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Abstract

‘Gold standard’ reference sets of human muscle architecture are based on elderly cadaveric

specimens, which are unlikely to be representative of a large proportion of the human popu-

lation. This is important for musculoskeletal modeling, where the muscle force-generating

properties of generic models are defined by these data but may not be valid when applied to

models of young, healthy individuals. Obtaining individualized muscle architecture data in

vivo is difficult, however diffusion tensor magnetic resonance imaging (DTI) has recently

emerged as a valid method of achieving this. DTI was used here to provide an architecture

data set of 20 lower limb muscles from 10 healthy adults, including muscle fiber lengths,

which are important inputs for Hill-type muscle models commonly used in musculoskeletal

modeling. Maximum isometric force and muscle fiber lengths were found not to scale with

subject anthropometry, suggesting that these factors may be difficult to predict using scaling

or optimization algorithms. These data also highlight the high level of anatomical variation

that exists between individuals in terms of lower limb muscle architecture, which supports

the need of incorporating subject-specific force-generating properties into musculoskeletal

models to optimize their accuracy for clinical evaluation.

Introduction

The musculoskeletal architecture (i.e. the macroscopic arrangement of muscle fibers [1]) of the

human lower limb has been well defined, with several extensive data sets published [2, 3].

However, these “gold standard” reference data sets are based on elderly cadaveric specimens,

which for various reasons, such as possible changes in muscle architecture due to aging [4], are

unlikely to be representative of young, active and healthy adults [5]. These differences have

been highlighted in regards to muscle volumes [5, 6], although the extent of variation in mus-

cle architecture properties such as muscle fiber length, pennation angle and maximum isomet-

ric force is largely unknown. This is particularly important in the context of musculoskeletal

modeling using dimensionless Hill-type muscle models [7], which are defined by these proper-

ties. Importantly, various sensitivity analyses have shown that these models are particularly
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sensitive to even small changes in muscle fiber and tendon slack lengths in particular [8–14].

Furthermore, how well these parameters scale with respect to body anthropometric factors

such as body or limb mass has also not been reported in detail, although it has been suggested

that fiber lengths may not scale particularly strongly with bone length [15]. While muscle

architecture parameters can be estimated through optimization [16–19], directly measuring

these in vivo may improve the accuracy of computational models.

Using a previously established framework of diffusion tensor imaging (DTI) and fiber trac-

tography, in combination with other magnetic resonance imaging sequences [20], this study

aims to build on previous literature and provide a detailed human lower limb in vivo muscle

architecture data set. This will also highlight the level of inter-subject variability in muscle

architecture parameters which exists in young healthy adults, as well as the scaling relation-

ships between muscle architecture and body proportions.

Methods

For the present study, data were gathered from 20 muscles in the right lower limbs of 10

healthy, non-professionally athletically trained adults (5 males, 5 females; Age- 27 ± 4 years.

Body mass- 76 ± 12 kg; Table 1), who signed informed consent documents prior to participat-

ing in this IRB-approved study. The muscles analyzed were classified into 5 distinct functional

groups based on major functions (Table 2), which were based on previous human muscle

architecture studies [3]. Muscle fiber length, fiber pennation angle and muscle volumes were

estimated from each of these muscles, using a validated framework of magnetic resonance

imaging (MRI) and DTI [20]; see below).

MRI and DTI acquisition

All MR images were acquired from the iliac crest to the ankle joint using a 3 T scanner (Bio-

graph mMR, Siemens, Munich, Germany), with each subject in a supine position and with the

lower limbs in the anatomical position. Imaging consisted of two sequences (Fig 1A and 1B):

T1-weighted anatomical turbo spin echo (TSE) (voxel size 0.47×0.47×6.5 mm3, repetition time

[TR]—650 ms, echo time [TE]—23 ms, number of slices—35 per segment, number of signal

averages (NSA)—1, acceleration factor—2), and diffusion-weighted single-shot dual-refocus-

ing spin-echo planar (voxel size 2.96×2.96×6.5 mm3, TR/TE 7900/65 ms, 12 direction diffusion

gradients, b value—0 & 400 s/mm2, strong fat suppression—spectral attenuated inversion

Table 1. Study participant information. Thigh length- the distance between the most proximal aspect of the greater trochanter of the femur, and the most distal aspect

of the lateral femoral condyle. Leg length- the distance between the tibial plateau and the center of the ankle (tibiotalar) joint. LL—Total lower limb length. VLM—Total

lower limb muscle volume (sum of volumes of the studied muscles). VL—Total lower limb volume (sum of muscle volumes plus fat, fascia and skin).

Subject

Number

Sex Age (years) Body Mass (kg) Height (cm) BMI (kgm-2) Thigh length (cm) Lower leg length (cm) LL (cm) VLM (cm3) VL (cm3)

01 Male 23 90.7 182 27.4 46.3 39.3 85.6 6547 11620

02 Male 26 82.1 173 27.4 42.3 38.0 80.3 5128 11971

03 Male 29 81.1 182 24.1 45.3 39.4 84.7 5040 7066

04 Female 26 71.2 162 27.1 40.7 37.7 78.4 4209 12173

05 Female 23 59.8 170 20.7 41.7 38.3 80.0 3989 9450

06 Female 35 80.2 169 28.1 42.4 35.6 78.0 4386 10462

07 Female 25 80.7 168 28.6 42.1 34.7 76.8 3153 12853

08 Female 26 40.6 162 17.8 39.0 33.6 72.6 2955 6101

09 Male 26 84.8 187 24.5 46.3 42.7 89.0 6119 11517

10 Male 34 82.5 192 22.4 45.7 42.7 88.4 4655 9008

https://doi.org/10.1371/journal.pone.0223531.t001
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recovery [SPAIR], number of slices—35 per segment, NSA—2, acceleration factor—2, band-

width—2440 Hz/pixel). Advanced B0 shimming was done for each segment to reduce spatial

distortion and minimize the residual fat chemical shift in the diffusion-weighted images, in the

phase-encoding direction (anterior to posterior). For each subject, images were acquired in an

axial slice orientation, and repeated for a total of five to six segments, which were merged dur-

ing post-processing using the Stitching plugin for Fiji/ImageJ [21, 22]. Total image acquisition

time was ~37mins per subject.

The T1- weighted MR images were digitally segmented in Mimics (Materialise, Leuven, Bel-

gium) to create three-dimensional meshes of each muscle (Fig 1C), which allowed for the

determination of individual muscle (belly) volumes (mm3).

DTI pre-processing and fiber tractography

The diffusion tensor images were pre-processed to reduce image artefacts and improve signal

to noise ratio. To reduce image artifacts caused by the possible motion of the subjects or spatial

distortion (eddy currents and/or magnetic field inhomogeneity), each diffusion-weighted

image was registered to the non-diffusion weighted image (with b value 0) using an affine

transformation in DTI-studio [23].

To reduce the signal to noise ratio of the images, a Rician noise suppression algorithm was

applied to the DTI images [24] in MedINRIA (www.med.inria.fr), where the diffusion tensors

for each subject were estimated and smoothed. Manual thresholding removed background

pixels from the tensor estimation. Muscle fascicles for each muscle were estimated from these

tensors with tractography in Camino software [25], producing fiber tracts, from regions of

interest (ROIs) drawn based on the anatomical T1 MR images (Fig 1D). These tracts were

tracked bidirectionally (step size 1mm) from seeding regions of interest (ROIs) and continued

Table 2. Muscle functional group classifications, based on those from Ward et al., [3].

Functional group Muscle Abbreviation

Hip adductors Adductor magnus AM

Adductor longus AL

Adductor brevis AB

Gracilis GRA

Knee flexors Semimembranosus SM

Semitendinosus ST

Biceps femoris (long head) BFL

Biceps femoris (short head) BFS

Popliteus POP

Sartorius SAR

Knee extensors Rectus femoris RF

Vastus lateralis VL

Vastus medialis VM

Vastus intermedius VI

Ankle dorsiflexors Tibialis anterior TA

Extensor digitorum longus EDL

Extensor hallucis longus EHL

Ankle plantarflexors Medial gastrocnemius MG

Lateral gastrocnemius LG

Soleus SOL

https://doi.org/10.1371/journal.pone.0223531.t002
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until terminated based on defined fiber curvature stopping criteria (angle change >10 degrees

per 5mm). These tractography settings were kept consistent between muscles and subjects.

While muscle fibers may not necessarily extend the entire length of a muscle fascicle (bun-

dles of ~5–10 fibers) and may instead be connected in series, it has been shown that fibers in

this arrangement may be activated simultaneously to act like a single fiber [26]. It was therefore

assumed here that fiber lengths are functionally equivalent to fascicle lengths, and these terms

are used interchangeably. Based on this assumption, custom MATLAB code (available at

www.figshare.com—DOI: 10.6084/m9.figshare.9906266) was used to measure Lf from these

fiber tracts (equivalent to muscle fascicles), and values reported here are means of the entire

range of fiber tract lengths throughout each muscle [20]. This is standard practice when

Fig 1. Representative T1-weighted MR anatomical image (A) and diffusion tensor image (B) of the thigh segment of one subject. Muscles and bones were digitally

segmented from the T1 images to create 3D representations of the lower limbs (C) (for muscle abbreviation definitions, see Table 2). Muscle fascicles (fibers) were

tracked from the diffusion weighted MR images (D). From these 3D point cloud-based models, it was possible to measure fiber length (Lf) and surface fiber

pennation angle (θ, angle of the fibers relative to the muscle’s line of action (blue line)).

https://doi.org/10.1371/journal.pone.0223531.g001
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measuring muscle architecture for inputs into Hill type muscle models [3, 27], and in this con-

text has been shown to estimate Lf to an average accuracy of<1 ± 7 mm [20].

The pennation angle of these fibers was measured here as the angle of the fibers relative to

the muscle’s line of action. Each muscles’ line of action was estimated using the “fit centerline”

function on each 3D muscle mesh in Mimics (from the T1-weighted MR images), which esti-

mates a line through the axial centroids of each mesh, and therefore accounts for their often-

curved shapes. The assumption that this line is equivalent to an anatomical line of action has

been reported previously [6]. Five superficial (2D) pennation angle measurements were manu-

ally recorded at proximal, middle and distal areas of each muscle using ImageJ [28] to obtain a

representative mean value. This is also standard practice for estimating this parameter for

musculoskeletal models, and has been shown to estimate surface pennation angles to an aver-

age accuracy of 4 ± 1˚ [20].

All these methods were performed by the same researcher for each subject, ensuring consis-

tency in the reported muscle architecture data.

Predicting optimal fiber lengths

A previously recognized limitation of measuring fiber lengths from diffusion tensor images is

that estimates of optimal fiber lengths (an important input to musculoskeletal models) are not

obtainable using this method alone. This is because sarcomere lengths, which are normalized

to a standardized optimal resting sarcomere length to estimate optimal fiber lengths, are not

directly measurable from the tracked fibers. Therefore, optimal fiber lengths were estimated

using sarcomere lengths reported in [3], using the following equation [29]:

Lf ¼ Lf 0ð
2:7mm
Ls
Þ;

where Lf is optimal fiber length, Lf’ is raw fiber length (measured from DTI), Ls is sarcomere

length, and 2.7μm is a generic value for optimal sarcomere length [29]. Ls values were obtained

from Ward et al. [3], who measured Ls in fixed muscles dissected from limbs with most joints

(other than the ankle joint) in the anatomical position, as in the present study.

These parameters were then used to calculate physiological cross-sectional area (PCSA,

mm2), a major determinant of muscle force output, using the equation (from [30]):

PCSA ¼ ðVm � cosyÞ=ðLfÞ;

where Vm is muscle (belly) volume (mm3), Lf is optimal muscle fiber length (mm), θ is muscle

fiber pennation angle. To estimate maximum isometric force (an important input parameter

for musculoskeletal models, Fmax), individual PCSA values were multiplied by the isometric

stress of skeletal muscle (or specific tension; 0.3Nmm-2; [7]). The use of this generic value for

isometric stress is well established within musculoskeletal modeling research [13, 31], and has

been shown to be independent on body size and conserved within vertebrate phylogeny [32].

Given that estimating this value for each individual muscle of the lower limb was out of the

scope of this study, it was assumed here to be constant across all muscles. However, it is recog-

nized that in reality this may not be the case, with a wide range of values (0.04–0.6 Nmm2)

reported in the literature within human lower limb muscles, depending on function or fiber

type [33, 34].

Specializations in muscle architecture parameters within functional groups (i.e. certain

muscle functional groups, such as knee extensors, show broadly similar muscle fiber orienta-

tions and by extension functional capabilities) have been demonstrated previously in the verte-

brate musculoskeletal system [27, 30, 35–41]. Therefore, muscle architecture data obtained

Muscle architecture dataset from diffusion tensor imaging
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here for each muscle were averaged over each functional group within each individual, as well

as within the grouped mean values (Tables 1, 2 & S1–S10 Tables). This gives a general insight

into the degree of these muscle functional group specializations within the lower limbs of the

individuals in this study, and also allows comparisons to similar functional group averages in

previous architecture data sets (3).

How these muscle architecture variables scale with body mass, height, total limb volume

(VL) and limb length (LL) across the different individuals in our study population was tested

using linear regression in GraphPad Prism (La Jolla, California, USA; www.graphpad.com).

Limb length was defined as the length from the most proximal aspect of the greater trochanter

of the femur, to the most distal aspect of the lateral malleolus of the fibula.

Results

The mean (± standard deviation) in vivo architecture properties for 20 lower limb muscles as

measured from DTI and T1 MRI sequences across 10 individuals were determined (Table 3).

Muscle architecture data for individual subjects are listed in S1–S10 Tables.

On average, the muscles in the lower limb with the largest PCSA were vastus lateralis

(3206 ± 1559 mm2), vastus intermedius (2938 ± 926 mm2), and soleus (3226 ± 1042 mm2).

Muscles with the smallest PCSA across all subjects were extensor hallucis longus (196 ± 78

mm2), popliteus (202 ± 76 mm2) and sartorius (333 ± 84 mm2).

The muscles with the longest Lf were on average; sartorius (408 ± 30 mm), adductor mag-

nus (231 ± 61mm) and biceps femoris (long head) (204 ± 38mm). The muscles with the short-

est Lf were popliteus (74 ± 14 mm), adductor brevis (76 ± 22 mm) and medial gastrocnemius

(97 ± 22 mm). When fiber length was normalized to muscle length (Lf:Lm), the muscles with

the largest Lf:Lm ratios were; sartorius (0.85 ±<0.01), biceps femoris long head (0.74 ± 0.15),

popliteus (0.78 ± 0.17), adductor magnus (0.74 ± 0.17) and vastus lateralis (0.59 ± 0.14). The

muscles with the smallest Lf:Lm were soleus (0.32 ± 0.07), medial gastrocnemius (0.39 ± 0.08)

and rectus femoris (0.39 ± 0.12).

The degree to which muscle volume, fiber length and maximum isometric force scaled with

subject total limb volume (VLM) and limb length (LL) varied considerably between the muscle

functional groups (Figs 2 and 3; S11 Table). The mean volume of the muscle groups scaled

strongly with VLM (Fig 2A & 2B), although only the knee flexors and knee extensors showed

statistically significant scaling relationship between Fmax and ML (R2 > 0.5, p< 0.05; Fig 3C,

S11 Table). Muscle belly length scaled with LL (Fig 3A & 3B), however Lf did not scale particu-

larly strongly with LL in any functional group, with the hip adductors showing the strongest

and only statistically significant correlation (R2 = 0.49, p = 0.02; Fig 3C, S11 Table).

Discussion

This study used a validated technique to generate an extensive data set of in vivo human lower

limb muscle architecture data exclusively from MR images of 10 young healthy individuals.

These data define muscle volume, length, optimal fiber length, fiber pennation angle, PCSA

and maximum isometric force. The technique of using DTI and muscle fiber tractography to

gather detailed muscle architecture data has been previously described and shown to be valid

and repeatable [20, 42–56]. In a study into the validity of the technique for gathering muscle

architecture specifically for musculoskeletal models, Charles et al., [20] found that DTI can

replicate muscle masses, fiber lengths and PCSA within 4%, 1% and 6% of the corresponding

variables measured from manual dissections, respectively. The accuracy of this method raised

confidence in our ability to generate an accurate and reliable data set of in vivo lower limb

muscle architecture from a population of young healthy adults (Table 2; S1–S10 Tables). This

Muscle architecture dataset from diffusion tensor imaging
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dataset builds on previous attempts to quantify lower limb muscle anatomy with MRI [6], by

focusing on gathering the architecture data necessary to inform musculoskeletal models and

simulations.

The degree to which these muscle architecture data scale with anthropometric parameters

such as limb length, limb volume and body mass, as well as age, within muscle functional

groups could indicate the necessity for gathering such an extensive in vivo muscle architecture

data set on young, healthy individuals. Muscle belly volume and muscle belly length both

scaled reasonably well with limb mass and limb length, respectively, within most functional

groups. These scaling relationships are particularly apparent in the ankle plantarflexor mus-

cles, where Fmax and muscle volume show strong correlations with subject height, body mass,

limb volume and limb length. These results agree with those of Handsfield et al., [6], who

reported similarly strong scaling relationships between muscle belly volume/length and limb

length and body mass. However, these data show that muscle fiber length does not scale well

with limb length in any muscle functional group, which agrees with previous studies [15].

Table 3. Mean (± standard deviations) architecture properties of 20 lower limb muscles from 10 individuals (5 males, 5 females; Age- 27.3 ± 3.95 years. Body mass-

76 ± 12.5 kg), plus functional group means. LF:Lm- Muscle fiber length muscle length ratio. PCSA- Physiological cross-sectional area. Fmax- estimated maximum isometric

force. Sarcomere lengths used to estimate optimal fiber lengths were sourced from Ward et al., [3].

Muscle Muscle Volume

(cm3)

Muscle Length

(mm)

Optimal fiber length

(mm)

Lf:Lm Pennation angle

(˚)

PCSA (mm2) Fmax (N) Fmax

(%BW)

Adductor magnus 567 ± 186 303 ± 31 231 ± 61 0.74 ± 0.17 12 ± 3 2524 ± 859 757 ± 258 106 ± 44

Adductor longus 159 ± 56 219 ± 27 110 ± 27 0.51 ± 0.14 12 ± 2 1470 ± 528 441 ± 158 60 ± 20

Adductor brevis 93 ± 21 151 ± 28 76 ± 22 0.51 ± 0.15 11 ± 2 1268 ± 369 380 ± 111 53 ± 17

Gracilis 91 ± 32 343 ± 28 173 ± 56 0.50 ± 0.14 6 ± 2 531 ± 104 159 ± 31 23 ± 8

Semimembranosus 244 ± 57 272 ± 29 158 ± 43 0.58 ± 0.14 12 ± 3 1561 ± 368 468 ± 110 64 ± 14

Semitendinosus 186 ± 55 324 ± 26 183 ± 45 0.57 ± 0.14 8 ± 2 1073 ± 438 322 ± 131 43 ± 15

Biceps femoris- long

head

194 ± 55 261 ± 26 204 ± 38 0.79 ± 0.15 11 ± 5 998 ± 502 299 ± 151 39 ± 15

Biceps femoris- short

head

92 ± 22 279 ± 39 109 ± 21 0.40 ± 0.13 9 ± 1 849 ± 220 255 ± 66 35 ± 9

Popliteus 15 ± 5 98 ± 22 74 ± 14 0.78 ± 0.17 8 ± 1 202 ± 76 60 ± 23 8 ± 2

Sartorius 143 ± 38 504 ± 48 408 ± 30 0.85 ±
<0.01

N/A 349 ± 85 105 ± 26 14 ± 2

Rectus femoris 249 ± 65 323 ± 28 142 ± 43 0.44 ± 0.13 8 ± 1 1853 ± 591 556 ± 177 78 ± 34

Vastus lateralis 606 ± 151 335 ± 21 196 ± 42 0.59 ± 0.14 15 ± 4 3206 ± 1559 962 ± 468 129 ± 51

Vastus medialis 415 ± 115 336 ± 44 159 ± 39 0.48 ± 0.14 14 ± 3 2707 ± 1119 812 ± 336 110 ± 40

Vastus intermedius 521 ± 124 353 ± 28 181 ± 40 0.51 ± 0.11 11 ± 4 2938 ± 926 881 ± 278 122 ± 41

Tibialis anterior 129 ± 22 300 ± 43 137 ± 26 0.46 ± 0.08 7 ± 2 955 ± 197 286 ± 59 39 ± 10

Extensor digitorum

longus

76 ± 17 348 ± 29 138 ± 26 0.40 ± 0.07 7 ± 2 570 ± 185 171 ± 56 24 ± 9

Extensor hallucis longus 21 ± 7 238 ± 46 106 ± 24 0.45 ± 0.09 7 ± 2 196 ± 78 59 ± 23 8 ± 3

Medial gastrocnemius 230 ± 48 254 ± 24 97 ± 22 0.38 ± 0.07 10 ± 4 2371 ± 433 711 ± 130 97 ± 15

Lateral gastrocnemius 128 ± 35 240 ± 45 122 ± 44 0.51 ± 0.15 9 ± 3 1159 ± 483 348 ± 145 47 ± 18

Soleus 461 ± 108 349 ± 28 146 ± 32 0.42 ± 0.09 12 ± 2 3226 ± 1042 968 ± 313 130 ± 35

Hip adductors 227 ± 74 254 ± 28 147 ± 41 0.57 ± 0.15 11 ± 2 1448 ± 465 434 ± 140 60 ± 22

Knee flexors 146 ± 39 290 ± 32 189 ± 32 0.66 ± 0.12 8 ± 2 839 ± 281 252 ± 84 34 ± 10

Knee extensors 448 ± 114 337 ± 30 170 ± 41 0.51 ± 0.13 12 ± 3 2676 ± 1049 803 ± 315 110 ± 41

Ankle dorsiflexors 75 ± 15 296 ± 39 127 ± 25 0.44 ± 0.08 7 ± 2 574 ± 154 172 ± 46 24 ± 7

Ankle plantarflexors 273 ± 64 281 ± 32 122 ± 32 0.44 ± 0.10 10 ± 3 2252 ± 652 676 ± 196 91 ± 23

https://doi.org/10.1371/journal.pone.0223531.t003
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In the context of musculoskeletal modeling, this suggests that the relationship between

muscle fiber length and limb length may not necessarily be accurately predicted using scaling

or optimization algorithms and could be more complex than other muscle architecture vari-

ables. So, while anthropometric scaling can be used to estimate gross anatomical properties

such as muscle volume and length, subject-specific imaging of lower limb anatomy is likely

necessary to accurately estimate more complex muscle architecture parameters such as muscle

fiber lengths, particularly for use in musculoskeletal modeling. The lack of direct correlation

between fiber lengths and limb lengths could be explained by inter-subject variation in the

length of the external tendinous portion of the musculotendon unit, which has been shown to

be related to joint range of motion, particularly in the distal muscle groups of the lower limb

[57].

Fig 2. The scaling relationships between: Individual total limb muscle volume and total muscle belly volume in the (A) hip adductors, knee flexors and knee

extensors; (B) ankle dorsiflexors and ankle plantarflexors; and maximum isometric force in the (C) hip adductors, knee flexors and knee extensors; (D) ankle

dorsiflexors and ankle plantarflexors. Dotted lines represent ±1 standard error mean.

https://doi.org/10.1371/journal.pone.0223531.g002
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Gathering subject-specific data is further justified by the differences between these data and

previously published cadaveric architecture data, such as that described by Ward et al., [3].

While the general trends in mean architecture properties in our data closely followed those

previously described (with many of the same muscles having large PCSA values and long opti-

mal fiber lengths), many differences in absolute values can be seen (see supplementary infor-

mation for more details). Given the anatomical variation seen within our data set, these

differences are most likely due to the variable degrees of muscle architecture scaling between

muscle functional groups, as well as the potential effects of ageing. In a study into the kine-

matic and kinetic effects of ageing, DeVita and Hortobagyi [58] suggested that ageing results

in a redistribution of joint and muscle torques throughout the lower limb, with relatively lower

Fig 3. The scaling relationships between: Individual limb length and muscle belly length in the (A) hip adductors, knee flexors and knee extensors; (B) ankle

dorsiflexors and ankle plantarflexors; and muscle fiber length in the (C) hip adductors, knee flexors and knee extensors; (D) ankle dorsiflexors and ankle

plantarflexors. Dotted lines represent ±1 standard error mean.

https://doi.org/10.1371/journal.pone.0223531.g003
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ankle but larger hip joint torques and muscle power in elderly compared to younger individu-

als. While likely associated with changes in gait kinematics with advancing age, this alteration

of joint torques could also arise as a result of changes in complex muscle architecture (i.e.

reductions in Lf:Lm), which were shown here through comparisons to cadaveric muscle archi-

tecture and were particularly evident in distal muscles.

This supports the accuracy of our data, however as muscle volumes and fiber lengths have

only been predicted to decrease 25% and 10% respectively due to ageing effects [4], anatomical

variation, in addition to effects of formalin fixation or possible pathologies in cadaveric speci-

mens in previous dissection studies [3], is likely another significant reason for differences

between these data and cadaveric data. This high level of anatomical variation also supports

the potential need for subject-specific musculoskeletal modeling for clinical evaluation. Indi-

vidualized models have become more common [11, 12, 59–62], and with novel methods of

gathering in vivo muscle architecture, these models could potentially provide more accurate

and reliable estimates of muscle function compared to generic or scaled generic models.

Limitations

While this method of gathering in vivo muscle architecture is becoming more common [20,

53–56], there are still some limitations that must be overcome before widespread use in the

musculoskeletal modeling and simulation community. Many of these limitations, such as

assumptions in how pennation angles and fiber lengths were estimated, are similar to those

discussed previously [20]. One important drawback of this method which is particularly signif-

icant to its applications for muscle modelling is that it is not possible to estimate optimal fiber

lengths. This is often done in dissection studies using laser diffraction to measure sarcomere

lengths [29], however this parameter is not directly measurable from DTI sequences. While

optimal fiber lengths were calculated here based on previously published sarcomere lengths

[3], combining DTI with further medical imaging such as micro-endoscopy [63, 64] to obtain

in vivo sarcomere lengths from superficial muscles could provide more accurate estimates of

optimal fiber length in future studies. Without a subject-specific correction for sarcomere

length, the fiber length data presented here require further testing and optimization within the

musculoskeletal models to ensure the muscles are operating at the correct part of the force-

length curve [7].

It should be noted that measurement/observer error could have contributed to any lack of

correlation seen in here between subject anthropometry and muscle architecture. This most

likely had an effect during manual muscle segmentation to determine muscle volumes (and by

extension calculate Fmax) and measuring pennation angles (which have little effect on muscu-

loskeletal model output- see later discussion). However, as the determination of in vivo muscle

fibre lengths was mostly automated and the same fiber tractography stopping criteria were

used for each muscle of each subject, any errors in this parameter are likely due to variations in

the quality of the diffusion tensor image images, rather than human error. As manual segmen-

tation of vertebrate muscle is an often-used technique for measuring muscle volumes [6], and

all the diffusion tensor images were pre-processed using the same method (see methods)

before analysis, the effect of these potential errors on the overall results presented here was

likely small.

The accuracy and limitations of the fiber tractography framework used here have been dis-

cussed previously [20]. However, these had a direct effect on the data presented here. While

the average accuracy of the estimated muscle fiber lengths was <1 ± 7 mm, this was variable

between subjects and between muscle groups (2 mm in the hip adductors, but 17 mm in the

knee extensors). This variability could be due to diffusion tensor image quality or partial

Muscle architecture dataset from diffusion tensor imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0223531 October 15, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0223531


volume artefacts from bone or subcutaneous fat, which will have had variable affects depend-

ing on the location or size of the muscle being analyzed (see [45] for a detailed discussion on

the possible sources of measurement variation in DTI fiber tractography). Despite this varia-

tion, even the larger average discrepancies in fiber lengths and pennation angles measurement

accuracy mostly fall below the repeatability coefficients reported by Heemskerk et al. [45]

(<50 mm for Lf,<10.2˚ for θ), suggesting that this framework is relatively accurate and repeat-

able. However, it should be noted that the validation of this framework was performed on

cadavers [20], which were not subject to the same physiological factors which may have

affected the repeatability reported by Heemskerk et al. [45] (such as motion, breathing artefacts

or body temperature), which could explain the relatively high accuracies previously reported.

Nevertheless, while this method shows undoubted potential for the biomechanical modelling

field, improving the consistency of the fiber tractography between muscles and individuals is

needed for its widespread application.

Regarding pennation angles, this study reports lower angles than the limited three-dimen-

sional angles derived from DTI tractography that are currently available in the literature. Val-

ues of ~30˚ have been previously reported in soleus and medial gastrocnemius muscles [53,

56], compared to mean values of 12˚ and 9˚ respectively reported here, which are more similar

to angles measured from ultrasound or cadaveric data [3, 65–67]. While these differences to

other DTI studies seem substantial, pennation angle is known to be highly dependent on joint

position and has been estimated using DTI to change between 9˚ [56] and 46˚ [46] with 30˚

rotations in ankle dorsiflexion/plantarflexion. While the subjects in this study were asked to

remain in the anatomical position during the image acquisition (with the hip, knee and ankle

joints at 0˚ of flexion/extension), it is possible that the ankle joint was not exactly in this posi-

tion for the duration of each scan. Even small deviations from a neutral position at the ankle

joint could have caused large changes in pennation angles, particularly in the ankle dorsiflexor

or plantarflexor muscles, and therefore could explain these differences. However, given the

low sensitivity of muscle function predictions within musculoskeletal models to variations in

the pennation angle input parameter [10, 13], the 2D surface pennation angles presented here

could be sufficient in predicting muscle functions, if these data are to be used as inputs into

such models. Nevertheless, further refinements to this framework for more accurately estimat-

ing optimal fiber lengths and pennation angles could be of benefit in future studies.

Impact and future study

This study represents the first instance of an extensive data set of in vivo human lower limb

muscle architecture generated purely from medical imaging (DTI and MRI), with a specific

focus on implications for biomechanics and musculoskeletal modeling. By investigating the

scaling relationships between anthropometric parameters and important muscle force generat-

ing properties such as muscle fiber length and maximum isometric force, these data show a

lack of correlation between muscle fiber length and anthropometry amongst most muscle

functional groups of the lower limb. This means that optimization or scaling algorithms often

used to estimate muscle architecture for musculoskeletal modeling may not reliably do so, and

that how muscle fiber lengths relate to body proportions may be more complex when com-

pared to similar relationships with other muscle architecture variables. Nevertheless, given the

differences between these data and previously published cadaveric architecture data, it is possi-

ble that applying the muscle parameters presented here to musculoskeletal models of individu-

als of similar age or anthropometry could provide more accurate estimates of muscle function

than similar data from those previous studies. Furthermore, the accurate muscle fiber paths

reconstructed using this method could also improve muscle functional predictions through
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more accurate representations of muscle moment arms, and can be incorporated into bio-

mechanical models using methods such as that described by Chen et al., [68].

While this study focused on estimating muscle architecture for young, healthy individuals

using DTI, this framework could further benefit the musculoskeletal modeling field by

measuring similar parameters in pathological populations (e.g. individuals with cerebral

palsy [54], muscle atrophy [69], muscular dystrophy [70], and the elderly [71]), whose gait

and muscle function are often investigated with biomechanical models and simulations

[72, 73].

Furthermore, the differences to previous data, as well as the variation within our data set,

also lends support to the emergence of subject-specific musculoskeletal modeling. Although

generic and scaled-generic models are generally effective at testing general predictions of mus-

culoskeletal function, more detailed modeling analyses such as those predicting rehabilitation

or post-surgical outcomes may require the inclusion of subject-specific muscle architecture

data for maximum efficacy. Future work will focus on testing these assumptions and further

validating this framework. Despite the methods used here to measure muscle architecture in
vivo being previously validated specifically for use in musculoskeletal modelling [20], it is still

unclear how accurately the data will simulate muscle functions within these models. The valid-

ity of these methods can be further assessed by comparing muscle forces predicted by subject-

specific musculoskeletal models to those measured experimentally, such as from an isokinetic

dynamometer. Accurate predictions of muscle forces from subject-specific models would fur-

ther raise confidence in the validity of this framework in measuring muscle architecture in
vivo and forming the basis of individualized musculoskeletal models.
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