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Abstract

Background: Metabolomics time-course experiments provide the opportunity to understand the changes to an
organism by observing the evolution of metabolic profiles in response to internal or external stimuli. Along with other
omic longitudinal profiling technologies, these techniques have great potential to uncover complex relations
between variations across diverse omic variables and provide unique insights into the underlying biology of the
system. However, many statistical methods currently used to analyse short time-series omic data are i) prone to
overfitting, ii) do not fully take into account the experimental design or iii) do not make full use of the multivariate
information intrinsic to the data or iv) are unable to uncover multiple associations between different omic data. The
model we propose is an attempt to i) overcome overfitting by using a weakly informative Bayesian model, ii) capture
experimental design conditions through a mixed-effects model, iii) model interdependencies between variables by
augmenting the mixed-effects model with a conditional auto-regressive (CAR) component and iv) identify potential
associations between heterogeneous omic variables by using a horseshoe prior.

Results: We assess the performance of our model on synthetic and real datasets and show that it can outperform
comparable models for metabolomic longitudinal data analysis. In addition, our proposed method provides the
analyst with new insights on the data as it is able to identify metabolic biomarkers related to treatment, infer
perturbed pathways as a result of treatment and find significant associations with additional omic variables. We also
show through simulation that our model is fairly robust against inaccuracies in metabolite assignments. On real data,
we demonstrate that the number of profiled metabolites slightly affects the predictive ability of the model.

Conclusions: Our single model approach to longitudinal analysis of metabolomics data provides an approach
simultaneously for integrative analysis and biomarker discovery. In addition, it lends better interpretation by allowing
analysis at the pathway level. An accompanying R package for the model has been developed using the probabilistic
programming language Stan. The package offers user-friendly functions for simulating data, fitting the model,
assessing model fit and postprocessing the results. The main aim of the R package is to offer freely accessible
resources for integrative longitudinal analysis for metabolomics scientists and various visualization functions
easy-to-use for applied researchers to interpret results.
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Background
Over the past few years, there has been a significant
development in high-throughput omics technologies e.g.
metabolomics, transcriptomics, genomics, epigenomics
and proteomics along with a growing interest into joint
modeling of multi-omic data [1, 2]. In metabolomics,
several approaches are used to understand the response
of a biological system as a function of an internal or
external perturbation by monitoring “the chemical finger-
prints that specific cellular processes leave behind" [3].
These chemical fingerprints are most commonly interro-
gated in terms of metabolite (i.e. low weight molecules)
concentration, structure and transformation pathways (i.e
set of chemical reactions) in order to identify biomark-
ers related to the studied process. Biomarker discovery
consists of identifying a metabolite that has significant
association patterns with a particular phenotype (disease,
clinical variables, physical trait, etc) and that can be thus
used as an indicator of that specific phenotype. Typi-
cal experimental platforms use analytical techniques such
as nuclear magnetic resonance spectroscopy (NMR) [4]
and mass spectrometry (MS) [5] to generate appropri-
ate spectral metabolomic profiles of the studied biological
system.
Metabolomic datasets are characterized by high corre-

lation structures at different levels. For example, chro-
matographic correlation between two spectral peaks often
results from adduct or isotopic effects whereas other cor-
relation structures can result from peaks that represent
related molecules operating within networks of chemical
reactions in multiple injections. In addition, further cor-
relation structure is present in longitudinal metabolomic
studies due to repeated measurements of observations
over time. Additional challenges include not only the low
number of time points and samples compared to the
number of metabolic variables, but also integration of a
different omic data with the metabolomic data.
Metabolomic time series are often short due to experi-

mental costs or ethical considerations. Typically, less than
10 time points are available compared to a large num-
ber of metabolic variables profiled at each time point e.g.
hundreds of metabolic variables for targeted experiments
and thousands for untargeted experiments. For this rea-
son, the number of temporal patterns that can arise is
limited (due to the limited number of degrees of free-
dom). Some temporal patterns may be repeated and thus
these patterns can be induced by random processes. Mod-
els fitted to a small number of data points are prone to
overfitting i.e. the model is very sensitive to small fluctua-
tions. This can lead to a poor fitting to new data and thus
a high generalisation error. It is also important to consider
the number of parameters of the statistical model and
make use of the simplest models in order to avoid over-
parametrisation. Finally, monitoring variables within and

between multiple omic types can substantially enhance
the understanding of the underlying biological mecha-
nism and provide a systems biology approach as these
omic variables represent entities that are often involved
in related cellular processes [1, 2]. For all these rea-
sons, metabolomics scientists need robust models which
allow cautious interpretation of the data. Models are
needed which integrate heterogeneous omic data and take
into account both experimental conditions and biological
variation.
There is a growing interest in longitudinal experiments

for heterogeneous omics data and statistical models to
infer biomarkers of a particular treatment or disease over
time. Some approaches aim to infer influential or signifi-
cant metabolites using dynamic metabolomic data under
the assumption that metabolites are independent. These
models include fitting smooth splines mixed effects mod-
els (SME) to time curves [6] and linear mixed effects
models augmented with a variable selection [7] . How-
ever metabolomic data exhibit rich correlation structure,
which is biologically relevant and should be modelled.
Seemingly unrelated regression accounts for metabo-

lite correlation by using correlated regression errors and
can be used to identify biologically significant metabo-
lites [8, 9]. In gene expression data analysis, [10] recently
proposed to use confirmatory factor analysis to capture
gene-pathway relationships and a conditional autoregres-
sive model to capture relationships between a set of path-
ways where a network has been constructed based on
KEGG [11] pathways. The latter accounts for biological
variation in the data and aids interpretation.
In the metabolomics literature, traditional frameworks

for metabolomic data analysis use dimensionality reduc-
tion techniques, namely principal component analysis
(PCA), partial least squares (PLS) [12] and PLS derived
models (OPLS [13], O2PLS [14], OnPLS [15]) to take into
account high correlations between metabolites. Extension
of PLS to O2PLS and OnPLS allows for integrative anal-
ysis of heterogeneous omic data. One of the interests of
PCA (PLS) derived models is to be able to visually assess
whether or not there is a time effect in the data and iden-
tify metabolites that change over time by looking into time
trajectories of each metabolite [16].
Extensions to PCA and PLS for longitudinal analy-

sis include lagged PCA (PLS) and dynamic PCA (PLS)
where a backshift matrix is introduced to take into
account time dependency [17, 18]. Similarly, [19] used
a set of piecewise orthogonal projections latent struc-
tures to describe changes between neighbouring time
points. PARAFAC [20] is a multi-linear unsupervised
decomposition method that can account for the multi-
way variation seen in dynamic metabolomics data. Similar
models such as ASCA [21] and APCA [22] also seek to
account for temporal variation by combining analysis of
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variance (ANOVA) with PCA. Recently, dynamic proba-
bilistic PCA (DPPCA) was proposed in [23] as a genera-
tive probabilistic model of longitudinal metabolomic data
where a stochastic volatility model is used for the latent
variables. The main inconvenience of these approaches
is that further techniques such as variable importance
scores have to be separately applied to the data in order
to identify biomarkers and they do not take heteroge-
neous data (i.e. data from different omics techniques)
into account.
In this paper, we are interested in dose-response time

course experiments where additional omic variables (bac-
teria, genes, transcripts, etc) are monitored along with
metabolites in the context of biomarker discovery. The
main contribution of our work is a single probabilistic
generative model that i) can overcome overfitting via
the use of weakly informative priors ii) makes use of
mixed effects models to model the experimental design
iii) models metabolite interactions using pathway infor-
mation through a conditional auto-regressive (CAR) com-
ponent and iv) uncovers multiple associations between
metabolites and other omic variables by using a horse-
shoe prior. An additional benefit of our approach is
that it naturally yields a list of perturbed metabolic
pathways.

Results
Model
We denote a metabolomics data set by X ∈ R

N×T×M

where N is the number of individuals, T the number
of time points and M the number of metabolite vari-
ables (henceforth termed metabolites for simplicity). Y ∈
R
N×T×K is an additional continuous omic data mea-

sured along with X where K is the number of associated
omic variables. The set of N individuals consists of a
set of cases and controls. Throughout the paper, index
i always runs through individuals, index t runs through
time points, indexm runs throughmetabolites and index k
runs through Y variables. Vector quantities are written in
bold. Matrices are written in bold capitals. Our goal is to
build a simple model that can identify biomarkers of a spe-
cific treatment over time, taking into account the multiple
sources of variation in the data.
The model is built on three levels (see “Methods”

section for details on full model): First, a CAR component
to capture interaction between metabolites. Second, a
variable selection model to uncover associations between
metabolites and Y data. Third, a mixed effects compo-
nent to model the experimental design. This yields the
following hierarchical model:

xeit|μit ,C, σ ∼ N
(
μit ,

(
IM − C

(
φe))−1

σ 2
)

(1)

μitm = αm + γim + βmyit + νitm (2)

where the mean metabolite level μit is a function of
covariates of sample i at time point t, influence of metabo-
lite j on metabolite m is captured through coefficients
cmj elements of the matrix C (φ) = ∑P

p=1 φpGpAp where
P is the number of pathways (see “Methods” section for
details). αm represents treatment effect for metabolite
m, γim represents individual perturbations for metabo-
lite m, νitm represents temporal effects for metabolite m
of individual i at time point t and βm quantifies interac-
tions betweenmetabolitem and other omic variables. The
indicator e stands for {controls, cases} and φ quantifies
pathway perturbation. Particularly, by specifying differ-
ent dependence parameters for metabolite interactions in
cases and controls, the model is able to identify perturbed
pathways by comparing φcases and φcontrols.
We refer to our model as “ iCARH ” model for “ inte-

grative CAR Horseshoe ” model. The model we propose
is implemented in the iCARH package and freely available
from the Comprehensive R Archive Network (CRAN).
In the following sections, we perform experiments on

both synthetic and real data to investigate whether our
algorithm gives reasonable solutions. We first try our
method on a simulated dataset in “Simulation study”
section to get an understanding of the performance of
our method. In “Case study” section, we test our method
on a dataset comprising metabolomic and bacterial com-
position profiles in a drug treatment experiment. A fully
worked reproducible example using the iCARH package
on a publicly available dataset is available in Additional
File 1. All experiments were run on a computer with an
Intel i7 processor running at 2.8 GHz using 16Gb of RAM.

Simulation study
To get better understanding of our method and test its
applicability, we first perform our approach on synthetic
datasets. We will mainly focus on the ability of our model
to infer pathway perturbation.
In this simulation, we first extract from the KEGG

database the proportion of pathways in which a single
metabolite is involved. We then use these proportions to
randomly generate a binary matrix Z with dimensions
M × P indicating random assignments of metabolites to
pathways where M is the number of metabolites, P is the
number of pathways. Each design matrix Ap is then equal
to zpzpT where zp is the pth column of Z.
We simulate pathway perturbation according to an indi-
cator variable ω as follows: If ω = 1 then pathways are
perturbed hence φcontrols

p and φcases
p are simulated from

normal distributions with different means. If ω = 0 then
φcontrols
p = φcases

p and pathways are not perturbed.
The rest of the parameters is set as follows : number of

bacterial variables K = 1, number of metabolitesM = 40,
number of time points T = 7, number of samplesN = 22,
number of pathways P = 11, global parameter τ fixed
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to 1.2 (to induce a medium degree of sparsity), parame-
ters νitm, γim, μitm and multi-omics time course data xeit
simulated according to Eqs. 1, 2, 11, and 12, respectively
(See “Methods” section). Finally, we generated 10 datasets
according to the simulations above in order to assess how
our model infers perturbed pathways.
We set non-informative uniform priors on αm, σγim ,

θm, σ 2
μm . We set an informative prior on σ 2

γm ∼
inverse-gamma (1, 0.1) as we expect low variability
amongst biological samples of the same group.

Assessing uniform and beta-like priors
We first compare inference of the model under a uniform
prior for φe

p and the prior in Eq. 5 (See Fig. 1). Inference
is done using 2000 iterations of Hamiltonian Monte Carlo
sampling and 1000 warm-up iterations.
We here show, through simulation, that an informative

beta like prior compares better than a non-informative
uniform prior in inferring significant pathways. The left
plot in Fig. 1 shows the boxplots of the 95% confidence
interval of the Area Under the Curve (AUC) for path-
way perturbation inference for 10 simulated datasets with

uniform prior on φ and a beta like prior on φ. We
infer perturbations based on the posterior probability
that φcontrols and φcases are different i.e. the 95% credible
interval of φcontrols − φcases does not contain zero. The
AUC values for the beta like distribution is significantly
higher than the AUC values for the uniform distribu-
tion. On average pathway peturbation inference under
the uniform distribution reduces to a random guess with
an average AUC of 0.53. This is likely due to the lack
of variance of the uniform distribution. The right plot
in Fig. 1 shows the posterior distributions of φcontrols −
φcases under the uniform prior (white) and the beta like
prior (shaded) for each pathway. The true perturbed path-
ways are printed in bold on the x axis. In the follow-
ing section, we assess pathway inference against design
inaccuracies.

Assessing pathway inference against design inaccuracies
It is very common in metabolomics data to find metabo-
lites that are correlated but not in the same KEGG
pathway. In the following simulation we assess how inac-
curacies in the covariance structure between metabolites

Fig. 1 Left : Boxplots of Area Under the Curve (AUC) for pathway perturbation inference with uniform prior on φ compared to a beta like prior on φ

for 10 simulated datasets. We infer perturbations based on the posterior distribution of φcontrols − φcases. Right : Distribution of φcontrols − φcases

under the uniform prior (white) and the beta like prior (shaded). The true perturbed pathways are printed in bold on the x axis
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and the design matrices Ap affect the iCARH model.
We used the 10 datasets from the previous simulation
and perturbed the design matrices by selecting a ran-
dom fraction of metabolites in each pathway. We then
randomly (falsely) assign these metabolites to no path-
way, or to different pathways. We similarly run the model
for 2000 iterations of Hamiltonian Monte Carlo sampling
and 1000 warm-up iterations for each of the fractions
{0, 0.18, 0.35, 0.44, 0.5, 0.62} of perturbed metabolites.
Finally, in the same fashion, we assess perturbations based
on the 95% credible interval of φcontrols − φcases. Figure 2
is a series of average Receiver Operating Characteristic
(ROC) curves across 10 datasets for each of the frac-
tions {0, 0.18, 0.35, 0.44, 0.5, 0.62} of perturbed metabo-
lites. On average, the performance of our model reduces
to a random guess (AUC of 0.5) if 50% of the metabo-
lites in each pathway is perturbed. The AUC of our
model reaches 0.97 if no metabolites are perturbed and is
about 0.88 if 18% of the metabolites in each pathway are
perturbed.

Case study
In this section, we test our model on an actual
metabolomic data and 16S data for bacterial profiles.
In this study we are interested in the influence of a
diabetes drug metformin on a non-diabetic model.

Metformin is the first-line medicine to treat type 2 dia-
betes. It has also been suggested that metformin has
anti-cancer [24], cardiovascular [25] and anti-aging [26]
effects. Because of their very large metabolic capacity,
the gut bacteria can influence toxicity and metabolism
of drugs. Here, we are particularly looking for metabolic
biomarkers indicative of microbiota changes as a result of
treatment.
The study design is as follows: metabolic profiles of

24 animals are acquired on 9 equally spaced time-
points using different mass spectrometry techniques from
plasma samples. Bacterial profiles are acquired using
Illumina MiSeq [27]. The study has allowed for two
groups of 12 animals where the drug has been admin-
istrated to the second group (timepoints 3 to 7) allow-
ing for an acclimatation period (timepoints 1 and 2)
and a recovery period (timepoints 8 and 9). As metabo-
lites are mapped to pathways, prior filtering and/or
metabolite annotation needs to be performed before-
hand. After data processing and metabolite identification,
a total of 56 metabolites and 6 bacteria species are fur-
ther analyzed using our model. Preliminary investigation
of the data shows observable associations between cor-
relations and inter-pathway and intra-pathway metabo-
lites in Fig. 3 which motivates fitting the iCARH model
the data. Inference is done using 2000 iterations of

Fig. 2 Average Receiver Operating Characteristic (ROC) curves for pathway perturbation inference across 10 datasets for different factions of “falsely”
assigned metabolites. Boxplots show the 95% confidence intervals of the true positive rate
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Fig. 3 Figure shows boxplots of correlations between metabolites
that are part of the same pathway (intra-pathway correlations)
compared to correlations between metabolites that belong to
different pathways (inter-pathway correlations) in the metformin
study (See “Case study” section). Although correlations are not very
close to 1. There is an empirically observed correlation signature
related to whether metabolites are in the same pathway or not

Hamiltonian Monte Carlo sampling and 1000 warm-up
iterations.
We assess performance of our model for different val-

ues of τ using theWatanabe-Akaike information criterion
(WAIC). Tested values of τ comprise 1, 1.2, 5, 10 with cor-
respondingWAIC values of 7317.296 , 7322.798 , 7317.457
, 7316.476 respectively. WAIC values are very similar for
different values of τ which suggests to use the most selec-
tive model with τ = 10 as it is the simplest i.e with the
smallest number of selected variables.

Assessingmodel fit
In order to assess our model fit, we perform posterior pre-
dictive checks of our model compared to DPPCA [23].
The DPPCA model is a multivariate model using PCA,
where PCA scores are modelled via a stochastic volatil-
ity model. In the Bayesian framework, posterior predictive
checks consist in comparing data simulated from the pos-
terior predictive distribution with the observed data. The
mean absolute deviations (MADs) are computed between
the observed covariance matrix and the covariance matrix
of simulated data. The experiment was repeated for dif-
ferent numbers of metabolites selected randomly from the
whole dataset. As metabolites are also predictors under
the CAR model, the performance is expected to improve
when the number of metabolites increases. The process
was also replicated for inference using the DPPCA model
[23]. Figure 4 shows MADs of our model and the DPPCA
model. Although MADs for the DPPCA model decrease
when the number of metabolites increases, it is still
slightly higher than MADs for the iCARHmodel. Overall,
our model clearly outperforms the DPPCA model.
In addition to posterior predictive checks, normality

checks are another way to assess if the observed results are
not mainly a product of misspecified priors. Specifically,
goodness of fit was checked by using 
−1

e
(
xit − μit

) ∼

N (0, IM) where 
e denotes the Cholesky factor of
(IM − C (φe))−1 σ 2. Zero-mean and normality were thus
checked for 
−1

e
(
xit − μit

)
(See Fig. 5).

Data results
In the standard model, αm represents an indicator vari-
able for the treatment effect. The treatment variable can
also be continuous as in this data example (drug measure-
ments) and modeled by αm = βα

mydrug. The treatment
effect can now be simply summarized by βα

m. Figure 6 is
a series of boxplots of 95% credible intervals of posterior
means of βα

m for metabolites 13 to 31.We are mainly inter-
ested in “metabolite 27” as it is associated with bacteria
species 2.
Figures 7 and 8 show posterior distributions of φe for

each pathway and estimates of effects of bacteria on
metabolites. Results in “Simulation study” section suggest
to compare the covariance structure of metabolites in the
observed data with the covariance induced by the design
matrices in order to have an a priori idea on the robustness
of pathway inference (See Fig. 2). For a correlation thresh-
old of 0.3, about 25% of themetabolites are misspecified in
the design matrices which corresponds to an AUC around
0.8 according to Fig. 2. If we set a higher correlation
threshold, a lower number of metabolites are misspeci-
fied. For example, for a correlation threshold of 0.5, only
8% of the metabolites are misspecified. This supports
the use of the iCARH model for pathway perturbation
inference for this data.
Estimates of effects of bacteria on metabolite profiles

are captured by βm. Some metabolites present significant
changes along with the bacterial profiles. For example,
“metabolite 27”, a hydroxy fatty acid, is associated with
alterations in abundance of 4 bacteria species. Figure 7
shows that, as a result of treatment, KEGG pathways
are not significantly altered. However, distributions of
φcontrols for “fatty acids biosynthesis” and “biosynthesis
of unsaturated fatty acids” KEGG pathways are remark-
ably flatter than the distributions of φcases. These path-
ways involve the previously identified hydroxy fatty acid
metabolite. Our analysis confirms previously reported
studies that hydroxy fatty acids might be produced by the
gut microbiome [28, 29]. On the other hand, results from
MetaboAnalyst [30] give p-values between 6.3× 10−2 and
1.8 × 10−10 indicating that all pathways are significant to
changes of the treatment except one; glycerophospholipid
metabolism. We think that this discrepancy in the results
is due to the way iCARH and metaboAnalyst model path-
way perturbation i.e. whilst metaboAnalyst considers that
mean level changes of one or more metabolite concen-
trations involved in a pathway indicate perturbation of
the latter pathway. iCARH considers that changes in the
covariance structure of metabolites in the same pathway
are indicative of pathway perturbation.
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Fig. 4 Posterior predictive checks for mean absolute deviation (MAD) compared to DPPCA for different numbers of metabolites included. Vertical
bars show the 95% confidence intervals of MADs .The MADs decrease as the number of metabolites increases. Our model performs clearly better
than the DPPCA model

Discussion
Identifying biomarkers in time course metabolic data
and inferring significant associations with heterogeneous
omic variables is extremely challenging due to the sev-
eral sources of variations of the data. In addition, existing
methods developed to analyse such data are very scarce
and have the limitations of i) overfitting to the few avail-
able data points or ii) confounding the experimental and
longitudinal variation or iii) ignoring the metabolite inter-
actions or iv) ignoring effects of other omic variables. In
this paper, the model we have developed combines sev-
eral approaches to take into account the different aspects
of the data namely the number of time points, the exper-
imental variation captured by μit , interactions between
metabolites captured by φ and interactions with addi-
tional omic variables captured by βm.
Our results demonstrate that our model successfully

addresses the main questions of a metabolomic study.

Most importantly, our model is able to identify metabolic
biomarkers related to treatment, infer perturbed path-
ways as a result of treatment and find significant asso-
ciations with additional omic variables. We have shown
that providing an informative prior on metabolic path-
ways and an informative prior over the parameter φ is
a significant improvement over the DPPCA model. Par-
ticularly, our model is more robust to slight variations
usually observed in short time series data thanks to the
small number of covariance parameters (in the covari-
ancematrix) needed to estimate compared to DPPCA.We
have also shown through simulation that an informative
beta like prior compares better than a non-informative
uniform prior in inferring significant pathways. On dif-
ferent real data, we have investigated how the number
of profiled metabolites can affect the predictive ability of
the model and carried out a fully reproducible application
of iCARH.
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Fig. 5 Right and left panels show model fit assessment for controls and cases for metformin data. Left : quantile-quantile normal plot of

−1

cases

(
xit − μit

)
. Right : quantile-quantile normal plot of 
−1

controls

(
xit − μit

)

Fig. 6 Estimates of effects of treatment on metabolite profiles are captured by βα
m for the metformin data. The figure depicts boxplots of 95%

credible intervals of posterior means of βα
m . Only part of the data is plotted as we are mainly interested in “metabolite 27”
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Fig. 7 Posterior distributions of φe for each pathway for each treatment group for the metformin dataset. Posterior distributions of φe for some
pathways are flatter for the controls than the cases which might be indicative mild pathway alterations. These pathways correspond as well to the
top 11 pathways inferred by MetaboAnalyst [30]. The p-values are the p-values returned by MetaboAnalyst for each pathway

Several potential extensions arise naturally from our
model. In terms of the metabolite interactions com-
ponent, many research questions can arise. Alternative
strategies to modeling metabolite interactions can be
examined such as modeling the non-zero elements of the
adjacency matrix C of each pathway as random variables.
This strategy was adopted in the CAR literature by [31, 32]
to take into account step changes in spatial variation. Step
changes can potentially be useful to model changes in
metabolites correlations as a result of treatment. Lee [33]
provide an overview of different CAR models used in spa-
tial modeling. The proposed models can be adapted to fit
into the metabolomics literature.
Another potential extension concerns the source for

pathway annotation and modeling. In this research paper,
the KEGG pathways are used but this poses certain lim-
itations regarding the performance of the model, due to
some shortcomings in the database (missing compounds,
inaccuracies in the database etc). In this sense extend-
ing the tool to support software formats and applications
that enable assembly of superpathways (SBML [34], OWL
[35], KEGGConverter [36] or KENEV [37]) would prob-
ably increase its performance in terms of accuracy and
computational effeciency, as the adjacency matrix would
be known a priori and its sparsity would be stronger.
From a practical point of view, the model has been fit-

ted using HMC sampling but takes a large amount of
time (about 1 h) mostly because of the variable selec-
tion procedure and metabolites interdependence. This
could be addressed by using variational Bayes. In fact,
variational Bayes inference procedures offer cost-effective

inference by means of principled approximations and
appealing computational time for high dimensional data.
A variational bayes inference of CAR models was pro-
posed by [38] for high dimensional data, and a varia-
tional bayes approach for variable selection was recently
proposed by [39].

Conclusion
Metabolomics longitudinal profiling techniques are
imperative to understand the effect of a drug or a disease
across time and can provide enhanced understanding of
the underlying biology of the system. In a data integration
framework, we have illustrated the use of the CAR model
to incorporate metabolites interactions in the model and
the horseshoe prior to identify association with heteroge-
neous omic variables obtained by other omic techniques.
The combination of the CAR and horseshoe levels yields
the “integrative CAR Horseshoe” (iCARH) model which
we presented in this article. Our model is accompanied
by an R package with various visualization functions
easy-to-use for applied researchers.
The iCARH model has various appealing features such

that it is able to identify metabolic biomarkers related to
treatment, infer perturbed pathways as a result of treat-
ment and identify potential associations between hetero-
geneous omic variables. Clearly, these appealing features
open up further research topics.

Methods
In this section we describe theoretical details
behind the three levels of our iCARH model: Metabolite



Jendoubi and Ebbels BMC Bioinformatics           (2020) 21:11 Page 10 of 16

bacteria species  4 bacteria species  5 bacteria species  6

bacteria species  1 bacteria species  2 bacteria species  3

m
et

ab
o

lit
e 

 1
m

et
ab

o
lit

e 
 2

m
et

ab
o

lit
e 

 3
m

et
ab

o
lit

e 
 4

m
et

ab
o

lit
e 

 5
m

et
ab

o
lit

e 
 6

m
et

ab
o

lit
e 

 7
m

et
ab

o
lit

e 
 8

m
et

ab
o

lit
e 

 9
m

et
ab

o
lit

e 
 1

0
m

et
ab

o
lit

e 
 1

1
m

et
ab

o
lit

e 
 1

2
m

et
ab

o
lit

e 
 1

3
m

et
ab

o
lit

e 
 1

4
m

et
ab

o
lit

e 
 1

5
m

et
ab

o
lit

e 
 1

6
m

et
ab

o
lit

e 
 1

7
m

et
ab

o
lit

e 
 1

8
m

et
ab

o
lit

e 
 1

9
m

et
ab

o
lit

e 
 2

0
m

et
ab

o
lit

e 
 2

1
m

et
ab

o
lit

e 
 2

2
m

et
ab

o
lit

e 
 2

3
m

et
ab

o
lit

e 
 2

4
m

et
ab

o
lit

e 
 2

5
m

et
ab

o
lit

e 
 2

6
m

et
ab

o
lit

e 
 2

7
m

et
ab

o
lit

e 
 2

8
m

et
ab

o
lit

e 
 2

9
m

et
ab

o
lit

e 
 3

0
m

et
ab

o
lit

e 
 3

1
m

et
ab

o
lit

e 
 3

2
m

et
ab

o
lit

e 
 3

3
m

et
ab

o
lit

e 
 3

4
m

et
ab

o
lit

e 
 3

5
m

et
ab

o
lit

e 
 3

6
m

et
ab

o
lit

e 
 3

7
m

et
ab

o
lit

e 
 3

8
m

et
ab

o
lit

e 
 3

9
m

et
ab

o
lit

e 
 4

0
m

et
ab

o
lit

e 
 4

1
m

et
ab

o
lit

e 
 4

2
m

et
ab

o
lit

e 
 4

3
m

et
ab

o
lit

e 
 4

4
m

et
ab

o
lit

e 
 4

5
m

et
ab

o
lit

e 
 4

6
m

et
ab

o
lit

e 
 4

7
m

et
ab

o
lit

e 
 4

8
m

et
ab

o
lit

e 
 4

9
m

et
ab

o
lit

e 
 5

0
m

et
ab

o
lit

e 
 5

1
m

et
ab

o
lit

e 
 5

2
m

et
ab

o
lit

e 
 5

3
m

et
ab

o
lit

e 
 5

4
m

et
ab

o
lit

e 
 5

5
m

et
ab

o
lit

e 
 5

6

m
et

ab
o

lit
e 

 1
m

et
ab

o
lit

e 
 2

m
et

ab
o

lit
e 

 3
m

et
ab

o
lit

e 
 4

m
et

ab
o

lit
e 

 5
m

et
ab

o
lit

e 
 6

m
et

ab
o

lit
e 

 7
m

et
ab

o
lit

e 
 8

m
et

ab
o

lit
e 

 9
m

et
ab

o
lit

e 
 1

0
m

et
ab

o
lit

e 
 1

1
m

et
ab

o
lit

e 
 1

2
m

et
ab

o
lit

e 
 1

3
m

et
ab

o
lit

e 
 1

4
m

et
ab

o
lit

e 
 1

5
m

et
ab

o
lit

e 
 1

6
m

et
ab

o
lit

e 
 1

7
m

et
ab

o
lit

e 
 1

8
m

et
ab

o
lit

e 
 1

9
m

et
ab

o
lit

e 
 2

0
m

et
ab

o
lit

e 
 2

1
m

et
ab

o
lit

e 
 2

2
m

et
ab

o
lit

e 
 2

3
m

et
ab

o
lit

e 
 2

4
m

et
ab

o
lit

e 
 2

5
m

et
ab

o
lit

e 
 2

6
m

et
ab

o
lit

e 
 2

7
m

et
ab

o
lit

e 
 2

8
m

et
ab

o
lit

e 
 2

9
m

et
ab

o
lit

e 
 3

0
m

et
ab

o
lit

e 
 3

1
m

et
ab

o
lit

e 
 3

2
m

et
ab

o
lit

e 
 3

3
m

et
ab

o
lit

e 
 3

4
m

et
ab

o
lit

e 
 3

5
m

et
ab

o
lit

e 
 3

6
m

et
ab

o
lit

e 
 3

7
m

et
ab

o
lit

e 
 3

8
m

et
ab

o
lit

e 
 3

9
m

et
ab

o
lit

e 
 4

0
m

et
ab

o
lit

e 
 4

1
m

et
ab

o
lit

e 
 4

2
m

et
ab

o
lit

e 
 4

3
m

et
ab

o
lit

e 
 4

4
m

et
ab

o
lit

e 
 4

5
m

et
ab

o
lit

e 
 4

6
m

et
ab

o
lit

e 
 4

7
m

et
ab

o
lit

e 
 4

8
m

et
ab

o
lit

e 
 4

9
m

et
ab

o
lit

e 
 5

0
m

et
ab

o
lit

e 
 5

1
m

et
ab

o
lit

e 
 5

2
m

et
ab

o
lit

e 
 5

3
m

et
ab

o
lit

e 
 5

4
m

et
ab

o
lit

e 
 5

5
m

et
ab

o
lit

e 
 5

6

m
et

ab
o

lit
e 

 1
m

et
ab

o
lit

e 
 2

m
et

ab
o

lit
e 

 3
m

et
ab

o
lit

e 
 4

m
et

ab
o

lit
e 

 5
m

et
ab

o
lit

e 
 6

m
et

ab
o

lit
e 

 7
m

et
ab

o
lit

e 
 8

m
et

ab
o

lit
e 

 9
m

et
ab

o
lit

e 
 1

0
m

et
ab

o
lit

e 
 1

1
m

et
ab

o
lit

e 
 1

2
m

et
ab

o
lit

e 
 1

3
m

et
ab

o
lit

e 
 1

4
m

et
ab

o
lit

e 
 1

5
m

et
ab

o
lit

e 
 1

6
m

et
ab

o
lit

e 
 1

7
m

et
ab

o
lit

e 
 1

8
m

et
ab

o
lit

e 
 1

9
m

et
ab

o
lit

e 
 2

0
m

et
ab

o
lit

e 
 2

1
m

et
ab

o
lit

e 
 2

2
m

et
ab

o
lit

e 
 2

3
m

et
ab

o
lit

e 
 2

4
m

et
ab

o
lit

e 
 2

5
m

et
ab

o
lit

e 
 2

6
m

et
ab

o
lit

e 
 2

7
m

et
ab

o
lit

e 
 2

8
m

et
ab

o
lit

e 
 2

9
m

et
ab

o
lit

e 
 3

0
m

et
ab

o
lit

e 
 3

1
m

et
ab

o
lit

e 
 3

2
m

et
ab

o
lit

e 
 3

3
m

et
ab

o
lit

e 
 3

4
m

et
ab

o
lit

e 
 3

5
m

et
ab

o
lit

e 
 3

6
m

et
ab

o
lit

e 
 3

7
m

et
ab

o
lit

e 
 3

8
m

et
ab

o
lit

e 
 3

9
m

et
ab

o
lit

e 
 4

0
m

et
ab

o
lit

e 
 4

1
m

et
ab

o
lit

e 
 4

2
m

et
ab

o
lit

e 
 4

3
m

et
ab

o
lit

e 
 4

4
m

et
ab

o
lit

e 
 4

5
m

et
ab

o
lit

e 
 4

6
m

et
ab

o
lit

e 
 4

7
m

et
ab

o
lit

e 
 4

8
m

et
ab

o
lit

e 
 4

9
m

et
ab

o
lit

e 
 5

0
m

et
ab

o
lit

e 
 5

1
m

et
ab

o
lit

e 
 5

2
m

et
ab

o
lit

e 
 5

3
m

et
ab

o
lit

e 
 5

4
m

et
ab

o
lit

e 
 5

5
m

et
ab

o
lit

e 
 5

6

−0.3

0.0

0.3

−0.3

0.0

0.3

0.6

−0.5

0.0

0.5

−0.25

0.00

0.25

0.50

−1.0

−0.5

0.0

0.5

1.0

−0.25

0.00

0.25

0.50

metabolites

β

Fig. 8Metformin data: Estimates of effects of bacteria on metabolite profiles are captured by βm . The figure depicts boxplots of 95% credible
intervals of posterior means of βm . Different metabolites present significant changes along with some bacterial profiles. For example, “metabolite
27” is positively associated with bacteria species 2 but negatively associated with bacteria species 5 and can be considered as indicator of changes
in these bacteria species abundance

dependencies, integrative analysis with other omics data
and experimental design.

Metabolite dependencies
In any integrative biological model, it is useful to be able
to interpret the model at a systems level, e.g. according
to functional groups of biological molecules, rather than
attempting to interpret results for individual molecules.
Metabolic pathways are the most widely used groupings
for this type of analysis in metabolomics, and have been
widely used to interpret experimental data, usually by
performing over-representation or enrichment analyses

[40–44]. Since pathways are regulated in a coordinated
fashion, it is natural to assume that the levels of metabo-
lites which are members of the same pathway may be
correlated. This dependence, though weak, is observable
in associations between correlations and network distance
[45–47], and also observable in the real data used in our
study (See Fig. 3). We therefore incorporate a pathway-
based correlation component into our model via a CAR
approach, in a similar fashion to [10]. The extent of path-
way specific correlations will vary according to the exper-
imental system and assay, and may in some cases provide
little extra information. Nonetheless, including such a
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pathway based component can greatly increase the inter-
pretability of the resulting model beyond one which does
not include such grouping information. In this context,
some metabolite peaks in the data need to be identified
in order to be mapped to pathways. As it will be later
clear in the CAR model we will use, if metabolites are not
identified and hence can not be mapped to pathways, no
pathway-induced correlation will be assumed.
We assume that the concentration of each metabolite

is linearly influenced by concentration levels of metabo-
lites in the same pathway. Linear dependencies have been
investigated in genomics in order to uncover functional
modules [45]. Modeling linear associations is appealing as
it captures the overall trend and also less prone to over-
fitting small amounts of data. Let C ∈ R

M×M be the
design matrix quantifying metabolite interactions such
that matrix elements cmm = 0, cmj �= 0 if metabolites
m and j are in the same pathway and 0 otherwise. Thus,
metabolite levels can be expressed as:

xitm|xit,−m,μit ,C, σ ∼ N

⎛
⎜⎜⎝μitm +

M∑
j=1
j �=m

cmj(xitj − μitj), σ 2

⎞
⎟⎟⎠

(3)

where xit,−m represents measurements of metabolites of
sample i at time point t excluding metabolite m, and μitm
is a function of covariates of sample i for metabolite m at
time point t taking into account additional variation in the
data (See “Integrative analysis” and “Experimental design”
sections). If we define IM the Mth order identity matrix,
the joint distribution of xit can be explicitly written as [48]:

xit|μit ,C, σ ∼ N
(
μit , (IM − C)−1 σ 2) (4)

An important output of our modeling procedure is iden-
tification of which pathways are “on" or “off" as an effect
of treatment. In the CAR literature, the design matrix C
can be modeled as a scaled product of a diagonal weight
matrix and an adjacency matrix. In order to infer which
pathways are perturbed we construct the distance matrix
based on the individual contribution of each pathway. To
be precise, we define C (φ) = ∑P

p=1 φpGpAp where P is
the number of pathways. The distance matrices Ap are
a zero-diagonal symmetric adjacency matrices with ele-
ments apmj equal to the inverse of the length of the shortest
path between metabolites m and j if they are in path-
way p and 0 otherwise. A path between two metabolites
consists of the number of reactions that lead from one
metabolite to the other, and the shortest path is the path
that contains the smallest number of reactions. The diago-
nal matrices Gp comprise the reciprocal of the number of
neighbors of each metabolite in pathway p i.e

(
gpmm

)−1 =

∑M
j=1(amj > 0) so that the squared partial correla-

tion between two metabolites cor
(
xitm, xitj|xit,−(m,j)

)2 ∝
φ2
pg

p
mmg

p
jj is reduced when more metabolites from the

same pathway are profiled [48]. The vector of coefficients
φ = {φp}Pp=1 is estimated from the data. It is referred
to as spatial-dependence parameter in the CAR litera-
ture. In the context of this work, the vector of coefficients
φ = {φp}Pp=1 quantifies pathway contribution, for example
φ1 = 0 indicates no contribution.
Under the CAR setting, we turn the reader attention

that if pathway information is not available (i.e. all/some
metabolites are not identified) then no pathway-induced
correlation is assumed in the data and inference will be
performed such that the design matrix C in Eq. 4 is a
zero matrix. Hence, metabolites are assumed to be inde-
pendent as the covariance matrix between metabolites is
diagonal in this case.
The model needs to comply with the condition that

IM − C (φ) is positive definite. If we assume that path-
ways are a priori equally perturbed, φp must fall in the

interval
(

1
Pξ1p

, 1
Pξ2p

)
where ξ1p and ξ2p are the minimum

and maximum eigenvalues of GpAp, respectively. In prac-
tice, strong interaction between observed metabolites of
pathway p is reproduced in CAR models only when the
scaling parameter φp is quite close to one of the bound-
aries 1

Pξ1p
, 1
Pξ2p

. Hence, we use a beta-type prior for φp that
places substantial mass on large values of |φp| [49]:

p
(
φp

) = 1
B

( 1
2 ,

1
2
)

(
φp − 1

Pξ1p

)− 1
2
(

1
Pξ2p

− φp

)− 1
2

(5)

where B is the beta function. The parameter σ 2 cap-
tures variance heterogeneity in metabolite intensities and
is given an inverse gamma prior G (ψ ,ψ − 1). This prior
provides 2ψ pseudo-observations in addition toNT avail-
able observations. In order to build a reasonably informa-
tive prior we set ψ = N × T/4.

Integrative analysis
In this section, we turn our attention to modeling the
association between heterogeneous omic variables such
as transcripts and metabolites. Association between omic
variables involves complex processes where often only
few variables are significant which motivates the use of
shrinkage priors for integrative analysis and cross-omics
biomarker discovery (See [50] for a review on shrink-
age priors). Recently, [51] proposed the “horseshoe” prior
as a prior based on a scale mixture of normals where
scale parameters are modeled as the product of a global
shrinkage (scale) parameter and a local shrinkage (scale)
parameter. This definition allows for an additional flex-
ibility where sparsity can be controlled at a global level
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for each metabolite (i.e. howmany non-zero coefficients?)
and a local level for eachmetabolite (i.e. which coefficients
are non-zero?). The horseshoe prior has been widely rec-
ognized and extended by the statistical community since
its introduction by [51] as it benefits from various desir-
able properties such as simple analytic form, easy com-
putation and preservation of significant coefficients (no
over-shrinkage) [52]. In order to model the association
between heterogeneous omic variables, we extend the
horseshoe prior via the following hierarchical shrinkage
model by introducing an additional variable τ to control
the overall sparsity level for all metabolites:

μitm = αm + γim + βmyit + νitm (6)

βmk|λmk , σβm ∼ N
(
0, λ2mkσ

2
βm

)
(7)

λmk|τ ∼ St+ (τ , 0, 1) (8)

where αm represents the treatment effect for metabolite
m, γim ∼ N

(
0, σ 2

γm

)
represents individual perturbations

for metabolite m, νitm|νi,t−1,m ∼ N
(
θmνi,t−1,m, σ 2

νm

)
fol-

lows and auto-regressive process and represents temporal
effects for metabolite m of individual i at time point t.
βm is a vector of dimension K that quantifies interactions
between metabolite m and other omic variables encoded
in the vector yit of dimension K. λmk is called the local

shrinkage parameter whilst σ 2
βm

is the global shrinkage
parameter. St+ denotes the half Student-t distribution
with τ degrees of freedom. For τ = 1, this prior reduces
to the horseshoe prior [51]. Intuitively, for small values of
λmk the coefficient βmk is very close to 0 while for relevant
variables λmk will be large. In addition, σβm controls the
overall shrinkage level i.e sparsity of the vector βm is more
important for small values of σβm .

Define κmk = 1
1 + λ2mkσ

2
βm

/τ
a random shrinkage coef-

ficient such that κkm ≈ 0 when λmk is large and κkm ≈
1 when λmk is small. This transformation implies the
following prior distribution on κmk :

p
(
κmk|τ , σβm

) = 1
2
√

πB
(

τ
2 ,

1
2
) σ τ

βm
κ

τ/2−1
mk (1 − κmk)

−1/2
(
1 − κmk + κmkσ

2
βm

)

(9)

This prior density is shown in Fig. 9 for different val-
ues of σβm and τ . It reduces to a Beta(τ/2, 1/2) dis-
tribution if σβm = 1 and to a Beta(1/2, 1/2) which
looks like a horseshoe, if in addition τ = 1. When τ

increases, Beta(τ/2, 1/2) skews towards 1 which increases

Fig. 9 Shrinkage prior p
(
κmk|τ , σβm

)
on κmk for different values of σβm and τ . The prior distribution skews towards 1 if τ increases or σβm decreases

(shrinkage). It skews towards 0 if τ decreases or σβm increases (no shrinkage)
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the global shrinkage power. The expectation of βm given
Y , κm, τ ,μtm can be expressed as:

E
(
βm|Y , κm, τ ,μtm

) =
( T∑

t=1
YT
t �−1

m Y t + τϒm

)−1

×
T∑
t=1

YT
t �−1

m μtm (10)

where �m =
(

σ 2
νm

1−θ2m
+ σ 2

γm

)
IN and ϒm is a diagonal

matrix of order K with elements 1/κmk − 1. Equation (10)
introduces a penalty term τϒm where ϒm is a metabolite
specific penalty term introduced by the horseshoe prior
and τ is a global penalty term. Precisely, τ captures the
overall sparsity level amongst all metabolites. The expec-
tation of βm given Y , κm, τ ,μtm is very similar to the
estimate of βm under ridge regression where τϒm simply
reduces to τ IN .
The global sparsity level can be controlled using τ .

Increasing the global sparsity level is a desired property
in omic studies, as usually we deal with a large number of
omic variables where only few are important. In appendix
B we discuss how τ can be fixed a priori.

Experimental design
The covariance structure might change drastically as
a result of treatment if the latter affects relationships
between metabolites. The model can be extended to take
into account the experimental design. As specified in the
previous section, αm captures the treatment effect for
metabolite m, γim represents individual perturbations for
metabolite m, νitm|νi,t−1,m ∼ N

(
θmνi,t−1,m, σ 2

νm

)
repre-

sents temporal effects for metabolite m of individual i at
time point t in Eq. 7. In addition, we allow covariance
structures C (φe) to be different for the control sam-
ples and the cases where e ∈ {cases, controls} designates
experimental groups. This yields the overall hierarchical
model:

xeit|μit ,C, σ ∼ N
(
μit ,

(
IM − C

(
φe))−1

σ 2
)

μitm = αm + γim + βmyit + νitm

βmk|λmk , σβm ∼ N
(
0, λ2mkσ

2
βm

)

λmk|τ ∼ St+ (τ , 0, 1)

γim|σγm ∼ N
(
0, σ 2

γm

)
(11)

νitm|θm, σνm ∼ N
(
θmνi,t−1,m, σ 2

νm

)
(12)

A key point of this model is that by specifying differ-
ent dependence parameters for metabolite interactions in
cases and controls, the model is able to identify perturbed
pathways by comparing φcases and φcontrols.

Appendix A: Global sparsity
When there is prior knowledge available, specifying τ a
priori can optimize the inference and additionally, pro-
vide a more informative prior on λmk . If we fix p

(
σ 2

βm

)
∝

1/σ 2
βm

, integrating over σβm gives the expected value of
κmk as :

E
(
κkm|τ) = � (1/2)−1

2
√

π� (τ/2)
G2,3
3,3

(
1, τ/2, 0
τ/2, τ/2 − 1/2, 0

∣∣∣∣∣ 1 − σ 2
βm

)

whereG·,··,· is Meijer’s G-function [53]. The equation above
can be used to fix τ a priori by defining the expected pro-
portion of shrunk coefficients. In practice, different values
of τ are plugged into the equation above to get the desired
proportion of shrunk coefficients. However, many defi-
nite integrals can be obtained using the tables of Meijer
functions in [54] for special values of parameters.

Appendix B: Model summary
Table 1 depicts a summary of model parameters spec-
ifying parameters of interest, other inferred parame-
ters and user specified parameters. Figure 10 shows the
plates diagram of the iCARH model where fixed variables

Table 1 iCARH model summary

Parameters of interest

φe , e ∈ {cases, controls} quantifies metabolite interactions,(
φcases − φcontrols

)
quantifies

pathway perturbation

βm quantifies association between

metabolitem and other omic

variables from different omics techniques

αm quantifies treatment effect for metabolitem

Other inferred parameters

σ 2 metabolite variance

γim represents individual

perturbations for metabolitem

νitm represents temporal

effects for metabolitem

of individual i at time point t

θm temporal dependence for metabolitem

λmk local shrinkage parameter

σ 2
βm

global shrinkage parameter

σ 2
γm

variance of individual perturbations

σ 2
νm

temporal variance

User specified parameters

G,A between metabolite adjacency matrix

τ overall sparsity level

amongst all metabolites
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Fig. 10 Plates diagram of the iCARH model. Fixed variables are represented by squares, random variables by circles and observations are shaded. For
clarity, all variances σ 2, σ 2

βm
, σ 2

γm
, σ 2

νm
are not represented in the diagram

are represented by squares, random variables by circles
and observations are shaded. For clarity, all variances
σ 2, σ 2

βm
, σ 2

γm , σ
2
νm are not represented in the diagram.

The choice of the gamma distribution for σ 2
βm

, σ 2
γm , σ

2
νm

follows the same principle used in “Model” section for
σ 2. For each variance parameter, the gamma prior pro-
vides half pseudo-observations in addition to the available
observations e.g σ 2

νm has a G(T/4,T/4 − 1) prior such
that it provides T/2 pseudo-observations in addition to T
observations so that the prior is reasonably informative.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3333-0.

Additional file 1: Worked example. We illustrate a fully reproducible
application of the iCARH package to a publicly available dataset from [55].
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