003-0459
https://doi.org/10.1210/me.2003-0459
https://doi.org/10.1016/0024-3205(94)00512-5
https://doi.org/10.1016/0024-3205(94)00512-5
https://doi.org/10.1152/ajpendo.00662.2012
https://doi.org/10.1080/21623945.2021.1945787
https://doi.org/10.1080/21623945.2021.1945787
https://doi.org/10.1210/jc.2010-1995
https://doi.org/10.1155/2015/635863
https://doi.org/10.1002/jcb.240520102
https://doi.org/10.1002/jcb.240520102
https://doi.org/10.1016/j.metabol.2012.04.002
https://doi.org/10.1016/j.metabol.2012.04.002
https://doi.org/10.1002/1873-3468.12260
https://doi.org/10.1016/j.cmet.2008.03.006
https://doi.org/10.1038/nature07181
https://doi.org/10.1378/chest.128.3.1187
https://doi.org/10.1093/ajcn/67.1.31
https://doi.org/10.1530/EJE-11-0982
https://doi.org/10.1530/EJE-11-0982
https://doi.org/10.1038/nm0410-400
https://doi.org/10.1002/oby.20454
https://doi.org/10.1002/oby.20454
https://doi.org/10.1016/j.molmet.2018.01.006
https://doi.org/10.1016/j.molmet.2018.01.006
https://doi.org/10.1016/j.molmet.2018.07.001
https://doi.org/10.2337/diabetes.50.8.1891
https://doi.org/10.1081/ERC-120039578
https://doi.org/10.1172/JCI105126
https://doi.org/10.2337/diab.31.8.663

	Regulation of peripheral tissue substrate metabolism by the gut-derived hormone ghrelin
	1 Introduction
	2 Overview of ghrelin and its kinetics
	3 Ghrelin receptors
	4 Ghrelin and glucose metabolism
	4.1 Insulin and glucagon release from the pancreas
	4.2 Whole body insulin sensitivity and glucose tolerance
	4.3 Skeletal muscle insulin signaling and glucose uptake
	4.4 Hepatic insulin sensitivity and glucose production
	4.5 Physiological role of acylated ghrelin for blood glucose control

	5 Ghrelin and lipid metabolism
	5.1 Adipose and liver lipogenesis
	5.2 Lipolysis and reesterification
	5.3 Skeletal muscle lipid metabolism: uptake and oxidation
	5.4 Physiological relevance of ghrelin in the handling of meal-derived lipids: more than just a fasting hormone

	6 Peripheral ghrelin resistance
	7 Challenges and perspectives in ghrelin research
	8 Summary and conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	References


