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Pharmaceuticals are indispensable to healthcare as the burgeoning global population is
challenged by diseases. The African continent harbors unparalleled genetic diversity, yet
remains largely underrepresented in pharmaceutical research and development, which
has serious implications for pharmaceuticals approved for use within the African
population. Adverse drug reactions (ADRs) are often underpinned by unique variations
in genes encoding the enzymes responsible for their uptake, metabolism, and clearance.
As an example, individuals of African descent (14–34%) harbor an exclusive genetic variant
in the gene encoding a liver metabolizing enzyme (CYP2D6) which reduces the efficacy of
the breast cancer chemotherapeutic Tamoxifen. However, CYP2D6 genotyping is not
required prior to dispensing Tamoxifen in sub-Saharan Africa. Pharmacogenomics is
fundamental to precision medicine and the absence of its implementation suggests that
Africa has, to date, been largely excluded from the global narrative around stratified
healthcare. Models which could address this need, include primary human hepatocytes,
immortalized hepatic cell lines, and induced pluripotent stem cell (iPSC) derived
hepatocyte-like cells. Of these, iPSCs, are promising as a functional in vitro model for
the empirical evaluation of drug metabolism. The scale with which pharmaceutically
relevant African genetic variants can be stratified, the expediency with which these
platforms can be established, and their subsequent sustainability suggest that they will
have an important role to play in the democratization of stratified healthcare in Africa. Here
we discuss the requirement for African hepatic models, and their implications for the future
of pharmacovigilance on the African continent.
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GENETIC DIVERSITY IN AFRICA AND ITS IMPACT ON
HEALTHCARE

The global population is becoming increasingly reliant on pharmaceuticals as healthcare systems are
burdened by lifestyle diseases, drug resistance, mental health issues, and innumerable orphan
diseases. While substantial progress has been made to ensure patients in Africa have access to
treatments, the majority of pharmaceuticals are trialed on narrow genetic populations using both
preclinical models and population cohorts that are not inclusive of global, especially African,
diversity. This is well exemplified by the fact that the African continent currently contributes only
~3.3% of the estimated 393 000 active clinical trials globally (ClinicalTrials.gov, 2021). Yet, despite its
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disproportionately high disease burden, Africa tolerates
suboptimal treatment regimens which affect a significant
portion of the continent (Mpye et al., 2017).

It has long been understood that genetic variants in drug
metabolizing genes are a major factor resulting in altered drug
responses (Weinshilboum, 2003; Schärfe et al., 2017).
Consequently, the extraordinary genetic diversity in the
African population, compounded by the underrepresentation
of this diversity in preclinical development, is likely to be
driving a high prevalence of severe adverse drug reactions
(ADRs) within the populus (Rajman et al., 2017). This may in
turn decrease adherence to treatment regimens, often in
vulnerable population groups. Understanding the magnitude
of this issue is further complicated by the likely under-
reporting of African ADRs on Vigibase - the global Individual
Case Safety Report database (Ampadu et al., 2016). Despite
increasing inclusion in studies/resources such as the Genome
Aggregation Database (gnomAD), the 1000 Genomes Project, the
African Genome Variation Project (AGVP), and the H3Africa
project (Gurdasani et al., 2015), the clinical impact of Africa’s
genetic diversity on ADRs is only now coming to the forefront (da
Rocha, 2021). While still striving to address the inequality in the
global representation of African genomes (Wonkam, 2021), how
then do we best serve the people of Africa, and successfully
implement precision medicine on the continent?

In the context of ADRs, precision medicine aims to maximize
the probability of clinical success, by matching patients with
predicted best treatment options, either for individuals
(personalized medicine) or well-defined subsets of the
population (stratified medicine). The mitigation of ADRs
through regulatory interventions represents a valuable and
tenable strategy for the implementation of stratified medicine
within Africa, especially for drugs that are highly utilized across
the continent. These regulatory changes must first be driven by
rigorous scientific efforts to bridge the disconnect that exists
between the identification of African relevant genetic variants,
and the functional validation of their potential clinical impact.
Here we outline why we believe cellular hepatic models would be
a useful tool to validate African relevant gene-drug interactions.

THE ROLE OF THE LIVER IN
PHARMACOVIGILANCE

Hepatocytes, accounting for 60–70% of the total liver cell
population, play a central role in the biotransformation,
intermediary and energetic metabolism of endogenous and
exogenous xenobiotics, including pharmaceuticals (LeCluyse
et al., 2012). Hepatic metabolism of xenobiotics to more polar
and hydrophilic counterparts facilitate their excretion and
prevents toxic accumulation. This specialized detoxification
machinery relies on the selectivity, abundance, expression, and
interplay of sequentially coordinated (Phase 0, I, II and III)
metabolizing enzymes (Zhang and Surapaneni, 2012). The
CYP450 family, is a membrane-associated, hydrophobic
enzyme system, functionally intended to be cyto-protective.
However, CYP450 enzymes are also responsible for forming

pharmaceutically active metabolites of prodrugs, and can
generate toxic reactive intermediary products (Liebler and
Guengerich, 2005).

CYP450 enzymes are of relevance to pharmaceuticals as their
induction/inhibition potential, genetic polymorphisms,
epigenetic regulation and non-genetic host factors such as
gender, age, disease(s), and polypharmacy can contribute to
functional disparities. CYP450 enzymes are responsible for
approximately 80% of hepatic Phase I metabolism, with 12
isoforms being responsible for ~75% of Phase I oxidation
reactions (Evans and Relling, 1999). In a literature survey for
drug metabolism pathways with known CYP450 involvement
(248 drugs), the fraction of clinically used drugs metabolized by
CYP450 isoforms approximates the following: 3A4/5: 30.2%,
2D6: 20%, 2C9: 12.8%, 1A2: 8.9%, 2B6: 7.2%, and 2C19: 6.8%.
However enzyme functionality does not correlate linearly with
hepatic enzyme expression, for example, CYP2D6 accounts for
1.3–4.3% of the hepatic pool and metabolizes 20% of clinically
used drugs, whereas CYP2B6 accounts for 1.7–5.3% while
metabolizing ~7% (Zanger and Schwab, 2013).

The functional consequence of genetic polymorphisms leads to
the classification of pharmacokinetic phenotypes as poor,
intermediate, extensive/normal, and ultra-rapid metabolizers.
Thus, contextualizing major genetic determinants of drug
metabolism in different populations is essential to the provision
of safe and efficacious pharmaceuticals (Belle and Singh, 2008).
Investment in, and implementation of, national genomic-medicine
initiatives is driving transformation in healthcare (Stark et al., 2019).
However, the adoption of pharmacogenetics testing in sub-Saharan
Africa (SSA) faces numerous clinical, scientific, technical, socio-
economic, and governance barriers (Tata et al., 2020).

CLINICAL IMPLICATIONS AND
CHALLENGES OF GENOTYPING
PHARMACOGENES
Given the genetic diversity in Africa, executing precision
medicine strategies could be considered beyond the capabilities
of the healthcare infrastructure, in the predominantly developing
nations which constitute the region. Yet, there are well defined
examples of gene-drug pairs where ADRs could be minimized or
resolved thereby significantly alleviating socio-economic impact.

One example of such a gene-drug pair, for a non-
communicable disease, is that of the breast cancer drug
Tamoxifen and its key liver metabolizing gene. Tamoxifen is a
selective estrogen receptor modulator, which relies on CYP2D6 to
catalyze the formation of primary and secondary metabolites
which have higher anti-estrogenic activity. The CYP2D6 gene
locus is highly polymorphic, with the allelic variant CYP2D6*17
prevalent in 21.7% of the African population [14–34% in African
sub-cohorts (Nemaura et al., 2012; Masimirembwa and Hasler,
2013)]; yet it is nearly absent in Europeans, Asian, and admix
American populations. African individuals harboring
CYP2D6*17 have decreased enzyme expression and activity,
resulting in reduced efficacy and increased ADRs,
consequently promoting the risk of cancer recurrence and
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diminishing the likelihood of positive clinical outcomes (Higgins
and Stearns, 2010).

Another concerning gene-drug pair is that of CYP2B6 and the
antiretroviral Efavirenz. CYP2B6 variants, with a higher
prevalence in the African population, include functionally
deficient haplotypes CYP2B6*6 and CYP2B6*18 (Langmia,
2021). In comparison to European populations, even a small
increase in the prevalence of these variants in the context of SSA
has a significant impact. These poor metabolizers when
administered Efavirenz, which is used as first-line
antiretroviral therapy for adults in South Africa, have elevated
plasma concentrations and decreased clearance which can
precipitate severe neurotoxicities including catatonia, suicidal
ideation, and psychosis (Masimirembwa and Hasler, 2013).
With the prevalence of HIV in European and SSA populations
at 5 and 25% respectively, it is easy to see the positive impact that
a pharmacovigilance-based precision medicine strategy would
have on the disease burden in SSA.

Here we outlined two of the many well-established gene-drug
pairs within the African context. Yet, data from the 1,000
Genomes Project indicates that SSA contains 25% more
genetic diversity than the rest of the world (1000 Genomes
Project Consortium 2015) rendering the absolute requirement
for studies which validate the relationship(s) between host genetic
and pharmaceutical interactions. Furthermore, since genes such
as CYP2D6 and CYP2B6 are responsible for the metabolism of
~27% of clinically approved drugs (Zanger and Schwab, 2013), it
begs the question, how can we model the contribution of these
and other genetic variants to ADRs and in doing so, provide best
treatment outcomes.

The African Pharmacogenomics Consortium (APC) was
launched in 2018, with the mandate to educate, build capacity,
capability, governance, and technologies to promote the use of
pharmacogenomics for the clinical benefit of African patients
(Dandara, 2019). However, pharmacogenetic screening using
commercial genotyping applications have historically been
ineffective due to variants which are exclusive to the African
population not being adequately represented (Dodgen et al.,
2013). Driving impact into the clinical space, by the APC and
other such initiatives, will require sustained contributions from
stakeholders and investment in local population-relevant
biotechnology. Given that pharmacogenomics is fundamental
to precision medicine, and that screening for genetic variants
is not yet considered a point-of-care prior to dispensing drugs
(Tata et al., 2020), Africa needs to invest further in technologies
which directly contribute to stratified healthcare for its people.
With clinical trials incurring the largest financial expenditure of
the drug development pipeline, technologies which provide an
opportunity to screen drugs within a genetically and
physiologically relevant background must be established.

HEPATOCYTE MODELS IN PRECISION
MEDICINE

Safety pharmacology informs risk-benefit relationships by
assessing adverse effect liability and safety margins.

Hepatotoxicity and aberrant xenobiotic metabolism are major
contributors to post-marketing drug withdrawal, failure of
investigational new drugs, and drug inefficacy. Population
risk-benefit ratios, derived from clinical trial data, inform
regulatory decisions despite knowing that patient-level
responses will differ in terms of efficacy and adverse outcome
risk. Importantly, as the contribution of an individual’s genetics
to the risk-benefit relationship is better understood it is possible
that reducing attrition rates during development, using the
current testing paradigms, will not be synonymous with global
improvement in patient outcomes (Ahuja and Sharma, 2014;
Dambach et al., 2016; Atienzar and Nicolas, 2018; Babai et al.,
2018).

Predicting treatment inefficacy and ADRs is becoming more
challenging as our understanding of the impact which inter-
ethnic and inter-individual genetics has on healthcare improves.
Establishing effective strategies to validate the impact of Africa’s
unique population genetics on clinical outcomes is imperative for
improved pharmacovigilance, and the successful implementation
of precision medicine on the African continent. While numerous
preclinical models of xenobiotic metabolism exist, those with the
potential to validate the impact of individual, African-relevant
genetic variants on xenobiotic metabolism are lacking. Preclinical
hepatocyte and liver models include: 1) primary human
hepatocytes (PHHs); 2) subcellular fractions including
microsomes or S9 fractions; 3) cell lines; 4) ex vivo tissue
slices; 5) isolated perfused organs; 6) genetically engineered
cells expressing metabolizing enzymes; 7) cell-free and in silico
approaches; and 8) animal models (Zeilinger et al., 2016;
Yamasaki et al., 2020). However, ethical, economic and
practical considerations dictate the choice of model, with
trade-offs between functional complexity, applicability, cost,
scalability, expedience, and accessibility (Costa et al., 2014).
The focus here will be on the potential use case for in vitro
cell-based models of xenobiotic metabolism.

Primary Human Hepatocytes
PHHs are the “gold standard” or “historical standard” for
modeling xenobiotic metabolism (LeCluyse et al., 2012). PHHs
express all major Phase I and Phase II drug-metabolizing
enzymes and transporter proteins at functional levels, with
their value being exemplified by their application as models of
drug-induced liver injury (Bell et al., 2016), liver metabolism
(Vorrink et al., 2017), and liver diseases; including cholestasis
(Hendriks et al., 2016), steatosis (Kozyra et al., 2018; Prill et al.,
2019) and fibrosis (Pingitore et al., 2019; Hurrell et al., 2020). In
this respect, PHHs have a clear advantage over other cellular
models in terms of the fidelity with which they can recapitulate
liver physiology and function (Ingelman-Sundberg and Lauschke,
2022).

PHHs are however prone to rapidly declining metabolic
function and dedifferentiate, within hours, in traditional
monolayer cultures (Lauschke et al., 2016; Heslop et al., 2017).
The adoption of 3-dimensional (3D) culture methods has largely
overcome this limitation, improving the functional longevity of
PHHs in culture (>21 days) through enhanced mimicry of
endogenous architecture and physiological cues. This has been
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achieved using 3D spheroid models (Bell et al., 2016; Vorrink
et al., 2017), microfluidic liver-on-a-chip systems (Beckwitt et al.,
2018), microscale bioreactors (Freyer et al., 2018), and 3D
bioprinted livers (Otieno et al., 2018).

However, donor age, genetics and pathophysiology, as well as
the impact of cryopreservation on attachment efficiency/viability
and consequently their functional properties, are important
factors to consider when using PHHs (Ölander et al., 2019).
Furthermore, the inability of PHHs to self-renew and their
inaccessibility to the broader research community, present
significant challenges to the scalability and use of PHH
models, especially for research applications which require
population-level interrogation of biological phenotypes (Otieno
et al., 2018; Lauschke et al., 2019).

Immortalized Hepatic Cell Lines
Unlike PHHs, immortalized hepatic cell lines harbor a potentially
unlimited capacity for self-renewal. Numerous cell lines have
been used to model liver and its associated function and
pathologies including; human hepatocellular carcinomas
(HCC) such as HepG2 and HepB3, Fa2N4 cells, bipotent
hepatic progenitors (HepaRG), and HepG2 clonal variants,
HepG2/C3A (Qiu et al., 2015). Due to the ease of use and
broad accessibility, HepG2 cells are among the most
commonly used in vitro hepatocyte model despite exhibiting
reduced basal gene expression of Phase I and Phase II drug-
metabolizing enzymes, as well as functional and phenotypic
responses that are inconsistent with those of PHHs (LeCluyse
et al., 2012; Zhou and Fan, 2019).

HepaRG cells can be differentiated to express numerous
metabolizing enzymes and transporters at levels that are
superior to those of other carcinoma lines (Szabo et al., 2013;
Mayati et al., 2018). They are functionally stable for weeks
following differentiation and like other HCCs have also been
used as a surrogate for PHHs to model various liver pathologies,
hepatotoxicity and xenobiotic metabolism (Andersson et al.,
2012; Mayati et al., 2018). However, the propensity of
oncogenic lines to cumulatively acquire genetic perturbations
and chromosomal rearrangements (e.g. HepG2s show distinct
aneuploidy; Wong, 2000) presents a challenge in their use,
particularly in the extrapolation of clinically relevant assertions
(Zhou and Fan, 2019). These factors can significantly impact the
underlying biology and impartiality of these models in addressing
specific questions, for example, assessing the contribution of
genetic variance to functional phenotypes.

The generation of immortalized PHH lines, with the capacity
for self-renewal, is an interesting prospect for future research
efforts as various immortalization strategies and use cases have
been described (Ramboer et al., 2014, 2015; Collins et al., 2020).
These lines however share some of the disadvantages of their
carcinoma-derived counterparts in terms of diminished and (or)
limited functionality in comparison to PHHs, along with the
negative impact of sustained proliferative cues on genomic
stability (Ramboer et al., 2014, 2015). The generation of
immortalized lines that overexpress specific CYP450 enzymes
and hepatocyte specification factors, alongside conditional
immortalization strategies, have also been explored as

compensatory mechanisms to enhance the robustness of these
models (Ramboer et al., 2015).

Induced Pluripotent Stem Cell Derived
Hepatocyte Models
Reprogramming of somatic cells to induced pluripotent stem cells
(iPSCs) is achieved by the stochastic overexpression of key stem
cell transcription factors (Takahashi et al., 2007). Similar to
differentiation protocols for embryonic stem cells, hepatocyte
differentiation from iPSCs is mimicked using a multistage
cascade via endoderm, anterior definitive endoderm, and
hepatocyte commitment through to hepatocyte-like cells
(HLCs) (Si-Tayeb et al., 2010; Touboul et al., 2010; Hannan
et al., 2013; Mathapati et al., 2016). Failure to express drug
metabolizing enzymes, at levels comparable to PHH (Baxter
et al., 2015; Sampaziotis et al., 2015) is being improved as the
complex mimicry of liver development is better recapitulated by
differentiation protocols which direct cellular fate with greater
fidelity (Ouchi et al., 2019; Raggi et al., 2022; Takeishi et al., 2020).
In addition to these more physiologically relevant models, the
improved benchmarking of liver metabolizing enzymes
compared to both fetal and adult counterparts (Zabulica et al.,
2019), is better defining how HLCs can be appropriately applied
to biological questions.

Similar to PHHs, iPSCs retain the original genetic complement
of the individual from which they were derived, but with the
added advantage of self-renewal. This characteristic further
confers genome engineering capabilities to iPSCs (Hockemeyer
and Jaenisch, 2016; Sanjurjo-Soriano, 2021). Consequently, they
represent a confluence of enabling methodologies in a single
model i.e. an infinite source of cellular material representing an
individual genome amenable to gene editing and capable of
lineage specific differentiation to all three germ layers.

While immortalized cells are also amenable to genome
engineering, the improved chromosomal stability and
physiological relevance of iPSC derived HLCs lends a significant
advantage relevant to the African context. Human iPSC-HLC
models have been used to model the disruption of the ER in α1-
antitrypsin deficiency (Yusa et al., 2011; Segeritz et al., 2018), and
urea cycle defects (Zabulica et al., 2021) by correcting patient-specific
cells using ZFN and CRISPR/Cas technologies respectively, to erase
the disease signature. The success of these bioengineered models,
along with the functional activity of iPSC-HLCs being improved by
scalable 3D technologies such as spheroids (Takebe et al., 2017;
Heidariyan et al., 2018; Rashidi et al., 2018) and liver-on-a-chip
approaches (Kamei et al., 2019), is diversifying their applications in
basic and translational research.

How do These Models Interplay and What is
Their Value in Pharmacovigilance
In recent years, it has been increasingly recognized that
improving preclinical predictions is dependent on the use of
relevant cellular material, modeling native architecture, genetic
background, and the stringency of defining a model’s suitability
to specific functional applications. Disparities exist in access to
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in vitro models from diverse genetic backgrounds, as donor
demographics of PHHs are overwhelmingly in favor of
Caucasian populations ((2 Caucasian, 1 other (Vorrink et al.,
2018); 45 Caucasian, 1 other (Baze et al., 2018); 8 Caucasian
(Hurrell et al., 2020)). Similarly, of the 2,912 globally registered
iPSC lines in the Human Pluripotent Stem Cell Registry (HPSC
registry, 2021) only 35 lines from 18 individuals are recorded to
have potential African ancestry (annotated as black/African-
American/mixed ethnicity), and both HepG2 and HepaRG cell
lines were derived from individuals of Caucasian descendant.
This highlights the lack of genetic diversity within the laboratory
models and remains one of the reasons that bias is still
perpetuated in current scientific literature. These
circumstances highlight the need for the expansion of an
in vitro repertoire of “African” liver models (Moore et al., 2021).

Bioengineered iPSC-HLCs derived from individuals of African
ancestry, could provide an ideal platform to empirically assess the
relationship between individual and cumulative African specific
genetic variants and pharmacokinetic phenotypes within an
isogenic background. While PHHs have an invaluable role to
play in assessing inter-individual variation, and the validation of
pharmacokinetic phenotypes, population stratification metrics
need to be more stringently and singularly assessed. PHHs
may remain the “gold standard” for determining
pharmacokinetic phenotypes, however, access to the number
of clinically relevant PHHs required to mirror the diversity in
Africa is currently not feasible in terms of scalability, accessibility,
and cost. Likewise, while the use of immortalized and carcinoma
derived hepatic cell lines may present specific challenges for

modeling pharmacokinetically relevant genotypes; the
derivation of such lines from individuals of African ancestry
would facilitate a readily accessible way for researchers to reshape
the global underrepresentation of African genetics in science and
improve the transferability of global search findings to an African
relevant context. The necessity for these resources is perhaps
most easily exemplified by the assessment of a few of our own
iPSC lines where we focus on generating lines from donors of
African origin. Here we identified a line which is both a poor
metabolizer for CYP2B6 (CYP2B6*6/*18) as well as a reduced
metabolizer for CYP2D6 (CYP2D6*1/*17), leading to almost
complete ablation of Efavirenz metabolism and aberrant
production of Tamoxifen’s potent bioactive metabolites
respectively. This is not remarkable within the context of the
prevalence in Africa but would be exceptionally rare globally as
iPSC lines are predominantly derived from Caucasians.

ADDRESSING PRECISION MEDICINE
CHALLENGES FACED BY AFRICA

New scientific breakthroughs, and improved access to these
technologies on the African continent, has positioned scientists to
establish platforms which directly impact the burden of clinical
healthcare. Access to enabling technologies including; genome
engineering, iPSC differentiation, and malleable 3D biomimetic
microenvironments, provides synthetic biology with tools to
develop preclinical models with improved capacity for predictive
extrapolation. While individualized treatments might remain an

FIGURE 1 | The potential role of a hepatic modeling platform in guiding pharmacovigilance. Proposal for an integrative in vitro African pharmacovigilance platform
that houses various hepatic models. Such amodeling platform would utilize immortalized hepatic lines, primary human hepatocytes (PHH), and induced pluripotent stem
cells (iPSCs) from donors of African origin. iPSC could be genome engineered to generate panels of hepatocyte-like cells (HLCs) to specifically validate African-relevant
genetic variants against efficacy/ADRs within an isogenic background. This platform would allow these models to be applied independently, interdependently, or
sequentially to recapitulate and validate the xenobiotic metabolism of the liver across the genetic diversity of the African continent. This could then be used to inform
decision-making in the global pharmaceutical industry and within the African regulatory landscape to stratify drug-patient pairing and improve clinical outcomes.
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unrealistic goal in Africa, comprehensive profiling of genetic variants
which impact pharmacokinetic/dynamic profiles would aid in the
implementation of subpopulation stratification and subsequently
improve healthcare strategies on the African continent. With the
proposed landscape, independent, interdependent or sequentially
applied models could be used to provide empirical evidence for the
efficacy or inefficacy of marketed/prescribed drugs in clinical
practice.

To address these challenges, we propose an integrative in vitro
pharmacovigilance platform that houses various hepatic models
that recapitulate the xenobiotic metabolism of the liver to
specifically link African-relevant genetic variants to efficacy/
ADRs. These tools would support pharmacogenetic based
decision-making and reduce the use of inadequate or harmful
pharmaceutical interventions (Figure 1). While the requirement
for pharmacogenetic-based treatment stratification has been
clinically evidenced in African populations for over a decade
(Ngaimisi et al., 2011; Shrif et al., 2011; Masimirembwa and
Hasler, 2012; van der Merwe et al., 2012), few national genomic-
medicine initiatives/studies, or national regulatory guidelines
exist (Radouani et al., 2020) which ingrain pharmacogenetics
into the African clinical landscape. The consequence of which is
that for some populations we will continue to fail in pairing the
right drug, at the right dose, with the right patient to address their
healthcare needs. Successful utilization of a platform that can
address xenobiotic metabolism from multiple vantage points
could lead to intervention in multiple avenues: 1) providing
definitive diagnostic assays from proven genetic variant/drug
relationships, 2) stratification of drug-patient pairing with
improved efficacy outcomes, and 3) providing a model to
evaluate redesigned pharmaceutical compounds.

Our research group, which successfully derived one of the first
human iPSC lines on the African continent, has applied genome
engineering strategies to edit iPSCs, and has been actively engaged in
modeling iPSC-HLCs and other “disease-in-a-dish”models. Further

to this, isolating PHHs from individuals of African descent, on the
continent itself, would represent a significant milestone for the
accessibility and utilization of genetically representative PHHs
within the African research landscape. However, this will require
key stakeholders from multidisciplinary backgrounds to collectively
establish such an Afrocentric resource within the global
pharmacovigilance arena. Solidifying the foundation of an African
hepaticmodeling platformwill require concerted efforts to establish a
new paradigm for preclinical and clinical research collaborations that
collectively drive impact in healthcare. The convergence of a number
of these traditionally siloed technologies and methodologies, within
an established African research infrastructure, would support the
feasibility of a hepaticmodeling platform and serve as a launchpad for
national and ultimately continent-wide initiatives.
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