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Abstract: Marine accidents in ports can cause loss of human life and property and have negative
material and environmental impacts. In South Korea, due to a pier collision accident of a large
container ship in Busan New Port of South Korea, the need for safe ship operation guidelines in
ports emerged. Therefore, to support quantitative safe ship operation guidelines, ship trajectory
data based on automatic information system information have been used. However, because this
trajectory information is variable and uncertain due to various situations arising during a ship’s
navigation, there is a limit to deriving results through traditional regression analysis. Considering
the characteristics of these data, we analyzed ship trajectories through quantile regression using two
models based on generalized additive models and neural networks corresponding to deep learning.
Among the automatic information system information, the speed over ground, course over ground,
and ship’s position were analyzed, and the model was evaluated based on quantile loss. Based on this
study, it is possible to suggest safe operation guidelines for the position, speed, and course of the ship.
In addition, the results of this work can be further developed as a manual for the in-port-autonomous
operation of ships in the future.

Keywords: automatic information system; deep learning; deep neural network; generalized additive
models; quantile regression; safe ship operation; ship trajectories

1. Introduction

Maritime accidents in ports not only cause loss of human life and physical damage to
ships, but also have economic consequences for maritime transportation and environmental
consequences in ports [1]. As a result of the introduction of increasingly massive ships,
greater safety measures are required in the operation of ships in ports [2]. In recent
years, maritime accidents resulting from human factors in the piloting process, such as the
inability to control excessive speed of the ship in a timely manner or the inability to secure
a sufficiently safe distance from the pier, have become frequent [3]. A typical example is
the pier collision accident of a 13,900 TEU container ship that was entering Busan New
Port in April 2020 [4]. In the accident, a gantry crane was completely destroyed and three
were partially damaged. Considerable other damages and injuries to cargo workers were
also incurred.

A special investigation report about this accident was prepared by the Korea Maritime
Safety Tribunal (KMST) of the Ministry of Oceans and Fisheries in the Republic of Korea [3].
The role of a pilot with professional knowledge about a port is extremely important when a
ship enters the port [5]. Accordingly, the report presented a proposal to prepare a standard
pilot manual to minimize the possibility of accidents caused by human factors, such as
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the skill gap between pilots or differences in ship-handling methods. In particular, it
is necessary to prepare safety procedures for ship operation, such as safe navigation in
dangerous sections and safe velocity for pier approach, based on many piloting cases in
the same port.

Ship trajectory data are required to collect information about various cases of piloting
ships in a port. Trajectory data have become important for big-data analysis due to
advances in science and technology, and are widely used for purposes such as target
tracking, behavior analysis, and navigation [6]. Ship trajectory data can be collected
using an automatic identification system (AIS). AIS data include ship navigation status
information such as the position, speed over ground (SOG), and course over ground (COG)
of the ship [7].

AIS ship trajectory data are a crucial data source in research on the safe operation
of ships. Lee et al. extracted the vessel traffic route through quantitative analysis based
on AIS data for the design of a safe route considering the ship characteristics [8]. Son
et al. analyzed the range of the safe distance for ships sailing under a bridge across a
waterway through AIS-based tracking [9]. Huang et al. analyzed the crossing-line and
used Monte Carlo methods based on AIS data for navigation safety assessment for an
approaching channel [10]. Active research is ongoing on the use of artificial intelligence
techniques for ship trajectories based on big AIS data. Namgung and Kim predicted a
ship’s trajectory according to future tidal conditions using support vector regression to
reduce maritime accidents [11]. Deep-learning-based ship trajectory prediction methods,
such as long short-term memory (LSTM), for maritime navigation early warning and safety
are being studied [12,13]. In some studies, clustering algorithms, such as density-based
spatial clustering of applications with noise (DBSCAN), have been used to analyze the
patterns of ship trajectories [14,15]. Lee et al. analyzed the patterns of the trajectories of
ships entering and leaving Busan New Port using DBSCAN; their study was significant for
analyzing the patterns of trajectories of ships in the port rather than in the ocean [16].

However, few studies have proposed quantitative analyses using ship trajectory data
for safe operation in port. To analyze the safety procedures for ship operation, data such
as the position, speed, and course of the ship, which are information included in the AIS,
should be used [17]. Therefore, in this study, the ship’s position, SOG, and COG data were
regression analyzed to suggest appropriate guidelines for safe ship operation.

Ship operation in a port is affected by the size of the ship, the amount of traffic, the
pilot’s tendency, and environmental conditions [5], [18], thereby resulting in variable and
uncertain ship trajectory data. If only the central tendency is considered when quantifying
the datasets with such variability and uncertainty, the datasets cannot be properly repre-
sented. Therefore, the traditional regression analysis method that provides information
on the effect of the independent variable on the mean value of the dependent variable has
limitations with regard to framing guidelines for safe ship operation. Because of these limi-
tations, quantile regression, which provides a regression model for conditional quantiles of
the dependent variable, was used in this study. Quantile regression analysis focuses on the
entire distribution by estimating the effect on the entire distribution of the response vari-
able, instead of on the mean of the independent variable [19]. Because ship maneuvering
is influenced by several factors, such as weather and traffic flow, proposing maneuvering
guidelines based on an average of data is inappropriate. Therefore, in this study, quantile
regression was applied to ship trajectory data, and the operating range of ships according
to quantiles was determined to serve as a maneuvering guideline. Dinparast Djadid et al.
used Bayesian quantile regression to model a driver’s response time to reclaim control in
automation [19]. Zou et al. used quantile regression to investigate factors influencing the
time taken to clear road traffic incidents and reported that it can be used to make inferences
about the effect of explanatory variables on different quantiles of the incidents’ duration
distribution [20].

The application of quantile regression in various means in combination with gen-
eralized additive models (GAMs) and deep learning is being explored. Murphy et al.
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analyzed water quality using GAMs combined with quantile regression [21]. Dinga et al.
proposed an analysis method using quantile GAMs [22]. Quantile regression neural net-
works (QRNNs), which are based on deep learning and artificial intelligence techniques,
are also being used in many studies. Further, with regard to load forecasting, research on
analyzing the volatility and uncertainty of load data using QRNNs is ongoing [23,24], and
in other fields, QRNNs have been applied to a breast cancer dataset [25].

The goal of this study was to provide guidelines for safe ship operation in ports by
applying quantile regression using AIS-based ship trajectory data to resolve the volatility
and uncertainty in ship maneuvering. Quantile regression in the analysis was utilized by
combining GAMs and neural networks. Accordingly, we propose a quantitative standard
guideline for safe ship operation in ports to minimize the possibility of ship accidents
caused by human factors.

2. Materials and Methods

Figure 1 shows a flowchart of this study. First, AIS-based ship-arriving trajectories
were collected at a target pier. The collected data were preprocessed to make the data
suitable for analysis. Subsequently, the data characteristics were identified and visualized
using basic data statistics. In the next step, the data were classified and modeled as the
entering phase and berthing phase data according to the characteristics of the target pier.
The technique utilizes GAMs and deep neural networks based on quantile regression.
Further, a suitable model was selected through model evaluation and, finally, guidelines
for safe ship operation in the port were proposed.
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2.1. Ship Trajectory Data

We analyzed the data for Busan New Port in the Republic of Korea. The Busan New
Port is a container ship port at which the aforementioned crane collision accident had
occurred. The British Admiralty Chart of Busan New Port is shown in Figure 2.

Ship trajectory data were collected based on the AIS information of ships arriving at
this port. In the ‘Navigation Rules of Busan Port (Notice of Busan Regional Office of Oceans
and Fisheries)’, only the ship’s speed, such as the passing speed for each section and the
moving speed within the port, is presented as a procedure. However, to propose a ship
maneuvering guideline in port, the route and ship’s position under operation, including
speed, should be given [16]. This port is relatively protected against the effects of weather
compared to other ports, and the port is closed in the event of severe weather and poor
visibility. Yoon et al. found that berthing of large containers at Busan New Port does not
pose a significant risk, except in the event of severe weather [26]. Therefore, the variables
considered in this study were the time and date, ship’s position, SOG, and COG obtained
from the AIS information. The data collection period was fixed considering the time of the
gantry crane collision. Data were collected for four months from January 2020. The target
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ship type considered in the study was large container ships with a gross tonnage of 100k or
more, similar to the ship involved in the accident. To consider all cases in which the ship
was safely berthing, the weather conditions for the period were not separated. The details
of the collected data are summarized in Table 1.
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Table 1. Characteristics of AIS data for analysis.

Categorization AIS Information

Period 1 January 2020–30 April 2020

Collection Area
Latitude 034.8 N–035.1 N
Longitude 128.7 E–129.0 E
(Around Busan New Port)

Pier
Pier 2 No. 4
Pier 2 No. 5
Pier 3 No. 1

Ship Type Container Ship
Size of ship Gross tonnage 100–220k

Information
Ship’s position (latitude, longitude)

Speed over Ground (knots)
Course over Ground (degree)

2.2. Data Preprocessing and Statistics

In terms of data mining, data preprocessing is an essential step for improving the
performance of analysis models [27]. As AIS data have information errors and reception
errors due to receiving sensitivity about ships, preprocessing through data deletion is
essential [28]. In addition, AIS data are characterized by different data reception intervals
depending on the speed and changing course of the ship [29]. For example, the dynamic
information of Class-A AIS used by SOLAS (International Convention for the Safety of
Life at Sea) ships is received at intervals of 10 s for ships sailing under 14 knots, and at
intervals of 3.3 s when the ship changes its course. In addition, because the arrival time
of each ship is different, it is necessary to unify the unit used for the change in position
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with time when analyzing ship trajectories. Therefore, in this study, the data-cleaning and
data-scaling methods were applied for data preprocessing.

Data cleaning is a preprocessing method that deletes noisy data and missing values to
make the data suitable for analysis [27]. Missing values caused by AIS errors were removed
using the list-wise delete method [30]. A ship entering Busan New Port was preprocessed
with the AIS data from the position corresponding to maneuvering from the pilot station
to the berthing. Data before the pilot station do not have regularities such as drifting and
anchoring, and the port entry of the ship starts when the pilot is on board. Hence, the data
cleansing was performed for latitude 34.93◦N.

Data scaling is the process of standardizing data units. When analyzing data, the
data should be normalized to avoid any error in the analysis results due to differences in
units [27]. In this study, min–max normalization was used as the data-scaling methods.
When the information of each ship is defined as S(x), the time corresponding to the
starting point of the section is defined as S(xmin) and the last point as S(xmax), and the
normalization proceeds as shown in Equation (1):

MinMax normalization =
S(x)− S(xmin)

S(xmax)− S(xmin)
(1)

The number of vessel arrivals in the ship trajectory dataset was 50 in this study. For
the middle of the berth at the target pier of Busan New Port at the time, a ship can dock at
the pier after passing a small island called Todo. When a ship passes Todo, it is classified
as a case of berthing by passing to the left or a case of berthing by passing to the right. The
frequency results are listed in Table 2.

Table 2. Number of times and the sides on which ships passed Todo.

Todo
Passing

Pier

TotalPier 2
No. 4

Pier 2
No. 5

Pier 3
No. 1

Left 5 17 1 23
Right 23 4 - 27

The purpose of this study was to propose a maneuvering guideline by analyzing the
ranges according to quantiles for SOG, COG, and ship’s position in the entire ship trajectory
data. Therefore, cross-validation such as dividing into training and testing datasets was
not conducted.

2.3. Quantile Regression

Multiple linear regression is a basic and standard approach that uses the values of
multiple variables to describe or predict the mean value of a scale outcome. In contrast,
quantile regression models the relationship between a set of independent variables and
a specific percentile (or “quantile”) of a dependent variable; that is, quantile regression
is a linear model for the conditional τ quantile of the dependent variable, unlike the
traditional regression analysis method that provides information on the influence of the
independent variable on the mean value of the dependent variable [31]. This regression
model is closely related to the model for the conditional median, and it is possible to
estimate the conditional median of predictions and data by minimizing the mean absolute
error [32]. The conditional quantiles of the distribution can be obtained by applying an
asymmetric weight using the tilted absolute value function.

The tilted absolute value function is also called the pinball loss function and is as
shown in Equation (2):

ρτ(u) =
{

τu
(τ − 1)u

i f u ≥ 0
i f u < 0

(2)
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where 0 < τ < 1. Assuming that the analysis variable is xi(t) (i = 1, . . . , I), the slope is
mi, and the intercept is b, the linear regression analysis formula for the τ quantile ŷt is as
shown in Equation (3):

ŷτ =
I

∑
i=1

mixi(t) + b (3)

Here, when the observation value at time t is defined as y(t) (t = 1, . . . , N), the
equation for estimating the quantile regression error function by minimizing the quantile
loss function is as shown in Equation (4):

Eτ =
1
N

N

∑
t=1

ρτ(y(t)− ŷτ(t)) (4)

In general, quantile regression is applied to a continuous variable and applied to a
linear model, but it can also be applied when the parameter is nonlinear [33]. Such quantile
regression can be used to obtain the confidence interval for the analysis result of the model.
This regression is suitable for this study because it is less sensitive to outliers [34].

2.4. Genealized Additive Models

A GAM is a statistical model that mixed the properties of the generalized linear model
with the additive model, and is a linear model that allows nonlinear functions of each
variable using a smoothing function [35]. GAMs relax the constraint that the relationship
must be a simple weighted sum, and instead assumes that the result can be modeled as
a sum of arbitrary features of each feature. GAMs are generally suitable for establishing
relationships between complex types of data that cannot be easily represented by linear
or nonlinear models or for analyzing models without any special conditions. Therefore,
it is appropriate to use GAMs because the ship trajectory data used in this study have
uncertainty and volatility.

The general formula for multiple linear regression models is shown in Equation (5):

yi = β0 + β1χi1 + β2χi2 + · · ·+ βpχip + εi (5)

To consider the nonlinear relationship between each explanatory variable and the
response variable, we replace β jχij with the smooth nonlinear function f j

(
xij
)

in the
multiple linear regression model to obtain Equation (6):

yi = β0 + f1(xi1) + f1(xi1) + · · ·+ fp
(

xip
)
+ εi (6)

Equation (6) can be rewritten as Equation (7):

yi = β0 +
p

∑
j=1

f j
(

xij
)
+ εi (7)

In this case, f j is an arbitrary function of each explanatory variable xij, and a nonpara-
metric smoothing function is used [36]. Notably, GAMs are data based, not model based,
and the fitted values of the results are not derived from an a priori model. Further, as
there is no limitation of the shapes available in the parameter class, the data can determine
the shape of the response curve. Therefore, this method can provide suitable results for
analyzing ship trajectories.

2.5. Quantile Regression Newral Network

The artificial neural network is a suitable model for multiple regression problems
with nonlinear transformations through complex linkages and activation functions of vari-
ables [37]. However, because the existing neural network only provides one output result
at a time, it is not possible to derive prediction results according to quantiles [25]. Therefore,
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a QRNN was proposed. In particular, because NNs can output accurate information based
on complex data, it was used to analyze ship trajectory data in this study. The hidden
layer of the neural network is dense and connected by nodes. The output of the hidden
layer is obtained by applying an activation function between the input value, the weight
of the hidden layer, and the bias of the hidden layer [38]. When the input data value is
xj(j = 1, 2, . . . , J), the output of the kth (k = 1, 2, . . . , K) node for the first hidden layer is
as shown in Equation (8):

gk = f1

(
J

∑
j=1

xjw
(h)
jk + b(h)k

)
(8)

The output of the lth(l = 1, 2, . . . , L) node in the second hidden layer is as shown in
Equation (9):

hl = f2

(
K

∑
k=1

gjw
(h)
kl + b(h)l

)
(9)

where f1 and f2 denote activation functions, and w(h) and b(h) denote the weight and bias
of the hidden layer, respectively. The output layer of the neural network can be expressed
as shown in Equation (10) as a single node with a linear activation function that estimates
the τth quantile for the ith subject:

Q̂(τ)
i =

L

∑
l=1

hlw
(o)
l + b(o) (10)

Here, w(o) and b(o) represent the weight and bias of the output layer, respectively. The
basic model architecture of the QRNN is shown in Figure 3. In this study, the number of
hidden layers and neurons was investigated in each case to determine the best model.
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In this study, the Exponential Linear Unit (ELU) was used as the activation function.
The ELU can increase the learning speed and classification accuracy of the deep neural
network [39]. The ELU outputs the input value without refinement in the positive part to
avoid the problem of gradient loss. In the Rectified Linear Unit (ReLU), which is the most
widely used among neural network activation functions, the negative part of the function
graph is in the form of unsaturation; in contrast, in the ELU, this part is in the form of
saturation.
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The loss function used in the QRNN model was applied as a quantile loss value, as
shown in Equation (4). In addition, the optimizer used the Adaptive Moment Estimation
(Adam). Adam has an advantage over previous optimizers because it uses different sizes
of updates for each parameter [40].

2.6. Model Evaluation

In this study, for the model evaluation of quantile GAMs and the QRNN, the quantile
loss was used as the evaluation index [41]. In general regression analysis, if the mean
absolute error (MAE), which is a representative index for evaluating the accuracy of the
outcome variable, is minimized, the median regression line (0.5-quantile) is obtained. The
quantile loss is the weighted MAE calculated to determine the τ-quantile. Therefore, this
index is suitable for evaluating quantile regression. The quantile loss is defined as shown
in Equation (11):

Loss(τ) =
1
N

N

∑
i=1

ρτ(yi(τ|x)− ŷi(τ|x)) (11)

MAE(τ) =
1
N

N

∑
i=1
|yi(τ|x)− ŷi(τ|x)| (12)

where ŷi(τ|x) is the prediction of the true conditional quantile yi(τ|x). Loss(τ) depends on
asymmetric loss, as shown in Equation (4), and the smaller the measured value of Loss(τ),
the better the method.

3. Experiments and Results

In the experiments, modeling was performed using quantile GAMs and a QRNN with
the constructed data. In addition, a suitable model was selected by evaluating the model
performances. The experimental platform was a PC terminal, and the programming imple-
mentation of the model was completed using Python 3.7.3, pygam 0.8.0, and TensorFlow
1.15.0.

3.1. Data Preprocessing and Statistics

The AIS-based ship trajectories data were collected and then preprocessed to make
them suitable for application for the quantile regression model. Cleaning was completed
based on the pilot station latitude of 34.93◦ N, and the ship’s position, SOG, and COG data
were normalized. The normalization or scaling result was input during the modeling with
GAMs and the QRNN. Table 3 summarizes the minimum and maximum values for each
datum; values normalized to a value between 0 and 1 were multiplied by 100 for ensuring
the clarity of analysis results and expressed as a value between 0 and 100.

Table 3. Results of the minimum and maximum values of each parameter for normalization.

Phase

Speed over Ground
(Knots)

Course Over Ground
(Degree) Longitude (East) Latitude (North)

Min Mas Min Max Min Max Min Max

Entering Phase 0.9 14.4 293.5 007.8
(367.8) 128.780 128.877 34.930 35.050

Berthing
Phase

Left 0.0 12.0 184.5 179.8
(539.8) 128.781 128.805 35.050 35.078

Right 0.0 10.2 191.3 173.7
(533.7) 128.781 128.811 35.050 35.078

A visualization of the preprocessed dataset is shown in Figure 4. To enter Busan New
Port, the ship enters the waterway, Gadeog Sudo, after a pilot experienced in berthing at
the port has boarded the ship. The arriving vessel must navigate to the right side of Gadeog
Sudo. After the vessel has passed the Gadeog Sudo, it will pass through the breakwater to
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access the pier. Accordingly, based on the latitude 34.05◦ N point passing through the east
breakwater, the ship trajectories in the dataset were classified into the entering phase and
berthing phase. In the berthing phase, the ship employs a tug boat to control the ship’s
speed and course. The ships pass by Todo to berth at the target pier. The ship trajectory
data used in this study show that ships navigate toward the north according to the passage
of time. Therefore, in this study, the SOG, COG, and longitude were analyzed based on
changes in the latitude.
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Figure 4. Ship trajectory data plotted on the British Admiralty Chart after completing the preprocessing.

A basic statistic was considered to understand the characteristics of AIS information
for the entire process of the arrival of a ship. To understand the changes in the SOG, COG,
and longitude information according to the latitude, the scatter data of 50 ships were
connected with a line and visualized as a line plot, as shown in Figure 5. In addition,
from the starting point of ship trajectories, i.e., latitude 34.93◦ N, the characteristics of
the dataset were visualized by a boxplot in 0.05 units. Figure 5a shows the changes
in the SOG: the SOG decreases in the latitude range of 34.97◦ N–34.98◦ N as the ships
enter Gadeog Sudo. Thereafter, the SOG gradually increases as the ships pass through
Gadeog Sudo, and then decrease to allow berthing after completing the passage through
Gadeog Sudo. Figure 5b shows the changes in COG. The analysis showed that ships
generally maneuvered north before the berthing phase. Thereafter, the courses can be
classified based on two tendencies when passing by Todo and, just before berthing, a
large deviation appears because vessels are precisely maneuvered using a tugboat and an
engine. In Figure 5c, which shows the change in longitude, the y-axis is reversed for visual
understanding. The descriptive statistics shown by grouping the ship trajectories data into
0.05-units of latitude are summarized in Table 4. Although the characteristics of the dataset
can be identified through basic statistics, there is a limit to analyzing ship trajectories with
volatility and uncertainty for the purpose of this study. Therefore, the results were derived
using quantile GAMs and the QRNN.
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Table 4. Descriptive statistics for ship trajectory data.

Group 1
SOG 2 COG 3 Longitude

Mean Std. Mean Std. Mean Std.

34.930 9.07 2.28 329.03 10.40 128.85 0.01
34.935 8.45 2.44 328.95 10.23 128.85 0.01
34.940 8.29 2.53 330.16 11.00 128.84 0.01
34.945 8.44 2.13 330.19 11.70 128.84 0.01
34.950 8.30 1.92 329.10 10.90 128.83 0.01
34.955 8.24 1.94 328.82 10.83 128.83 0.01
34.960 8.11 2.19 330.97 8.15 128.83 0.01
34.965 8.11 1.78 332.45 7.59 128.82 0.01
34.970 7.76 1.49 334.94 9.22 128.82 0.01
34.975 7.69 1.65 334.95 6.53 128.82 0.01
34.980 7.78 1.92 336.18 4.86 128.81 0.01
34.985 7.79 1.88 338.68 7.14 128.81 0.01
34.990 8.42 2.08 338.17 3.23 128.81 0.01
34.995 9.27 2.36 338.42 2.60 128.81 0.01
35.000 9.80 1.85 338.19 2.35 128.80 0.01
35.005 10.53 1.79 338.59 1.68 128.80 0.01
35.010 10.73 1.67 338.54 1.76 128.80 0.01
35.015 10.97 1.42 337.68 1.57 128.80 0.01
35.020 10.87 1.48 336.63 2.16 128.79 0.01
35.025 10.66 1.34 336.27 2.47 128.79 0.01
35.030 10.60 1.31 335.80 2.77 128.79 0.01
35.035 10.43 1.43 337.06 2.76 128.79 0.01
35.040 10.06 1.28 343.79 5.73 128.78 0.01
35.045 9.38 1.36 353.08 4.86 128.78 0.01
35.050 8.62 1.26 359.07 3.30 128.78 0.01
35.055 8.16 1.16 363.07 4.79 128.78 0.01
35.060 7.48 1.15 014.97 12.56 128.78 0.01
35.065 6.65 1.19 032.51 21.38 128.79 0.01
35.070 4.77 1.86 042.87 18.27 128.79 0.01
35.075 1.17 1.20 031.33 46.24 128.80 0.01

1 Group units are latitude (North) ± 0.025, 2 speed over ground (knots), 3 course over ground (degree).

3.2. Modeling and Evaluation

Before modeling to suggest guidelines for safe ship operation in a port, the dataset
was divided into data corresponding to the entering phase and those corresponding to
the berthing phase. Depending on the berthing phase, the ships passing by Todo were
classified into those that maneuvered to the left and those that maneuvered to the right.
This classification was performed to suggest clear and specific guidelines for each section
through which the ships enter Busan New Port. In this study, the dependent variable was
the latitude, and the independent variables were SOG, COG, and longitude. The ship
trajectory data divided into three categories were modeled according to each independent
variable.

3.2.1. Modeling of Generalized Additive Models

Figure 6 shows the results of quantile regression of the dataset using GAMs. All
results of quantile modeling using GAMs were statistically significant (p-value < 0.001).
Based on the minimum and maximum values listed in Table 3, the x-axis represents the
scaled latitude, and the y-axis represents the result of scaling each information. Figure 6a–c
shows the results of applying the SOG information to the GAMs by applying the entering
phase, the berthing phase of passing by Todo to the left, and the berthing phase of passing
by Todo to the right, respectively. Figure 6d–f shows the COG, and Figure 6g–i shows the
analysis results for longitude. In particular, GAMs are characterized by smooth lines due
to the application of the smoothing function.
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Figure 6. Results of modeling with quantile generalized additive models (GAMs): (a,d,g) SOG, COG, and longitude
respectively, in the entering phase; (b,e,h) SOG, COG, and longitude, respectively, when passing Todo to the left in the
berthing phase; and (c,f,i) SOG, COG, and longitude, respectively, when passing Todo to the right, in the berthing phase.
Furthermore, 0.1 and 0.9 quantiles are indicated by red, 0.2 and 0.8 by orange, 0.3 and 0.7 by yellow, 0.4 and 0.6 by
yellow-green, and 0.5 by green lines.

3.2.2. Modeling of the Quantile Regression Neural Network

By comparison, the QRNN is slightly more affected by the distribution of the dataset
than GAMs, and hence, the QRNN fitting line is not smooth. The number of hidden
layers and the appropriate number of neurons in each hidden layer in the QRNN model
determined the most optimal model among 16 cases (Table 5). The QRNN corresponding
to 0.5-quantile was modeled for each case using the SOG data from the entering phase, and
the optimal model was determined using the MAE. Therefore, according to the results of
Table 5, four hidden layers and 16 neurons were determined as the most optimal QRNN
modeling. Further, the computational time required was the longest at 15 s, although the
analysis was fast and there was minor difference from the other cases. Figure 7 shows the
result of visualizing QRNN modeling and shows the analysis results of SOG, COG, and
longitude for each phase.
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0.2 and 0.8 by orange, 0.3 and 0.7 by yellow, 0.4 and 0.6 by yellow-green, and 0.5 by green lines.

Table 5. Determination of the optimal number of hidden layers and the appropriate number of
neurons in the hidden layer.

Hidden Layer Neurons 1 MAE 2 Computation Time (s)

2

4 16.528711 10 s
8 16.545627 10 s
16 16.787603 11 s
32 16.524037 15 s

3

4 16.499576 12 s
8 16.391850 12 s
16 16.671966 13 s
32 16.369946 17 s

4

4 16.201253 14 s
8 16.292288 15 s
16 16.193952 15 s
32 16.668355 17 s

5

4 16.218435 15 s
8 16.382307 15 s
16 16.237098 18 s
32 16.383952 20 s

1 The number of neurons each hidden layer, 2 mean absolute error.
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3.2.3. Evaluation

Table 6 lists the performance evaluation results of quantile GAMs and QRNN models.
All quantile loss values were derived according to 0.1–0.9 fitting lines of AIS information
for each phase. The result of comparing the average value of the loss for each quantile
was visualized as a bar plot, as shown in Figure 8. In general, the loss value of QRNN
was analyzed to achieve better performance than that of the GAMs. The analysis result
indicates that the GAMs and QRNN model is suitable for analysis and is feasible for use as
a guideline for safe ship operation based on ship trajectories. However, the QRNN model
can yield slightly more accurate results than GAMs.

Table 6. The evaluation result of regression model according to quantile loss.

Model Phase Information
Quantile

Total
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Quantile
GAMs

Entering Phase
SOG 5.465 7.046 7.877 8.267 8.283 7.960 7.261 6.093 4.174 6.936
COG 6.238 6.807 6.998 6.944 6.686 6.221 5.516 4.521 3.203 5.904

LONG 14.398 15.429 16.162 16.752 17.249 17.666 17.997 18.220 18.262 16.904

Berthing
Phase

Left
SOG 20.124 19.827 18.600 16.870 14.796 12.425 9.786 6.874 3.692 13.666
COG 2.568 3.386 4.118 4.796 5.426 6.012 6.547 7.010 7.353 5.246

LONG 3.993 7.726 11.328 14.822 18.212 21.480 24.590 27.447 29.815 17.713

Right
SOG 28.796 28.128 26.381 24.119 21.501 18.604 15.441 11.963 8.040 20.330
COG 3.233 3.552 3.611 3.536 3.366 3.108 2.750 2.253 1.485 2.988

LONG 6.310 9.582 12.368 15.529 18.308 20.974 23.502 25.841 27.799 17.801

QRNN

Entering Phase
SOG 4.503 6.336 7.467 8.026 8.196 7.932 7.221 5.463 3.247 6.488
COG 5.785 6.797 7.077 6.945 6.359 5.747 4.898 3.831 2.305 5.527

LONG 13.035 14.716 15.608 16.345 16.885 17.403 17.836 18.084 18.166 16.453

Berthing
Phase

Left
SOG 17.964 18.230 17.706 16.726 15.561 13.531 10.633 7.359 3.978 13.521
COG 2.431 3.309 4.123 4.840 5.446 5.878 6.168 6.712 7.418 5.147

LONG 4.224 8.098 11.491 14.836 18.253 21.472 24.216 26.734 28.745 17.563

Right
SOG 27.056 26.949 25.644 23.889 21.625 18.536 15.409 11.951 7.963 19.891
COG 2.179 2.815 3.001 2.990 3.093 2.846 2.438 1.935 1.166 2.496

LONG 5.829 9.398 12.511 15.381 18.121 20.724 23.185 25.339 26.972 17.496
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4. Discussion

Ship trajectory data were analyzed using quantile regression-based GAMs and a
QRNN for the safe operation of ships in ports. This methodology is meaningful because it
proposes the ship maneuvering method in the port as a data-based quantitative numerical
value, unlike the traditional system of handing down the information in an apprentice
system among pilots. Thus, this methodology presents a new approach to ship trajectory
data analysis.
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Because the quantile regression used in the study can effectively process data, includ-
ing variability and uncertainty, it is suitable for analyzing the data of ships with various
trajectories according to weather conditions and traffic flow. In addition, because regres-
sion by quantiles is possible, the operating range for ship maneuvering can be suggested,
making the method effective for suggesting guidelines. Thus, the quantile regression
model in this study proposes safe navigation guidelines, such as COG operation within the
10-quantile to 90-quantile range and SOG operation within the 40-quantile to 60-quantile
range, based on the port situation. According to the analysis results, the performance of
the QRNN model is better than that of GAMs, but both methodologies can be used. GAMs
have the advantage of providing results using a smooth fitting line as a smoothing func-
tion, and the QRNN is complex but provides accurate analysis results based on datasets.
Figure 9a shows an example of the use of guidelines for the ship’s position. In particular, it
is possible to use these guidelines by plotting them on the Electronic Chart Display and
Information System used in ships. In addition, linking the SOG and COG data, as shown
in Figure 9b, will be helpful for the safe operation of ships by referring to the operating
range at the relevant location.
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The long-term utilization aspect of this study can be presented as a basic study
related to the port operation of maritime autonomous surface ships (MASSs). Although
many studies have dealt with autonomous navigation techniques in the ocean, relatively
few have explored the autonomous navigation of ships in ports [16]. Therefore, various
approaches based on data-based machine learning and artificial intelligence are required
for autonomous ship operation in ports, and the results of this study can serve as basic
data. Moreover, combining this study with research on the berthing of ships can provide
the key to the connection technology between MASSs and ports [42,43].

5. Conclusions and Future Work

Quantile regression-based GAMs and a QRNN were applied for realizing guidelines
for safe ship operation in ports using AIS-based ship trajectory data. The novelty of this
work is that the SOG, COG, and ship’s position information can be analyzed by quantile
regression to utilize the ship’s operating guidelines. Traditional statistical models based on
mean values cannot interpret ship trajectory data with variability and uncertainty. A ship’s
trajectory changes because of weather, traffic flow, and the pilot’s operation; however, the
ships are safely berthed to complete the operation in the port. Therefore, proposing ship
operation guidelines based on average values is subject to significant error. Due to the
limitations of traditional statistical analysis, this study analyzed ship trajectory data via
quantile regression analysis. This approach examines changes in SOG, COG, and other
metrics with respect to the ship’s position via quantiles and can determine the ship’s
maneuvering guideline range based on port conditions.

However, only the ship trajectory data of one port, i.e., Busan New Port, were used
in this study. Hence, it is necessary to analyze various port and ship types, including a
range ships’ sizes. Further, the performance of GAMs and the QRNN algorithm should
be improved for safe maneuvering guidelines in the future. Data reliability should be
further increased by collecting data for a long period of time, and additional research on
the operator behavior and ship operation patterns according to the weather is necessary.
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