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Pulmonary hypertension (PH) is a debilitating disease with a poor prognosis. Therapeutic options remain limited despite the
introduction of prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase 5 inhibitors within the last 15
years; these interventions address predominantly the endothelial and vascular dysfunctionS associated with the condition, but
simply delay progression of the disease rather than offer a cure. In an attempt to improve efficacy, emerging approaches have
focused on targeting the pro-proliferative phenotype that underpins the pulmonary vascular remodelling in the lung and
contributes to the impaired circulation and right heart failure. Many novel targets have been investigated and validated in
animal models of PH, including modulation of guanylate cyclases, phosphodiesterases, tyrosine kinases, Rho kinase, bone
morphogenetic proteins signalling, 5-HT, peroxisome proliferator activator receptors and ion channels. In addition, there
is hope that combinations of such treatments, harnessing and optimizing vasodilator and anti-proliferative properties, will
provide a further, possibly synergistic, increase in efficacy; therapies directed at the right heart may also offer an additional
benefit. This overview highlights current therapeutic options, promising new therapies, and provides the rationale for a
combination approach to treat the disease.
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Introduction

Pulmonary hypertension (PH) is a multi-factorial, progres-
sive disease with substantial mortality and morbidity.
Despite recent improvements in treatment, the mortality
associated with PH remains high, with survival at 2 years
from diagnosis approximately 85% (Thenappan et al., 2007;
National Pulmonary Hypertension Centres of the UK and
Ireland, 2008). Unfortunately, there remains no cure and
clinical worsening is merely delayed, not prevented, by
therapy (McLaughlin et al., 2009a,b). However, advances in
the understanding of PH aetiology and pathology have
yielded novel concepts, drug targets and treatment strategies
that may improve the management of patients with the
disease. This overview will provide a brief overview of the
current therapeutic options and highlight some of these
emerging therapeutic approaches which hold promise for

alleviating this debilitating disorder with an extremely poor
prognosis.

Pulmonary arterial hypertension

Since the World Health Organization (WHO) oversaw the
initial categorization of PH into ‘primary’ and ‘secondary’
forms in the early 1970 s, based on the presence or absence of
identifiable causes or risk factors, the clinical classification of
PH has undergone numerous modifications. The goal of the
current organization of PH is to group together different
manifestations of the disease, sharing similarities in patho-
physiological mechanisms, clinical presentation and thera-
peutic approaches (Figure 1; Simonneau et al., 2009).

Pulmonary arterial hypertension (PAH) is a subset of pul-
monary hypertensive syndromes, defined by a resting mean

1. Pulmonary Arterial Hypertension (PAH)

1.1. Idiopathic (IPAH)

1.2. Heritable/familial (FPAH) 

1.2.1. BMPR2

1.2.2. ALK1, Endoglin

1.2.3. Unknown

1.3. Drug and toxin-induced

1.4. Associated with (APAH) 

1.4.1.Conective tissue disorders

1.4.2. HIV infection

1.4.3. Portal hypertension

1.4.4. Congenital heart diseases

1.4.5. Schistosomiasis

1.4.6. Chronic haemolytic anaemia

1.5. Persistent  pulmonary hypertension of the newborn (PPHN)

1’. Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary haemangiomatosis (PCH)

2. Pulmonary hypertension with left heart disease

2.1. Systolic dysfunction

2.2. Diastolic dysfunction

2.3. Valvular disease

3. Pulmonary hypertension due to lung diseases and/or hypoxia

3.1. Chronic obstructive pulmonary disease (COPD)

3.2. Interstitial lung disease

3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern

3.4. Sleep disordered breathing

3.5. Alveolar hyperventilation disorders

3.6. Chronic exposure of high altitude

3.7. Developmental abnormalities

4. Chronic thromboembolic pulmonary hypertension (CTEPH)

5. Pulmonary hypertension with indistinct, multi-factorial mechanisms

5.1. Haematological disorders (e.g. myeloproliferative disorders, splenectomy, haemoglobinopathies)

5.2. Systemic disorders (e.g. sarcoidosis, pulmonary Langerhans cell histocytosis , lymphangiomatosis)

5.3. Metabolic disorders (e.g. glycogen storage disease, Gaucher’s disease, thyroid disorders) 

5.4. Others (e.g. tumoural obstruction, fibrosing mediastinitis, chronic renal failure and dialysis)

Figure 1
Current classification of pulmonary hypertension.
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pulmonary artery pressure (PAP) > 25 mm Hg, pulmonary
vascular resistance (PVR) > 3 Wood units and pulmonary
wedge pressure <15 mmHg, in the absence of other causes of
PH (Archer et al., 1998). PAH is primarily a disease of the
small pulmonary arteries, characterized by vascular prolifera-
tion, remodelling and progressive increases in PVR, leading
ultimately to right ventricular failure and death (Voelkel
et al., 2006). PVR increases are attributed to endothelial dys-
function, resulting in vasoconstriction, remodelling of the
pulmonary vessel wall and thrombosis in situ (Budhiraja
et al., 2004). However, the haemodynamic aberrations
represent only one aspect of PAH, and enhanced prolifera-
tion, decreased apoptosis and a shift to glycolytic metabolism
in pulmonary artery smooth muscle cell fibroblasts and
endothelial cells is now recognized as central to the patho-
genesis of the disease. This pro-proliferative phenotype is
underpinned, at least in a subset of PAH patients, by aberra-
tions in transforming growth factor (TGF)b signalling. This
concept has been brought about by the identification of loss-
of-function mutations in the bone morphogenetic protein
receptor-2 (BMPR2) gene that promotes cell proliferation and
suppress apoptosis in 80% of familial PAH patients (Lane
et al., 2000). BMPR2 mutations are, however, uncommon in
non-familial PAH (10–20%) and even in familial PAH; disease
penetrance is low (only 25% of carriers develop the disease;
Newman et al., 2004). Single nucleotide polymorphisms
(SNPs) in ion channels (e.g. Kv1.5, TRPC6) and transporter
genes (SERT; molecular target nomenclature follows Alex-
ander et al., 2009) can also predispose to PAH and a multi-hit
hypothesis, a complex interaction between genes and envi-
ronment, has been proposed to explain the low disease pen-
etrance of genetic mutations in PAH [Figure 2; (Yuan and
Rubin, 2005; Newman et al., 2008)].

Current therapy

To date, clinical evaluation of novel therapies for PH has been
confined primarily to the PAH subset; there is only limited
randomized clinical trial evidence for other forms of PH, for
example, associated with lung disease and chronic throm-
boembolic PH (CTEPH), and research to establish effective-
ness of these therapies across PH classes is needed.
Nonetheless, advances made in the treatment of PAH are also
likely to be effective, to a greater or lesser extent, in patients
with aetiologically distinct forms of PH.

Many PH patients receive a background therapy of war-
farin, diuretics, digoxin and oxygen (McLaughlin et al.,
2009a,b). Anti-coagulant therapy with warfarin appears to
have beneficial effects on survival, at least based on findings
of observational studies (Johnson et al., 2006), while diuretics
limit oedema, and digoxin and oxygen provide symptomatic
relief. Frontline therapy aims at enhancing vasodilatation,
predominantly by inhibiting the bioactivity of endothelin-1
(ET-1), a potent endothelium-derived vasoconstrictor, or by
augmenting the vasodilator properties of nitric oxide (NO)
and prostacyclin (PGI2).

Ca2+ channel blockers
L-type Ca2+ channel blockers (CCB), such as. nifedipine, dil-
tiazem or amlodipine, can be effective in patients that

respond to a one-time vasodilator challenge with a >20% fall
in PAP and no decline in cardiac output (Rich and Brundage,
1987). Notably, only 10–15% of patients with iPAH meet
these criteria and only half of those will receive sustained
clinical and haemodynamic benefit. Patients who respond to
CCB therapy, however, have an excellent 5 year survival rate
(94%) as compared with those that do not respond [55%
survival; (Sitbon et al., 2005)].

Prostacyclin analogues
PGI2 and thromboxane A2 (TXA2) are arachidonic acid
metabolites with opposing vasoactivity. In PAH, the balance
is shifted towards vasoconstrictor, pro-proliferative TXA2

from vasodilator, anti-proliferative PGI2 (Christman et al.,
1992; Tuder et al., 1999). This relative impairment in PGI2-
dependent signalling in PAH leads to the development of
analogues that would mimic the cytoprotective activity of
this prostanoid and restore the balance between PGI2 and
TXA2. The beneficial activity of prostacyclin (analogues) in
PH is presumed to be via activation of the Gs-coupled IP
receptor, despite the fact that these compounds can activate
other prostanoid receptors (Narumiya et al., 1999); however,
recent evidence also supports a role for peroxisome prolifera-
tor activated receptors (PPARs; see below) in the underlying
mechanism.

Epoprostenol was the first treatment targeted directly at
PAH pathology, and has a proven survival advantage (Rubin
et al., 1990; Barst et al., 1996; Badesch et al., 2009). Its poor
stability, cost and the need for parenteral infusion, however,
have led to the development of more stable analogues with
more favourable means of administration and pharmacoki-
netic profiles; iloprost, trepostinil and beraprost are all used
in the clinical management of PAH patients.

Endothelin receptor antagonists (ERAs)
Plasma levels of ET-1, a potent vasoconstrictor and mitogenic
agent, are significantly elevated and correlate with disease
severity in PAH (Rubens et al., 2001). The action of ET-1 is
complex and mediated via two cell-surface, G-protein-
coupled receptors; ETA receptors on vascular smooth muscle
cells cause vasoconstriction and proliferation, while ETB

receptors on endothelial cells stimulate NO and prostacyclin
release, but on vascular smooth muscle cells induce vasocon-
striction and mitogenesis. Endothelin receptor antagonists
such as bosentan (dual ETA/ETB), ambrisentan (ETA > ETB) and
sitaxsentan (ET1A > > ETB) have been shown to improve pul-
monary haemodynamics, exercise capacity and reduce PAH
symptoms (Williamson et al., 2000; Channick et al., 2001;
Barst et al., 2004; Galie et al., 2005a); these drugs are of clini-
cal benefit, particularly in PAH associated with connective
tissue disease where they are often used as the initial treat-
ment option (Denton et al., 2008). However, a positive sur-
vival effect, and relative comparisons between ET-1 receptor
selective agents (selective ETA antagonists should possess a
theoretical advantage in not preventing the production of
NO via ETB receptor activation on endothelial cells) are still
lacking. Macitentan, a novel ETA/ETB receptor antagonist, is
currently in a phase III trial in PAH (SERAPHIN), after pro-
ducing a promising haemodynamic profile in a smaller Phase
II trial in hypertensive patients (Raja, 2010).

BJPEmerging therapies for pulmonary hypertension
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PDE5 inhibitors
PDEs are homologous enzymes that facilitate the break-
down of the second messengers, cAMP and/or cGMP
(Bender and Beavo, 2006). There are 11 distinct PDE fami-
lies, with each typically consisting of several isoforms
and/or splice variants. Molecules blocking the activity of
this family of enzymes, collectively known as PDE inhibi-
tors, have been a major focus of drug development, particu-
larly for cardiovascular disease. Indeed, in the vasculature,
PDE inhibitors exert several favourable effects including
vasodilatation, inhibition of smooth muscle proliferation
and prevention of platelet aggregation (Bender and Beavo,
2006).

Blockade of PDE5, which metabolizes cGMP exclusively,
lowers systemic and pulmonary artery pressure under physi-
ological conditions in animals and humans (Jackson et al.,
1999; Madhani et al., 2006). Moreover, in animal models and
patients with PH, PDE5 inhibitors cause larger reductions in
pulmonary than systemic vascular resistance, thereby exhib-
iting relative selectivity for the pulmonary vasculature
(Klinger et al., 2006; Baliga et al., 2008). In accord, PDE5 is
found in abundance in the pulmonary vasculature and both
expression and activity are elevated in PAH (Murray et al.,
2002; Sebkhi et al., 2003). This favourable vasoactive profile
of PDE5 inhibitors has culminated in the development and
approval of sildenafil as a first-line therapy for PH; the drug
elicits an improvement in several indices of disease severity

Figure 2
Schematic representation of the current and emerging therapeutic targets for pulmonary hypertension outlined in this review. NP, natriuretic
peptide; NPR, natriuretic peptide receptor; PGI2, prostacyclin; ET-1, endothelin-1; BMPR, bone morphogenetic protein receptor; Kv, voltage-
sensitive potassium channel; KATP, ATP-sensitive potassium channel; TRPC6, transient receptor potential channel C6; VOCC, voltage operated
calcium channel; SERT, 5-HT transporter; NEP, neutral endopeptidase; NEPi, NEP inhibitor; BH4, tetrahydrobiopterin; eNOS, endothelial NO
synthase; TKR, tyrosine kinase receptor; ROCK, Rho-associated kinase; sGC, soluble guanylate cyclase; ERA, endothelin receptor antagonist; PDGF,
platelet derived growth factor; FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; AC, adenylate cyclase; IP, prostacyclin
receptor; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide-3-kinase; PKC, protein kinase C; Src, Src kinase; JAK/STAT, Janus
kinase/signal transducer and activator of transcription; PDE, phosphodiesterase; PDEi, PDE inhibitor.
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including pulmonary artery pressure, cardiac index, exercise
capacity and WHO functional class (Galie et al., 2005b).
Sildenafil also appears to produce an overall beneficial effect
on survival (Galie et al., 2009b). Tadalafil, an analogous PDE5
inhibitor with a longer half-life, has also been recently
licensed for the treatment of PAH (Galie et al., 2009a). A third
PDE5 inhibitor, vardenafil, is currently undergoing Phase III
evaluation for the same indication.

Inhaled NO
The inhalation of exogenous NO gas decreases PAP and
improves oxygenation in diverse forms of PAH, and is par-
ticularly effective in neonates suffering from persistent pul-
monary hypertension (PPHN; Roberts et al., 1992; Macrae
et al., 2004; Creagh-Brown et al., 2009). However, long-term
therapy with inhaled NO is complicated by the instability of
NO gas, concerns regarding the development of methaemo-
globinaemia (as NO binds avidly to, and oxidizes, the haem
moiety) and marked rebound pulmonary hypertension fol-
lowing cessation of therapy (Ichinose et al., 2004).

Novel therapeutic strategies

cGMP signalling
PDE5 inhibitors are an undoubted therapeutic advance, but
their effects on PAP are small (approximately 5 mm Hg reduc-
tion). A significant cohort of PH patients does not respond to
sildenafil treatment and in many individuals indices of
disease severity do not differ from placebo approximately 12
months after initiation of therapy. Moreover, in patients who
respond well to sildenafil, there is often a dose-dependent
systemic hypotension that limits the beneficial effects of the
drug. There is no evidence to suggest that the newer PDE5
inhibitors have a substantially greater effect than sildenafil,
or that sildenafil resistant patients respond to other PDE5
inhibitors. Thus, there remains considerable opportunity to
optimize interventions targeting cGMP-dependent signalling
to improve the treatment of PH.

In PH, pulmonary vascular cGMP levels are decreased,
either through impairment of NO bioavailability, guanylyl
cyclase inactivation [enzymes that generate cGMP in
response to NO and natriuretic peptides (Hobbs, 1997; Ahlu-
walia et al., 2004; Potter et al., 2006) or enhanced cGMP deg-
radation by PDEs (Crawley et al., 1992; Zhao et al., 1992;
Steudel et al., 1997; Archer et al., 1998). Accordingly, thera-
peutics targeted at augmenting cGMP levels have been shown
to have therapeutic value in PH, either in animal models or
patients with the disease.

NO donors. Attempts have been made to bypass the short
half-life and indiscriminate chemical reactivity of (inhaled)
NO, by developing more stable NO donors (e.g. NONOates),
which spontaneously release defined amounts of NO when
exposed to physiological pH. Daily nebulization with NON-
Oates (e.g. diethylenetriamineNONOate; DEA-NO) has
shown to be effective in animal models of PH (Vanderford
et al., 1994; Hampl et al., 1996). Similarly, older NO donors
such as glyceryl trinitrate administered by inhalation have
been shown to be effective in reducing PAP in small clinical

samples (Goyal et al., 2006). Thus, delivery of NO via more
sophisticated donor drugs may still prove to be efficacious in
PH patients. Nonetheless, concerns regarding the lack of pul-
monary selectivity, cGMP-independent cytotoxic effects and
rebound pulmonary hypertension remain relevant.

Endothelial NO synthase augmentation. A further mechanism
that may be exploited to treat PH is to improve endogenous
NO bioavailability by augmenting the activity of endothelial
NO synthase (eNOS). Expression and activity of eNOS, and
the availability of a key redox co-factor, tetrahydrobiopterin
(BH4), are largely reduced in PH (Giaid and Saleh, 1995; Shaul
et al., 1997; Le Cras et al., 1998; Khoo et al., 2005), and mice
with gene deletions in these systems are predisposed to the
disease (Fagan et al., 1999; Nandi et al., 2005; Leiper et al.,
2007). However, under some circumstances, eNOS may be
hyperactive in the pulmonary circulation in PH and, as a
result of inadequate supply of BH4, the enzyme uncouples to
form superoxide rather than NO (Zhao et al., 2009); this has
the doubly detrimental effect of scavenging NO and produc-
ing direct cytotoxicity.

Several approaches focusing on eNOS/BH4 have been
evaluated for efficacy in PH. First, supplementation with BH4

itself, or more promisingly an orally active, more stable form
(6R-BH4), is effective in augmenting endogenous BH4 levels,
restoring eNOS expression and reversing systemic hyperten-
sion (Landmesser et al., 2003); similar effects may be achiev-
able in PH. Second, the ‘eNOS coupling agent’, cicletanine,
has shown modest beneficial effects in animal models of PH
and humans with the disease (Jin et al., 1992; Saadjian et al.,
1998), presumably by coordinating eNOS activity with BH4

supply/binding and favouring the generation of NO over
superoxide (although increasing the endogenous formation
of PGI2 and natriuretic peptides may also underlie these posi-
tive effects). Cicletanine is currently under phase II evalua-
tion in patients with PAH. Thirdly, eNOS transcription
enhancers may prove advantageous in PH, as they have
shown in animal models to reverse the vascular remodelling
and cardiac hypertrophy associated with left-sided heart
failure (Westermann et al., 2009), ischaemia-reperfusion
injury [i.e. myocardial infarction (Sasaki et al., 2006; Frantz
et al., 2009)], and atherosclerosis (Wohlfart et al., 2008).
Finally, the Pulmonary Hypertension and Cell Therapy trial,
currently recruiting, is designed to test the safety and toler-
ability of autologous progenitor cell-based gene delivery of
human eNOS in patients with severe PAH. This study may
pave the way for more cell-based therapies for PAH, particu-
larly because endothelial progenitor cells are thought to play
a role in the pathogenesis of the disease (Toshner et al., 2009),
are a predictive biomarker and a novel therapeutic target (Yip
et al., 2008; Sun et al., 2009; Toshner et al., 2009; Fadini et al.,
2010).

Soluble GC activators. In order to harness the beneficial,
cytoprotective effects of cGMP while circumventing the
potentially detrimental cGMP-independent effects of NO,
the development of directly acting sGC ‘agonists’ has pro-
gressed in rapid fashion. Soluble GC appears a good target
in PH as the expression and activity of the enzyme is
up-regulated in order to compensate for decreased NO bio-
availability (Black et al., 2001; Schermuly et al., 2008; de
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Frutos et al., 2009) and genetic deletion of the enzyme results
in an exaggerated response to hypoxia-induced PH (Vermeer-
sch et al., 2007).

Two different classes of sGC ‘agonist’ have been devel-
oped. First, sGC ‘stimulators’ or ‘haem-dependent activators’
(e.g. BAY 41-2272, BAY 41-8543, BAY 63-2521, riociguat)
which stimulate the native Fe2+-sGC and synergize with NO
(Stasch et al., 2002a,b). Second, sGC ‘activators’ or ‘haem-
independent activators’ (e.g. BAY 58-2667, cinaciguat;
HMR-1766, ataciguat) which activate the proposed Fe3+ or
haem-free form of the enzyme and are additive with NO
(Belik, 2009; Schmidt et al., 2009; Stasch & Hobbs, 2009).

Both classes of drugs have been shown to have favourable
effects on experimental PH (Dumitrascu et al., 2006; Chester
et al., 2009; Weissmann et al., 2009). Riociguat, an orally
active sGC ‘stimulator’ is currently in Phase III trials for
determination of clinical effectiveness in idiopathic PAH and
CTEPH (Ghofrani et al., 2010). However, a limitation of this
sGC-centric strategy may be its lack of pulmonary selectivity,
as shown by the systemic hypotension observed in earlier
trials (Grimminger et al., 2009). This is perhaps not unex-
pected. Soluble GC ‘stimulators’ synergize with NO and will
therefore augment NO-dependent dilatation in all vascular
beds. Moreover, in PH the bioavailability of NO in the pul-
monary vasculature is known to be impaired, entailing that
this synergy will predominate in the systemic, rather than
pulmonary circulation. Nonetheless, these agents have exhib-
ited a favourable profile in Phase II trials and offer a novel
approach to treat PH; this therapeutic value may increase
with inhalation or combination therapy to target the sGC
‘stimulators’ to the pulmonary circulation (Evgenov et al.,
2007). In addition, Phase III evaluation of sGC ‘activators’
(e.g. cinaciguat) that preferentially trigger the oxidized form
of the enzyme, thought to be more prominent in diseased
vasculature, may provide a more pulmonary-centred thera-
peutic approach in PH. Indeed, cinaciguat has already exhib-
ited a favourable profile in patients with left-sided heart
failure (Lapp et al., 2009).

Natriuretic peptides. Atrial natriuretic peptide and brain
natriuretic peptide are synthesized by and released from
cardiac atrial and ventricular tissue, respectively, in response
to stretch and elicit falls in blood volume and blood pressure
(Ahluwalia et al., 2004; Potter et al., 2006). A third member of
the family, C-type natriuretic peptide, is released from the
vascular endothelium and regulates local blood flow in a
paracrine fashion (Ahluwalia and Hobbs, 2005). Each natri-
uretic peptide acts on specific cell-surface natriuretic peptide
receptors (NPR) in the vasculature which possess guanylate
cyclase functionality. The increase in tissue cGMP in response
to NPR activation brings about several cytoprotective effects
including natriuresis, vasodilatation, and anti-hypertrophic
and anti-proliferative activity [particularly in the heart
(Oliver et al., 1997)].

Genetic deletion of NPRs is associated with PH (Klinger
et al., 1999; Zhao et al., 1999; Kuhn, 2004), while administra-
tion of exogenous natriuretic peptides has been shown to
reduce hypoxia-induced PH (Klinger et al., 1999); such obser-
vations provide the rationale for therapeutic modulation of
natriuretic peptide signalling in PH. However, the short
plasma half-life and negligible oral bioavailability make natri-

uretic peptides poor candidates for drug therapy. An alterna-
tive strategy is to increase endogenous natriuretic peptide
levels by inhibiting the enzyme neutral endopeptidase (NEP),
a major degradative pathway for natriuretic peptides (and
other bioactive peptides) in the circulation (Okolicany et al.,
1992). This strategy has been proven to be effective in animal
models both as monotherapy (Klinger et al., 1993) and using
the NEP inhibitor racecadotril in combination with a PDE5
inhibitor (Baliga et al., 2008). Indeed, our data, both in vitro
and in vivo, suggest that PDE5 is pivotal in terminating the
cyclic GMP-dependent signalling in response to natriuretic
peptides in the pulmonary vasculature, whereas other PDE
isozymes regulate the vasorelaxant activity of natriuretic pep-
tides in the systemic circulation (Baliga et al., 2008). There-
fore, by inhibiting PDE5 in PH, in which circulating
natriuretic peptide concentrations are raised, it is possible to
target the pulmonary vasculature and reduce pulmonary
pressure. These observations explain the mechanism under-
pinning the pulmonary selectivity of PDE5 inhibitors and
suggest that in PH, the release of natriuretic peptides repre-
sents a cytoprotective mechanism that reduces disease pro-
gression. This thesis is in accord with studies reporting
increased expression and activity of PDE5 in the pulmonary
circulation of patients with PH (Wharton et al., 2005), that
the beneficial effects of PDE5 inhibitors in models of PH are
blunted in NPR-A knockout mice (Zhao et al., 2003) and that,
in patients with PH and animal models of the disease, acute
infusion of natriuretic peptides in the presence of sildenafil
synergistically reduces pulmonary artery pressure (Preston
et al., 2004; Klinger et al., 2006). Thus, the therapeutic poten-
tial of manipulating natriuretic peptide bioactivity to reverse
the haemodynamic abnormalities associated with PH holds
great promise. This is true not only for the haemodynamic
dysfunction, but also for attenuating the pulmonary vascular
re-modelling that also characterises the disease. Natriuretic
peptides inhibit pulmonary vascular smooth muscle prolif-
eration and TGFb-induced extracellular matrix expression in
vitro, and prevent structural changes in vivo in animal models
of PH (Jin et al., 1990; Klinger et al., 1998; 1999; Chen et al.,
2006; Li et al., 2007).

The strategy of targeting neutral endopeptidase for the
treatment of PH may also have the added benefit of slowing
the breakdown of other protective peptides that will contrib-
ute to efficacy, including adrenomedullin and vasoactive
intestinal peptide; both have been shown to be up-regulated
in PH and to reverse disease progression in animal models
(Shimokubo et al., 1995; Gunaydin et al., 2002; Matsui et al.,
2004; Qi et al., 2007; Said et al., 2007). However, NEP is also
important in the metabolism of ET-1, which may offset some
of its beneficial activity.

Other PDE inhibitors. PDE5 has received considerable atten-
tion in the context of PH due to the success of sildenafil and
other selective inhibitors. However, other isozymes (e.g. PDE1
and PDE3) are also up-regulated in PAH, and might be suit-
able targets for therapy.

PDE 1 and PDE 3 (and splice-variants thereof) have been
implicated in pulmonary vascular homeostasis and PH
(Bender and Beavo, 2006). These enzymes hydrolyse cGMP
and cAMP, although the PDE1A/1B splice variants have a
higher affinity for cGMP (Bender and Beavo, 2006). PDE1A
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and PDE1C expression and activity are up-regulated in
animal models of PH and in tissues from patients with the
disease (Evgenov et al., 2006; Murray et al., 2007; Schermuly
et al., 2007). Moreover, the selective PDE1 inhibitor,
8-methoxymethyl-isobutyl-1-methyl xanthine, reduces pro-
liferation of human vascular smooth muscle cells (Rybalkin
et al., 2002) and reverses the haemodynamic and morpho-
logical aberrations associated with monocrotaline and
hypoxia-induced PH (Schermuly et al., 2007).

PDE 3A/3B expression and activity are also enhanced in
PH (Murray et al., 2002), and the presence of this ‘cGMP-
inhibited’ PDE might underlie the synergistic cytoprotective
activity of NO and prostacyclin in PH, and explain the benefit
of co-administration of therapies promoting these pathways
concomitantly [i.e. sildenafil and iloprost (Wilkens
et al., 2001)]. Indeed, a dual PDE3/4 inhibitor reverses
monocrotaline-induced PH and synergizes with iloprost
(Schermuly et al., 2004; Dony et al., 2008). The PDE3 inhibi-
tor milrinone is currently being investigated for safety and
efficacy in treatment of PPHN, but despite this potential, the
increased mortality associated with the use of PDE3 inhibi-
tors in (left) heart failure (Amsallem et al., 2005) has limited
the therapeutic enthusiasm for this approach in PH.

Anti-proliferative pathways

PAH is characterised by a shift in the proliferative/apoptotic
balance and enhanced glycolytic metabolism (Mandegar
et al., 2004). Several growth factors, including platelet derived
growth factor (PDGF), fibroblast growth factor 2, epidermal
growth factor, vascular endothelial growth factor (VEGF) and,
more recently, the non-canonical Wnt pathway have been
implicated in the abnormal proliferation in PH (Oka et al.,
2007b; Hassoun, 2009; Izikki et al., 2009). Levels of PDGF and
its tyrosine kinase receptor PDGFR, are elevated in PAH
patient lung samples (Perros et al., 2008) and HIV-associated
PH samples (Humbert et al., 1998). VEGF levels are also
increased in plexiform lesions in PAH patients (Cool et al.,
1999). These growth factors act as potent mitogens and
chemoattractants, and through their transmembrane
tyrosine kinase receptor pathways activate major proliferative
signalling pathways such as the ras-mitogen activated protein
kinase (MAPK) cascade, resulting in proliferation, migration
and resistance to apoptosis (Hassoun, 2009). Consequently,
this has led to increased interest in translation of anti-
proliferative strategies, often originally developed for cancer
therapy, to PAH patients.

Tyrosine kinase inhibitors
Imatinib (Gleevac) was initially developed as an anti-cancer
therapy, predominantly chronic myelogenous leukemia, via
inhibition of the oncogenic tyrosine kinase Bcr-Alb, but was
later found to block the PDGFR and improve experimental
PH (Schermuly et al., 2005; Klein et al., 2008). Several case
studies of end-stage PH patients also suggest that treatment
with imatinib can improve clinical conditions (Ghofrani
et al., 2005; Patterson et al., 2006; Souza et al., 2006; Tapper
et al., 2009; Ten et al., 2009; Chhina et al., 2010). This has led
to a Phase III randomized, placebo-controlled clinical trial of

imatinib in PAH (IMPRES), from which results are eagerly
awaited. Nonetheless, there is some concern that long-term
of imatinib could be associated with left ventricular dysfunc-
tion and heart failure (Kerkela et al., 2006). Accordingly,
other tyrosine kinase inhibitors have been developed and
evaluated. Two such molecules are sunitinib and sorafenib,
multi-kinase inhibitors, blocking PDGF, VEGF and other pro-
proliferative signalling pathways. These molecules are cur-
rently being evaluated for safety and tolerability in Phase I,
and are undoubtedly efficacious in animal models of PH
(Klein et al., 2008; Gomberg-Maitland et al., 2010). However,
it remains to be seen if such molecules are also associated
with cardiotoxicity.

Several further molecules, often originally developed as
anti-cancer agents, have also been investigated in animal
models of PH, with positive outcomes, and are likely to lead
to clinical evaluation in patients with the disease, particularly
those molecules that are already licensed medicines. These
include cell cycle inhibitors [e.g. rapamycin (Paddenberg
et al., 2007)], anti-apoptotic drugs [e.g. survivin inhibitors
(McMurtry et al., 2005)] and elastase inhibitors (Merklinger
et al., 2005).

Rho kinase inhibitors
The Rho kinase pathway participates in vasoconstriction elic-
ited by numerous agents involved in PAH, including 5-HT,
ET-1 and TXA2 (Oka et al., 2008). Rho is a small monomeric
GTPase which activates Rho-associated kinase (ROCK) which
in turn phosphorylates and inhibits myosin light chain phos-
phatase, which leads to prolonged, refractory vasoconstric-
tion. Rho and ROCK also mediate smooth muscle cell
proliferation, in a 5-HT-BMPR dependent pathway, and have
been found to be elevated in smooth muscle cells from PAH
patients (Do e Z et al., 2009). Rho-kinase inhibitors have been
shown to reduce PH in many animal models, including the
monocrotaline rat, fawn hooded rats and chronic hypoxia/
SUGEN exposure (Oka et al., 2007a; Mouchaers et al., 2010).
In humans, Rho-kinase inhibition with fasudil shows modest,
immediate reductions in PVR, but this inhibitor of Rho-
kinase has to be administered by nebulization, that is,
directly into the lungs, to avoid systemic hypotension (Ish-
ikura et al., 2006; Fujita et al., 2010).

Bone morphogenetic protein
signalling pathway
The discovery of the association between mutations in
BMPR2 and PAH has led to increased interest in the BMP
signalling pathway as a therapeutic target (Lane et al., 2000).
BMPR2 is a constitutively active serine-threonine kinase and
a member of the TGFb superfamily. In response to ligand,
BMPR2 heterodimerises with one of four BMPR1 receptors
(BMPR1A, BMPR1B, Alk1, Alk2), and phosphorylates the
internal domain, triggering the cytosolic Smad protein sig-
nalling cascade (Yang et al., 2005). Activation of the MAPK
system [i.e. p38, extracellular signal regulated kinase 1/2 (ERK
1 /2) or Jun – N-terminal kinase] may also be an underlying
mechanism. While BMPR2 mutations are relatively rare in
non-familial PAH, dysfunctional BMPR signalling is often
seen in PAH. For example, the expression of BMPR2 protein is
markedly reduced in the lungs of patients with idiopathic
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PAH with no detectable mutation in BMPR2 (Atkinson et al.,
2002), and cells isolated from PAH patients show altered
response to BMP signalling (Morrell et al., 2001). Reduced
expression of BMPR2 is also found in the lungs of rats with
monocrotaline-induced pulmonary hypertension (Morty
et al., 2007)

Results of BMPR2-targetted therapy in animal models
have been mixed. Adenoviral gene delivery of BMPR2 failed
to reverse monocrotaline-induced PH (McMurtry et al., 2007),
but intravascular administration of BMPR2 with an endothe-
lial targeted vector in hypoxic rats produced better results
(Reynolds et al., 2007). In humans, BMPR2 mutations are
thought to result in direct inactivation of the receptor or
impaired trafficking of the receptor to the cell surface. Rescue
strategies using viral vectors or chemical chaperones to over-
come these aberrations are currently being investigated
(Sobolewski et al., 2008). Moreover, as pulmonary artery
smooth muscle cells from familial PAH patients demonstrate
increased sensitivity to TGFb signalling, molecules aimed at
blocking this pro-proliferative transduction system may be of
therapeutic utility (Morrell et al., 2001).

Peroxisome proliferator activated receptors
Recent observations suggest peroxisome proliferator acti-
vated receptors (PPARs) as another potential therapeutic
target in PH. PPARg is a downstream target of BMPR signalling
and mediates the inhibitory effect of BMP on PGDF-induced
smooth muscle cell proliferation (Hansmann and Zamanian,
2009) and PPARg null mice develop PAH (Guignabert et al.,
2009). Moreover, PPARg agonists have direct anti-
inflammatory, anti-proliferative and pro-apoptotic effects
(Hansmann et al., 2007; 2008). Rosiglitazone, a PPARg
agonist, is effective in reducing the PH produced in ApoE-/-

mice and reduces right ventricular hypertrophy and vascular
remodelling in hypoxia-induced PH (Crossno et al., 2007;
Nisbet et al., 2007). PPARs may also underpin some of the
beneficial effects of prostacyclin analogues in PH (Ali et al.,
2006; Falcetti et al., 2010; Harrington et al., 2010).

5-HT signalling blockers

The 5-HT (serotonin) is a potent pulmonary vasoconstrictor.
It was first implicated in the pathogenesis of PAH after out-
breaks of the disease in patients using the anorexigenic drugs,
aminorex and dexfenfluramine, appetite suppressants that
inhibit 5-HT uptake (Dempsie et al., 2008). 5-HT is synthe-
sized in pulmonary artery endothelial cells by the enzyme
tryptophan hydroxylase 1 (TPH1) and then then acts at one
of several 5-HT receptor subtypes (primarily 5-HT1B, 5-HT2A

and 5-HT2B) and through the 5-HT transporter (SERT), to
mediate constriction and proliferation of pulmonary artery
smooth muscle cells and fibroblasts (Welsh et al., 2004). This
results in a thickening of the medial layer and a narrowing of
the lumen of the pulmonary artery and contributes to the
pulmonary vascular remodelling associated with PAH. Down-
stream signalling molecules which play a role in 5-HT-
signalling include ROCK, p38 and ERK1/2. Plasma 5-HT levels
are elevated in PAH, as are SERT, 5-HT1B receptor and TPH1
expression in pulmonary artery smooth muscle and endot-

helial cells from PAH patients (MacLean and Dempsie, 2009).
In addition, endothelial cells from PAH patients generate
more 5-HT and proliferate more in response to 5-HT than
control cells (Eddahibi et al., 2001). Experimentally, the inhi-
bition of SERT prevents 5-HT-dependent proliferation in cells,
and reduces hypoxic PH in rodent models (Guignabert et al.,
2005; Song et al., 2005; Zhai et al., 2009; Zhu et al., 2009).
There is also evidence to suggest that 5-HT may interact with
BMPR2 to provide a ‘second hit’ risk factor for PAH (Long
et al., 2006; Willers et al., 2006). A single nucleotide polymor-
phism in the SERT gene has been identified in PAH patients
that appears to associate with higher SERT expression and
higher mean PAP, though this link has not been corroborated
in subsequent studies (Eddahibi et al., 2003; Machado et al.,
2006; Willers et al., 2006; Roberts et al., 2009). At present, a
number of drugs modifying 5-HT signalling are under clinical
evaluation for the treatment of PH, including terguride
(5-HT2A and 5-HT2B receptor antagonist), PRX-08066 (selective
5-HT2B receptor antagonist) and escilatorpram (selective 5-HT
re-uptake inhibitor, SSRI).

Renin-angiotensin-aldosterone axis

The renin-angiotensin-aldosterone system (RAAS) is up-
regulated in PAH (Cargill and Lipworth, 1995) and steps in
the RAAS system cascade appear to be viable therapeutic
targets in PH. Indeed, the ACE inhibitor captopril was evalu-
ated almost 20 years ago in PAH patients with some success
(Alpert et al., 1992). However, the development of more selec-
tive PAH therapies (i.e. specific to the pulmonary vasculature)
has diverted attention from the RAAS as a viable target.
Recently, the discovery that angiotensin-converting enzyme
2 (ACE2), a member of the vasoprotective arm of the RAAS, is
up-regulated in both experimental models of PH and human
PAH has refocused attention on this system (Ferreira et al.,
2009). ACE2 plays a regulatory role in the lung and activation
of endogenous ACE2 shifts the balance from the vasocon-
strictor, proliferative path (ACE/Angiotensin II/AT1 receptor)
to the vasoprotective anti-mitogenic path (ACE2/
Angiotensin1-7/Mas) of the RAAS. Over-expression of ACE2
(by lentiviral gene delivery) or an ACE2 activator, XNT,
reverses experimental PH (Ferreira et al., 2009; Shenoy et al.,
2010).

Statins

Statins offer a novel approach to the treatment of PAH. This
class of drugs have long been known to suppress vascular
inflammation and vascular smooth muscle cell proliferation
through a variety of mechanisms. In addition to lowering
cholesterol via inhibition of 3-hydroxyl-3-methyl glutaryl
CoA reductase, statins have been shown to have anti-
proliferative, anti-thrombotic, anti-inflammatory and anti-
oxidant effects, some of which may be secondary to
cholesterol lowering. Statins, in particular simvastatin, have
been reported to attenuate the development of PH in a
number of experimental animal models (Nishimura et al.,
2002; Girgis et al., 2003). Very recently, results from a double-

BJP RS Baliga et al.

132 British Journal of Pharmacology (2011) 163 125–140



blind, randomized, placebo-controlled study of the effects of
simvastatin added to optimized conventional care produced a
small and transient early reduction in right ventricular mass
and NT-proBNP levels in patients with PAH, but this was not
sustained over 12 months (Wilkins et al., 2010).

Ion channels

The haemodynamic dysfunction in PH patients also stems
from abnormalities in the activity of ion channels that
physiologically regulate local blood flow in the pulmonary
circulation. For example, down-regulation of voltage-gated
potassium channels, principally Kv1.5, appears to be a
common feature of animal models of PH and in humans with
the disease (Yuan et al., 1998; Pozeg et al., 2003). Targeting
this potassium channel in PH is attractive because the facili-
tation of K+ flux through this pore causes hyperpolarization,
vasodilatation, and is also thought to promote apoptosis. The
expression of Kv1.5 is inversely related to pulmonary vessel
size, suggesting that therapy would concentrate on the small
pulmonary arteries and thereby exert the greatest effect on
pulmonary vascular resistance (Pozeg et al., 2003). More
recently, interest has arisen in the transient receptor potential
(TRP) channel family. Experimental evidence suggests that
TRPC6 expression and activity is up-regulated in PH and this
leads to excessive Ca2+ entry into (pulmonary) vascular
smooth muscle cells and vasoconstriction (Yu et al., 2004), in
addition to PDGF-mediated proliferation (Schermuly et al.,
2005). Moreover, an SNP in the TRPC6 promoter appears to
associate with PH (Yu et al., 2009). Indeed, reversal of TRPC6
up-regulation may represent an added benefit of sildenafil
therapy in PH (Lu et al., 2010). Finally, KATP channel activators
such as iptakalim may have therapeutic utility in PH by
producing pulmonary vasodilatation and preventing
hypoxia- and ET-1-mediated pulmonary vascular smooth
muscle cell proliferation (Xie et al., 2004; Zhu et al., 2008).

Cardiac-targeted therapy:
b-adrenoceptor blockade

The major cause of death in PAH patients remains right
ventricular failure, and perhaps one of the most-overlooked
approaches in the treatment of the disease is cardiac-targeted
therapies. Such strategies may have little or no direct effects
on the pulmonary vasculature but prevent or reverse right
heart dysfunction; it is reasonable to predict that such a tactic
might make a major contribution to survival (Voelkel et al.,
2006).

The antagonism of b-adrenoceptors is a commonly used
strategy in patients with left-sided systolic heart failure, in
which mortality is reduced by approximately 30%, but is not
used clinically in right heart failure (i.e. PAH). The a1/b1/b2-
adrenoceptor blocker carvedilol and the selective b1-
adrenoceptor blockers, bisoprolol and metoprolol, reduce
mortality in patients with left-sided systolic heart failure with
a reversal of maladaptive cardiac remodelling, improved
cardiac function and prevention of arrhythmias (Bristow
et al., 1996; Fowler et al., 2007; MacGregor et al., 2009). b-

Adrenoceptor tachyphylaxis has also been demonstrated in
PAH and may contribute to maladaptive right ventricular
remodelling and the development of arrhythmias (Velez-Roa
et al., 2004). Carvedilol and metoprolol have been shown to
reverse right ventricular remodelling and improve right ven-
tricular function in experimental PH (Bogaard et al., 2010),
and the b-blocker arotinolol decreases both PAP and right
ventricular hypertrophy, without altering systemic blood
pressure, in a rat model of monocrotaline-induced PAH (Ish-
ikawa et al., 2009). Use of b-blockers in PAH has possible
detrimental effects on haemodynamics and exercise capacity.
While no specific clinical trial has been conducted to evaluate
the efficacy and safety of b-blockers in PAH, a small cohort of
porto-pulmonary hypertension patients were found to expe-
rience significant functional improvement following cessa-
tion of b-blocker therapy (Provencher et al., 2006), suggesting
a detrimental rather than beneficial outcome. Nonetheless,
further investigation of this class of anti-hypertensive medi-
cines may bring forth promising results in PAH patients.

Combination therapies

Since PH has a complex, multi-factorial aetiology, and the
fact that current treatments (and the vast majority of the
emerging therapies described previously) only target one
aspect of the disease, modern approaches have focused on
combining existing and newer therapies to bring about a
significant improvement in outcome. This is a logical
approach (based on the need for a combinatorial approach to
adequately control systemic hypertension) and many studies
suggest additive, if not synergistic, effects of combination
therapy in PH (Schermuly et al., 2001; Baliga et al., 2008).
Indeed, in clinical practice, combination therapy has become
the default position even though trial evidence to support
this strategy is limited. Small scale clinical evaluation of com-
binations of prostanoids, ERAs and PDE5 inhibitors have
been tried with some success (Ghofrani et al., 2002; Stiebelle-
hner et al., 2003; Stocker et al., 2003; Hoeper et al., 2004;
Humbert et al., 2004), with additional studies currently
recruiting [e.g. COMPASS-2 (sildenafil plus bosentan), STEP
(iloprost plus bosentan)]; however, validation of these com-
bination therapies will require further larger scale trials.
Moreover, these dual approaches have, to date, been
restricted to combinations of existing therapies which are
largely centred on the haemodynamic dysfunction. Newer
therapies, targeting cell proliferation rather than vasodilata-
tion, will necessarily entail novel combinations (as future
trials will be on a background of existing treatment).

Combination therapy, however, has important implica-
tions for the cost of treating PH patients, which at present is
approximately £45 000 per annum in the UK (National Insti-
tute for Health and Clinical Excellence). The partnership
between academia, the pharmaceutical industry and health-
care providers has been successful in developing treatments
for PH, but these drug costs pose a real challenge to health-
care systems. Exploring the potential of drug combination in
PH that include generic medicines, such as simvastatin
and racecadotril, has real potential for affordable drug
development.
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Conclusions

Advances in the treatment of PH over the past decade have
enabled physicians to substantially improve the prognosis,
yet the mortality rate remains high. Existing treatments are
based predominantly on vasodilatation, whereas many
emerging therapies are aimed at cell proliferation and
re-modelling (Figure 2). There is great optimism that this
alternative strategy will yield superior results, either alone or
in combination.

Acknowledgements

The authors are supported by the British Heart Foundation,
The Wellcome Trust and The Medical Research Council.

Conflicts of interest

None.

References

Ahluwalia A, Hobbs AJ (2005). Endothelium-derived C-type
natriuretic peptide: more than just a hyperpolarizing factor. Trends
Pharmacol Sci 26: 162–167.

Ahluwalia A, MacAllister RJ, Hobbs AJ (2004). Vascular actions of
natriuretic peptides. Cyclic GMP-dependent and -independent
mechanisms. Basic Res Cardiol 99: 83–89.

Alexander SPH, Mathie A, Peters JA (2009). Guide to receptors and
channels (GRAC), 4th edn. Br J Pharmacol 158 (Suppl. 1): S1–S254.

Ali FY, Egan K, FitzGerald GA, Desvergne B, Wahli W,
Bishop-Bailey D et al. (2006). Role of prostacyclin versus
peroxisome proliferator-activated receptor beta receptors in
prostacyclin sensing by lung fibroblasts. Am J Respir Cell Mol Biol
34: 242–246.

Alpert MA, Pressly TA, Mukerji V, Lambert CR, Mukerji B (1992).
Short- and long-term hemodynamic effects of captopril in patients
with pulmonary hypertension and selected connective tissue
disease. Chest 102: 1407–1412.

Amsallem E, Kasparian C, Haddour G, Boissel JP, Nony P (2005).
Phosphodiesterase III inhibitors for heart failure. Cochrane
Database Syst Rev (1): CD002230.

Archer SL, Djaballah K, Humbert M, Weir KE, Fartoukh M,
I’ava-Santucci J et al. (1998). Nitric oxide deficiency in
fenfluramine- and dexfenfluramine-induced pulmonary
hypertension. Am J Respir Crit Care Med 158: 1061–1067.

Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR,
Trembath RC et al. (2002). Primary pulmonary hypertension is
associated with reduced pulmonary vascular expression of type II
bone morphogenetic protein receptor. Circulation 105: 1672–1678.

Badesch DB, McGoon MD, Barst RJ, Tapson VF, Rubin LJ,
Wigley FM et al. (2009). Longterm survival among patients with
scleroderma-associated pulmonary arterial hypertension treated
with intravenous epoprostenol. J Rheumatol 36: 2244–2249.

Baliga RS, Zhao L, Madhani M, Lopez-Torondel B, Visintin C,
Selwood D et al. (2008). Synergy between natriuretic peptides and
phosphodiesterase 5 inhibitors ameliorates pulmonary arterial
hypertension. Am J Respir Crit Care Med 178: 861–869.

Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB
et al. (1996). A comparison of continuous intravenous epoprostenol
(prostacyclin) with conventional therapy for primary pulmonary
hypertension. The Primary Pulmonary Hypertension Study Group.
N Engl J Med 334: 296–302.

Barst RJ, Langleben D, Frost A, Horn EM, Oudiz R, Shapiro S et al.
(2004). Sitaxsentan therapy for pulmonary arterial hypertension.
Am J Respir Crit Care Med 169: 441–447.

Belik J (2009). Riociguat, an oral soluble guanylate cyclase
stimulator for the treatment of pulmonary hypertension. Curr Opin
Investig Drugs 10: 971–979.

Bender AT, Beavo JA (2006). Cyclic nucleotide phosphodiesterases:
molecular regulation to clinical use. Pharmacol Rev 58: 488–520.

Black SM, Sanchez LS, Mata-Greenwood E, Bekker JM,
Steinhorn RH, Fineman JR (2001). sGC and PDE5 are elevated in
lambs with increased pulmonary blood flow and pulmonary
hypertension. Am J Physiol Lung Cell Mol Physiol 281:
L1051–L1057.

Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ
et al. (2010). Adrenergic receptor blockade reverses right heart
remodeling and dysfunction in pulmonary hypertensive rats. Am J
Respir Crit Care Med 182: 652–660.

Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB,
Hershberger RE et al. (1996). Carvedilol produces dose-related
improvements in left ventricular function and survival in subjects
with chronic heart failure. MOCHA Investigators. Circulation 94:
2807–2816.

Budhiraja R, Tuder RM, Hassoun PM (2004). Endothelial
dysfunction in pulmonary hypertension. Circulation 109: 159–165.

Cargill RI, Lipworth BJ (1995). The role of the renin-angiotensin
and natriuretic peptide systems in the pulmonary vasculature. Br J
Clin Pharmacol 40: 11–18.

Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A,
Tapson VF et al. (2001). Effects of the dual endothelin-receptor
antagonist bosentan in patients with pulmonary hypertension: a
randomised placebo-controlled study. Lancet 358: 1119–1123.

Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S (2006).
Atrial natriuretic peptide-dependent modulation of
hypoxia-induced pulmonary vascular remodeling. Life Sci 79:
1357–1365.

Chester M, Tourneux P, Seedorf G, Grover TR, Gien J, Abman SH
(2009). Cinaciguat, a soluble guanylate cyclase activator, causes
potent and sustained pulmonary vasodilation in the ovine fetus.
Am J Physiol Lung Cell Mol Physiol 297: L318–L325.

Chhina MK, Nargues W, Grant GM, Nathan SD (2010). Evaluation
of imatinib mesylate in the treatment of pulmonary arterial
hypertension. Future Cardiol 6: 19–35.

Christman BW, McPherson CD, Newman JH, King GA, Bernard GR,
Groves BM et al. (1992). An imbalance between the excretion of
thromboxane and prostacyclin metabolites in pulmonary
hypertension. N Engl J Med 327: 70–75.

Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL,
Voelkel NF et al. (1999). Three-dimensional reconstruction of
pulmonary arteries in plexiform pulmonary hypertension using

BJP RS Baliga et al.

134 British Journal of Pharmacology (2011) 163 125–140



cell-specific markers. Evidence for a dynamic and heterogeneous
process of pulmonary endothelial cell growth. Am J Pathol 155:
411–419.

Crawley DE, Zhao L, Giembycz MA, Liu S, Barnes PJ, Winter RJ
et al. (1992). Chronic hypoxia impairs soluble guanylyl cyclase-
mediated pulmonary arterial relaxation in the rat. Am J Physiol
263: L325–L332.

Creagh-Brown BC, Griffiths MJ, Evans TW (2009). Bench-to-bedside
review: Inhaled nitric oxide therapy in adults. Crit Care 13: 221.

Crossno JT, Jr, Garat CV, Reusch JE, Morris KG, Dempsey EC,
McMurtry IF et al. (2007). Rosiglitazone attenuates hypoxia-induced
pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol
292: L885–L897.

Dempsie Y, Morecroft I, Welsh DJ, MacRitchie NA, Herold N,
Loughlin L et al. (2008). Converging evidence in support of the
5-HT hypothesis of dexfenfluramine-induced pulmonary
hypertension with novel transgenic mice. Circulation 117:
2928–2937.

Denton CP, Pope JE, Peter HH, Gabrielli A, Boonstra A,
van den Hoogen FH et al. (2008). Long-term effects of bosentan on
quality of life, survival, safety and tolerability in pulmonary arterial
hypertension related to connective tissue diseases. Ann Rheum Dis
67: 1222–1228.

Do e Z, Fukumoto Y, Takaki A, Tawara S, Ohashi J, Nakano M et al.
(2009). Evidence for Rho-kinase activation in patients with
pulmonary arterial hypertension. Circ J 73: 1731–1739.

Dony E, Lai YJ, Dumitrascu R, Pullamsetti SS, Savai R, Ghofrani HA
et al. (2008). Partial reversal of experimental pulmonary
hypertension by phosphodiesterase-3/4 inhibition. Eur Respir J 31:
599–610.

Dumitrascu R, Weissmann N, Ghofrani HA, Dony E, Beuerlein K,
Schmidt H et al. (2006). Activation of soluble guanylate cyclase
reverses experimental pulmonary hypertension and vascular
remodeling. Circulation 113: 286–295.

Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F
et al. (2001). 5-HT transporter overexpression is responsible for
pulmonary artery smooth muscle hyperplasia in primary
pulmonary hypertension. J Clin Invest 108: 1141–1150.

Eddahibi S, Chaouat A, Morrell N, Fadel E, Fuhrman C, Bugnet AS
et al. (2003). Polymorphism of the 5-HT transporter gene and
pulmonary hypertension in chronic obstructive pulmonary disease.
Circulation 108: 1839–1844.

Evgenov OV, Busch CJ, Evgenov NV, Liu R, Petersen B,
Falkowski GE et al. (2006). Inhibition of phosphodiesterase 1
augments the pulmonary vasodilator response to inhaled nitric
oxide in awake lambs with acute pulmonary hypertension. Am J
Physiol Lung Cell Mol Physiol 290: L723–L729.

Evgenov OV, Kohane DS, Bloch KD, Stasch JP, Volpato GP, Bellas E
et al. (2007). Inhaled agonists of soluble guanylate cyclase induce
selective pulmonary vasodilation. Am J Respir Crit Care Med 176:
1138–1145.

Fadini GP, Avogaro A, Ferraccioli G, Agostini C (2010). Endothelial
progenitors in pulmonary hypertension: new pathophysiology and
therapeutic implications. Eur Respir J 35: 418–425.

Fagan KA, Fouty BW, Tyler RC, Morris KG Jr, Hepler LK, Sato K
et al. (1999). The pulmonary circulation of homozygous or
heterozygous eNOS-null mice is hyperresponsive to mild hypoxia.
J Clin Invest 103: 291–299.

Falcetti E, Hall SM, Phillips PG, Patel J, Morrell NW, Haworth SG
et al. (2010). Smooth muscle proliferation and role of the
prostacyclin (IP) receptor in idiopathic pulmonary arterial
hypertension. Am J Respir Crit Care Med 182: 1161–1170.

Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L
et al. (2009). Evidence for angiotensin-converting enzyme 2 as a
therapeutic target for the prevention of pulmonary hypertension.
Am J Respir Crit Care Med 179: 1048–1054.

Fowler MB, Lottes SR, Nelson JJ, Lukas MA, Gilbert EM,
Greenberg B et al. (2007). Beta-blocker dosing in community-based
treatment of heart failure. Am Heart J 153: 1029–1036.

Frantz S, Adamek A, Fraccarollo D, Tillmanns J, Widder JD,
Dienesch C et al. (2009). The eNOS enhancer AVE 9488: a novel
cardioprotectant against ischemia reperfusion injury. Basic Res
Cardiol 104: 773–779.

de Frutos S, Nitta CH, Caldwell E, Friedman J, Gonzalez Bosc LV
(2009). Regulation of soluble guanylyl cyclase-alpha1 expression in
chronic hypoxia-induced pulmonary hypertension: role of NFATc3
and HuR. Am J Physiol Lung Cell Mol Physiol 297: L475–L486.

Fujita H, Fukumoto Y, Saji K, Sugimura K, Demachi J, Nawata J
et al. (2010). Acute vasodilator effects of inhaled fasudil, a specific
Rho-kinase inhibitor, in patients with pulmonary arterial
hypertension. Heart Vessels 25: 144–149.

Galie N, Badesch D, Oudiz R, Simonneau G, McGoon MD,
Keogh AM et al. (2005a). Ambrisentan therapy for pulmonary
arterial hypertension. J Am Coll Cardiol 46: 529–535.

Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D
et al. (2005b). Sildenafil citrate therapy for pulmonary arterial
hypertension. N Engl J Med 353: 2148–2157.

Galie N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G,
Safdar Z et al. (2009a). Tadalafil therapy for pulmonary arterial
hypertension. Circulation 119: 2894–2903.

Galie N, Manes A, Negro L, Palazzini M, Bacchi-Reggiani ML,
Branzi A (2009b). A meta-analysis of randomized controlled trials in
pulmonary arterial hypertension. Eur Heart J 30: 394–403.

Ghofrani HA, Wiedemann R, Rose F, Olschewski H, Schermuly RT,
Weissmann N et al. (2002). Combination therapy with oral
sildenafil and inhaled iloprost for severe pulmonary hypertension.
Ann Intern Med 136: 515–522.

Ghofrani HA, Seeger W, Grimminger F (2005). Imatinib for the
treatment of pulmonary arterial hypertension. N Engl J Med 353:
1412–1413.

Ghofrani HA, Hoeper MM, Halank M, Meyer FJ, Staehler G, Behr J
et al. (2010). Riociguat for chronic thromboembolic pulmonary
hypertension and pulmonary arterial hypertension: a phase II
study. Eur Respir J 36: 792–799.

Giaid A, Saleh D (1995). Reduced expression of endothelial nitric
oxide synthase in the lungs of patients with pulmonary
hypertension. N Engl J Med 333: 214–221.

Girgis RE, Li D, Zhan X, Garcia JG, Tuder RM, Hassoun PM et al.
(2003). Attenuation of chronic hypoxic pulmonary hypertension by
simvastatin. Am J Physiol Heart Circ Physiol 285: H938–H945.

Gomberg-Maitland M, Maitland ML, Barst RJ, Sugeng L, Coslet S,
Perrino TJ et al. (2010). A dosing/cross-development study of the
multikinase inhibitor sorafenib in patients with pulmonary arterial
hypertension. Clin Pharmacol Ther 87: 303–310.

Goyal P, Kiran U, Chauhan S, Juneja R, Choudhary M (2006).
Efficacy of nitroglycerin inhalation in reducing pulmonary arterial
hypertension in children with congenital heart disease. Br J
Anaesth 97: 208–214.

BJPEmerging therapies for pulmonary hypertension

British Journal of Pharmacology (2011) 163 125–140 135



Grimminger F, Weimann G, Frey R, Voswinckel R, Thamm M,
Bolkow D et al. (2009). BAY 63-2521, an oral soluble guanylate
cyclase stimulator, has a favourable safety profile, improves
cardiopulmonary haemodynamics and has therapeutic potential in
pulmonary hypertension.

Guignabert C, Raffestin B, Benferhat R, Raoul W, Zadigue P,
Rideau D et al. (2005). 5-HT transporter inhibition prevents and
reverses monocrotaline-induced pulmonary hypertension in rats.
Circulation 111: 2812–2819.

Guignabert C, Alvira CM, Alastalo TP, Sawada H, Hansmann G,
Zhao M et al. (2009). Tie2-mediated loss of peroxisome
proliferator-activated receptor-gamma in mice causes PDGF
receptor-beta-dependent pulmonary arterial muscularization. Am J
Physiol Lung Cell Mol Physiol 297: L1082–L1090.

Gunaydin S, Imai Y, Takanashi Y, Seo K, Hagino I, Chang D et al.
(2002). The effects of vasoactive intestinal peptide on
monocrotaline induced pulmonary hypertensive rabbits following
cardiopulmonary bypass: a comparative study with isoproteronol
and nitroglycerine. Cardiovasc Surg 10: 138–145.

Hampl V, Tristani-Firouzi M, Hutsell TC, Archer SL (1996).
Nebulized nitric oxide/nucleophile adduct reduces chronic
pulmonary hypertension. Cardiovasc Res 31: 55–62.

Hansmann G, Zamanian RT (2009). PPARgamma activation: a
potential treatment for pulmonary hypertension. Sci Transl Med 1:
12ps14.

Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T,
Wang L et al. (2007). Pulmonary arterial hypertension is linked to
insulin resistance and reversed by peroxisome proliferator-activated
receptor-gamma activation. Circulation 115: 1275–1284.

Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM,
Guignabert C, Bekker JM et al. (2008). An antiproliferative
BMP-2/PPARgamma/apoE axis in human and murine SMCs and its
role in pulmonary hypertension. J Clin Invest 118: 1846–1857.

Harrington LS, Moreno L, Reed A, Wort SJ, Desvergne B, Garland C
et al. (2010). The PPARbeta/delta agonist GW0742 relaxes
pulmonary vessels and limits right heart hypertrophy in rats with
hypoxia-induced pulmonary hypertension. PloS One 5: e9526.

Hassoun PM (2009). Pulmonary arterial hypertension complicating
connective tissue diseases. Semin Respir Crit Care Med 30: 429–439.

Hobbs AJ (1997). Soluble guanylate cyclase: the forgotten sibling.
Trends Pharmacol Sci 18: 484–491.

Hoeper MM, Faulenbach C, Golpon H, Winkler J, Welte T,
Niedermeyer J (2004). Combination therapy with bosentan and
sildenafil in idiopathic pulmonary arterial hypertension. Eur Respir
J 24: 1007–1010.

Humbert M, Monti G, Fartoukh M, Magnan A, Brenot F, Rain B
et al. (1998). Platelet-derived growth factor expression in primary
pulmonary hypertension: comparison of HIV seropositive and HIV
seronegative patients. Eur Respir J 11: 554–559.

Humbert M, Barst RJ, Robbins IM, Channick RN, Galie N,
Boonstra A et al. (2004). Combination of bosentan with
epoprostenol in pulmonary arterial hypertension: BREATHE-2.
Eur Respir J 24: 353–359.

Ichinose F, Roberts JD Jr, Zapol WM (2004). Inhaled nitric oxide: a
selective pulmonary vasodilator: current uses and therapeutic
potential. Circulation 109: 3106–3111.

Ishikawa M, Sato N, Asai K, Takano T, Mizuno K (2009). Effects of a
pure alpha/beta-adrenergic receptor blocker on
monocrotaline-induced pulmonary arterial hypertension with right
ventricular hypertrophy in rats. Circ J 73: 2337–2341.

Ishikura K, Yamada N, Ito M, Ota S, Nakamura M, Isaka N et al.
(2006). Beneficial acute effects of rho-kinase inhibitor in patients
with pulmonary arterial hypertension. Circ J 70: 174–178.

Izikki M, Guignabert C, Fadel E, Humbert M, Tu L, Zadigue P et al.
(2009). Endothelial-derived FGF2 contributes to the progression of
pulmonary hypertension in humans and rodents. J Clin Invest 119:
512–523.

Jackson G, Benjamin N, Jackson N, Allen MJ (1999). Effects of
sildenafil citrate on human hemodynamics. Am J Cardiol 83:
13C–20C.

Jin H, Yang RH, Chen YF, Jackson RM, Oparil S (1990). Atrial
natriuretic peptide attenuates the development of pulmonary
hypertension in rats adapted to chronic hypoxia. J Clin Invest 85:
115–120.

Jin H, Yang RH, Oparil S (1992). Cicletanine blunts the pulmonary
pressor response to acute hypoxia in rats. Am J Med Sci 304: 14–19.

Johnson SR, Mehta S, Granton JT (2006). Anticoagulation in
pulmonary arterial hypertension: a qualitative systematic review.
Eur Respir J 28: 999–1004.

Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C et al.
(2006). Cardiotoxicity of the cancer therapeutic agent imatinib
mesylate. Nat Med 12: 908–916.

Khoo JP, Zhao L, Alp NJ, Bendall JK, Nicoli T, Rockett K et al.
(2005). Pivotal role for endothelial tetrahydrobiopterin in
pulmonary hypertension. Circulation 111: 2126–2133.

Klein M, Schermuly RT, Ellinghaus P, Milting H, Riedl B,
Nikolova S et al. (2008). Combined tyrosine and serine/threonine
kinase inhibition by sorafenib prevents progression of experimental
pulmonary hypertension and myocardial remodeling. Circulation
118: 2081–2090.

Klinger JR, Petit RD, Warburton RR, Wrenn DS, Arnal F, Hill NS
(1993). Neutral endopeptidase inhibition attenuates development
of hypoxic pulmonary hypertension in rats. J Appl Physiol 75:
1615–1623.

Klinger JR, Warburton RR, Pietras L, Hill NS (1998). Brain
natriuretic peptide inhibits hypoxic pulmonary hypertension in
rats. J Appl Physiol 84: 1646–1652.

Klinger JR, Warburton RR, Pietras LA, Smithies O, Swift R, Hill NS
(1999). Genetic disruption of atrial natriuretic peptide causes
pulmonary hypertension in normoxic and hypoxic mice. Am J
Physiol 276: L868–L874.

Klinger JR, Thaker S, Houtchens J, Preston IR, Hill NS, Farber HW
(2006). Pulmonary hemodynamic responses to brain natriuretic
peptide and sildenafil in patients with pulmonary arterial
hypertension. Chest 129: 417–425.

Kuhn M (2004). Molecular physiology of natriuretic peptide
signalling. Basic Res Cardiol 99: 76–82.

Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM
et al. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling
of endothelial cell nitric oxide synthase in hypertension. J Clin
Invest 111: 1201–1209.

Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA III,
Loyd JE et al. (2000). Heterozygous germline mutations in BMPR2,
encoding a TGF-beta receptor, cause familial primary pulmonary
hypertension. Nat Genet 26: 81–84.

Lapp H, Mitrovic V, Franz N, Heuer H, Buerke M, Wolfertz J et al.
(2009). Cinaciguat (BAY 58-2667) improves cardiopulmonary
hemodynamics in patients with acute decompensated heart failure.
Circulation 119: 2781–2788.

BJP RS Baliga et al.

136 British Journal of Pharmacology (2011) 163 125–140



Le Cras TD, Tyler RC, Horan MP, Morris KG, Tuder RM,
McMurtry IF et al. (1998). Effects of chronic hypoxia and altered
hemodynamics on endothelial nitric oxide synthase expression in
the adult rat lung. J Clin Invest 101: 795–801.

Leiper J, Nandi M, Torondel B, Murray-Rust J, Malaki M, O’Hara B
et al. (2007). Disruption of methylarginine metabolism impairs
vascular homeostasis. Nat Med 13: 198–203.

Li P, Oparil S, Novak L, Cao X, Shi W, Lucas J et al. (2007). ANP
signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear
translocation and extracellular matrix expression in rat pulmonary
arterial smooth muscle cells. J Appl Physiol 102: 390–398.

Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X,
Rudarakanchana N et al. (2006). 5-HT increases susceptibility to
pulmonary hypertension in BMPR2-deficient mice. Circ Res 98:
818–827.

Lu W, Ran P, Zhang D, Peng G, Li B, Zhong N et al. (2010).
Sildenafil inhibits chronically hypoxic upregulation of canonical
transient receptor potential expression in rat pulmonary arterial
smooth muscle. Am J Physiol Cell Physiol 298: C114–C123.

MacGregor JF, Wachter SB, Munger M, Stoddard G, Bristow MR,
Gilbert EM (2009). Carvedilol produces sustained long-term
benefits: follow-up at 12 years. Congest Heart Fail 15: 5–8.

McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW,
Lindner JR et al. (2009a). ACCF/AHA 2009 expert consensus
document on pulmonary hypertension a report of the American
College of Cardiology Foundation Task Force on Expert Consensus
Documents and the American Heart Association developed in
collaboration with the American College of Chest Physicians;
American Thoracic Society, Inc.; and the Pulmonary Hypertension
Association. J Am Coll Cardiol 53: 1573–1619.

McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW,
Lindner JR et al. (2009b). ACCF/AHA 2009 expert consensus
document on pulmonary hypertension: a report of the American
College of Cardiology Foundation Task Force on Expert Consensus
Documents and the American Heart Association: developed in
collaboration with the American College of Chest Physicians,
American Thoracic Society, Inc., and the Pulmonary Hypertension
Association. Circulation 119: 2250–2294.

MacLean MR, Dempsie Y (2009). 5-HT and pulmonary
hypertension – from bench to bedside? Curr Opin Pharmacol 9:
281–286.

McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G
et al. (2005). Gene therapy targeting survivin selectively induces
pulmonary vascular apoptosis and reverses pulmonary arterial
hypertension. J Clin Invest 115: 1479–1491.

McMurtry MS, Moudgil R, Hashimoto K, Bonnet S, Michelakis ED,
Archer SL (2007). Overexpression of human bone morphogenetic
protein receptor 2 does not ameliorate monocrotaline pulmonary
arterial hypertension. Am J Physiol Lung Cell Mol Physiol 292:
L872–L878.

Machado RD, Koehler R, Glissmeyer E, Veal C, Suntharalingam J,
Kim M et al. (2006). Genetic association of the 5-HT transporter in
pulmonary arterial hypertension. Am J Respir Crit Care Med 173:
793–797.

Macrae DJ, Field D, Mercier JC, Moller J, Stiris T, Biban P et al.
(2004). Inhaled nitric oxide therapy in neonates and children:
reaching a European consensus. Intensive Care Med 30: 372–380.

Madhani M, Okorie M, Hobbs AJ, MacAllister RJ (2006). Reciprocal
regulation of human soluble and particulate guanylate cyclases in
vivo. Br J Pharmacol 149: 797–801.

Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX
(2004). Cellular and molecular mechanisms of pulmonary vascular
remodeling: role in the development of pulmonary hypertension.
Microvasc Res 68: 75–103.

Matsui H, Shimosawa T, Itakura K, Guanqun X, Ando K, Fujita T
(2004). Adrenomedullin can protect against pulmonary vascular
remodeling induced by hypoxia. Circulation 109: 2246–2251.

Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005).
Epidermal growth factor receptor blockade mediates smooth muscle
cell apoptosis and improves survival in rats with pulmonary
hypertension. Circulation 112: 423–431.

Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK
et al. (2001). Altered growth responses of pulmonary artery smooth
muscle cells from patients with primary pulmonary hypertension to
transforming growth factor-beta(1) and bone morphogenetic
proteins. Circulation 104: 790–795.

Morty RE, Nejman B, Kwapiszewska G, Hecker M, Zakrzewicz A,
Kouri FM et al. (2007). Dysregulated bone morphogenetic protein
signaling in monocrotaline-induced pulmonary arterial
hypertension. Arterioscler Thromb Vasc Biol 27: 1072–1078.

Mouchaers KT, Schalij I, de Boer MA, Postmus PE,
van Hinsbergh V, Van Nieuw Amerongen GP et al. (2010). Effective
reduction of MCT-PAH by Fasudil. Comparison with bosentan and
sildenafil. Eur Respir J 36: 800–807.

Murray F, MacLean MR, Pyne NJ (2002). Increased expression of
the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding
cGMP-specific (PDE5) phosphodiesterases in models of pulmonary
hypertension. Br J Pharmacol 137: 1187–1194.

Murray F, Patel HH, Suda RY, Zhang S, Thistlethwaite PA, Yuan JX
et al. (2007). Expression and activity of cAMP phosphodiesterase
isoforms in pulmonary artery smooth muscle cells from patients
with pulmonary hypertension: role for PDE1. Am J Physiol Lung
Cell Mol Physiol 292: L294–L303.

Nandi M, Miller A, Stidwill R, Jacques TS, Lam AA, Haworth S et al.
(2005). Pulmonary hypertension in a GTP-cyclohydrolase
1-deficient mouse. Circulation 111: 2086–2090.

Narumiya S, Sugimoto Y, Ushikubi F (1999). Prostanoid receptors:
structures, properties, and functions. Physiol Rev 79: 1193–1226.

National Pulmonary Hypertension Centres of the UK and Ireland
(2008). Consensus statement on the management of pulmonary
hypertension in clinical practice in the UK and Ireland. Thorax 63:
ii1–ii41.

Newman JH, Trembath RC, Morse JA, Grunig E, Loyd JE, Adnot S
et al. (2004). Genetic basis of pulmonary arterial hypertension:
current understanding and future directions. J Am Coll Cardiol 43:
33S–39S.

Newman JH, Phillips JA III, Loyd JE (2008). Narrative review: the
enigma of pulmonary arterial hypertension: new insights from
genetic studies. Ann Intern Med 148: 278–283.

Nisbet RE, Sutliff RL, Hart CM (2007). The role of peroxisome
proliferator-activated receptors in pulmonary vascular disease. PPAR
Res 2007: 18797.

Nishimura T, Faul JL, Berry GJ, Vaszar LT, Qiu D, Pearl RG
et al. (2002). Simvastatin attenuates smooth muscle neointimal
proliferation and pulmonary hypertension in rats. Am J Respir Crit
Care Med 166: 1403–1408.

Oka M, Homma N, Taraseviciene-Stewart L, Morris KG,
Kraskauskas D, Burns N et al. (2007a). Rho kinase-mediated
vasoconstriction is important in severe occlusive pulmonary arterial
hypertension in rats. Circ Res 100: 923–929.

BJPEmerging therapies for pulmonary hypertension

British Journal of Pharmacology (2011) 163 125–140 137



Oka M, Karoor V, Homma N, Nagaoka T, Sakao E, Golembeski SM
et al. (2007b). Dehydroepiandrosterone upregulates soluble
guanylate cyclase and inhibits hypoxic pulmonary hypertension.
Cardiovasc Res 74: 377–387.

Oka M, Fagan KA, Jones PL, McMurtry IF (2008). Therapeutic
potential of RhoA/Rho kinase inhibitors in pulmonary
hypertension. Br J Pharmacol 155: 444–454.

Okolicany J, McEnroe GA, Koh GY, Lewicki JA, Maack T (1992).
Clearance receptor and neutral endopeptidase-mediated metabolism
of atrial natriuretic factor. Am J Physiol Renal Physiol 263:
F546–F553.

Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL et al.
(1997). Hypertension, cardiac hypertrophy, and sudden death in
mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA
94: 14730–14735.

Paddenberg R, Stieger P, von Lilien AL, Faulhammer P,
Goldenberg A, Tillmanns HH et al. (2007). Rapamycin attenuates
hypoxia-induced pulmonary vascular remodeling and right
ventricular hypertrophy in mice. Respir Res 8: 15.

Patterson KC, Weissmann A, Ahmadi T, Farber HW (2006). Imatinib
mesylate in the treatment of refractory idiopathic pulmonary
arterial hypertension. Ann Intern Med 145: 152–153.

Perros F, Montani D, Dorfmuller P, Durand-Gasselin I,
Tcherakian C, Le PJ et al. (2008). Platelet-derived growth factor
expression and function in idiopathic pulmonary arterial
hypertension. Am J Respir Crit Care Med 178: 81–88.

Potter LR, Abbey-Hosch S, Dickey DM (2006). Natriuretic peptides,
their receptors, and cyclic guanosine monophosphate-dependent
signaling functions. Endocr Rev 27: 47–72.

Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC,
Dyck JR et al. (2003). In vivo gene transfer of the O2-sensitive
potassium channel Kv1.5 reduces pulmonary hypertension and
restores hypoxic pulmonary vasoconstriction in chronically
hypoxic rats. Circulation 107: 2037–2044.

Preston IR, Hill NS, Gambardella LS, Warburton RR, Klinger JR
(2004). Synergistic effects of ANP and sildenafil on cGMP levels and
amelioration of acute hypoxic pulmonary hypertension. Exp Biol
Med 229: 920–925.

Provencher S, Herve P, Jais X, Lebrec D, Humbert M, Simonneau G
et al. (2006). Deleterious effects of beta-blockers on exercise capacity
and hemodynamics in patients with portopulmonary hypertension.
Gastroenterology 130: 120–126.

Qi JG, Ding YG, Tang CS, Du JB (2007). Chronic administration of
adrenomedullin attenuates hypoxic pulmonary vascular structural
remodeling and inhibits proadrenomedullin N-terminal 20-peptide
production in rats. Peptides 28: 910–919.

Raja SG (2010). Macitentan, a tissue-targeting endothelin receptor
antagonist for the potential oral treatment of pulmonary arterial
hypertension and idiopathic pulmonary fibrosis. Curr Opin Investig
Drugs 11: 1066–1073.

Reynolds AM, Xia W, Holmes MD, Hodge SJ, Danilov S, Curiel DT
et al. (2007). Bone morphogenetic protein type 2 receptor gene
therapy attenuates hypoxic pulmonary hypertension. Am J Physiol
Lung Cell Mol Physiol 292: L1182–L1192.

Rich S, Brundage BH (1987). High-dose calcium channel-blocking
therapy for primary pulmonary hypertension: evidence for long-
term reduction in pulmonary arterial pressure and regression of
right ventricular hypertrophy. Circulation 76: 135–141.

Roberts JD, Polaner DM, Lang P, Zapol WM (1992). Inhaled nitric
oxide in persistent pulmonary hypertension of the newborn. Lancet
340: 818–819.

Roberts KE, Fallon MB, Krowka MJ, Benza RL, Knowles JA,
Badesch DB et al. (2009). 5-HT transporter polymorphisms in
patients with portopulmonary hypertension. Chest 135: 1470–1475.

Rubens C, Ewert R, Halank M, Wensel R, Orzechowski HD,
Schultheiss HP et al. (2001). Big endothelin-1 and endothelin-1
plasma levels are correlated with the severity of primary pulmonary
hypertension. Chest 120: 1562–1569.

Rubin LJ, Mendoza J, Hood M, McGoon M, Barst R, Williams WB
et al. (1990). Treatment of primary pulmonary hypertension with
continuous intravenous prostacyclin (epoprostenol). Results of a
randomized trial. Ann Intern Med 112: 485–491.

Rybalkin SD, Rybalkina I, Beavo JA, Bornfeldt KE (2002). Cyclic
nucleotide phosphodiesterase 1C promotes human arterial smooth
muscle cell proliferation. Circ Res 90: 151–157.

Saadjian A, Philip-Joet F, Paganelli F, Arnaud A, Levy S (1998).
Long-term effects of cicletanine on secondary pulmonary
hypertension. J Cardiovasc Pharmacol 31: 364–371.

Said SI, Hamidi SA, Dickman KG, Szema AM, Lyubsky S, Lin RZ
et al. (2007). Moderate pulmonary arterial hypertension in male
mice lacking the vasoactive intestinal peptide gene. Circulation
115: 1260–1268.

Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C et al.
(2006). Ex vivo pretreatment of bone marrow mononuclear cells
with endothelial NO synthase enhancer AVE9488 enhances their
functional activity for cell therapy. Proc Natl Acad Sci USA 103:
14537–14541.

Schermuly RT, Weissmann N, Enke B, Ghofrani HA,
Forssmann WG, Grimminger F et al. (2001). Urodilatin, a
natriuretic peptide stimulating particulate guanylate cyclase, and
the phosphodiesterase 5 inhibitor dipyridamole attenuate
experimental pulmonary hypertension: synergism upon
coapplication. Am J Respir Cell Mol Biol 25: 219–225.

Schermuly RT, Kreisselmeier KP, Ghofrani HA, Samidurai A,
Pullamsetti S, Weissmann N et al. (2004). Antiremodeling effects
of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor
tolafentrine in chronic experimental pulmonary hypertension. Circ
Res 94: 1101–1108.

Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R,
Roth M et al. (2005). Reversal of experimental pulmonary
hypertension by PDGF inhibition. J Clin Invest 115: 2811–2821.

Schermuly RT, Pullamsetti SS, Kwapiszewska G, Dumitrascu R,
Tian X, Weissmann N et al. (2007). Phosphodiesterase 1
upregulation in pulmonary arterial hypertension: target for
reverse-remodeling therapy. Circulation 115: 2331–2339.

Schermuly RT, Stasch JP, Pullamsetti SS, Middendorff R, Muller D,
Schluter KD et al. (2008). Expression and function of soluble
guanylate cyclase in pulmonary arterial hypertension. Eur Respir J
32: 881–891.

Schmidt HH, Schmidt PM, Stasch JP (2009). NO- and
Haem-independent soluble guanylate cyclase activators. Handb Exp
Pharmacol 191: 309–339.

Sebkhi A, Strange JW, Phillips SC, Wharton J, Wilkins MR (2003).
Phosphodiesterase type 5 as a target for the treatment of
hypoxia-induced pulmonary hypertension. Circulation 107:
3230–3235.

BJP RS Baliga et al.

138 British Journal of Pharmacology (2011) 163 125–140



Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH,
Morin FC, III (1997). Pulmonary endothelial NO synthase gene
expression is decreased in fetal lambs with pulmonary
hypertension. Am J Physiol 272: L1005–L1012.

Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Díez-Freire C, Dooies A
et al. (2010). The ACE2/Ang-(1-7)/Mas axis confers cardiopulmonary
protection against lung fibrosis and pulmonary hypertension. Am J
Respir Crit Care Med 182: 1065–L1072.

Shimokubo T, Sakata J, Kitamura K, Kangawa K, Matsuo H, Eto T
(1995). Augmented adrenomedullin concentrations in right
ventricle and plasma of experimental pulmonary hypertension. Life
Sci 57: 1771–1779.

Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M,
Denton CP et al. (2009). Updated clinical classification of
pulmonary hypertension. J Am Coll Cardiol 54: S43–S54.

Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S
et al. (2005). Long-term response to calcium channel blockers in
idiopathic pulmonary arterial hypertension. Circulation 111:
3105–3111.

Sobolewski A, Rudarakanchana N, Upton PD, Yang J, Crilley TK,
Trembath RC et al. (2008). Failure of bone morphogenetic protein
receptor trafficking in pulmonary arterial hypertension: potential
for rescue. Hum Mol Genet 17: 3180–3190.

Song Y, Jones JE, Beppu H, Keaney JF Jr, Loscalzo J, Zhang YY
(2005). Increased susceptibility to pulmonary hypertension in
heterozygous BMPR2-mutant mice. Circulation 112: 553–562.

Souza R, Sitbon O, Parent F, Simonneau G, Humbert M (2006).
Long term imatinib treatment in pulmonary arterial hypertension.
Thorax 61: 736.

Stasch JP, Hobbs AJ (2009). NO-independent, haem-dependent
soluble guanylate cyclase stimulators. Handb Exp Pharmacol 191:
277–308.

Stasch JP, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A,
Minuth T et al. (2002a). Pharmacological actions of a novel
NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro
studies. Br J Pharmacol 135: 333–343.

Stasch JP, Dembowsky K, Perzborn E, Stahl E, Schramm M (2002b).
Cardiovascular actions of a novel NO-independent guanylyl cyclase
stimulator, BAY 41-8543: in vivo studies. Br J Pharmacol 135:
344–355.

Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA
et al. (1997). Pulmonary vasoconstriction and hypertension in mice
with targeted disruption of the endothelial nitric oxide synthase
(NOS 3) gene. Circ Res 81: 34–41.

Stiebellehner L, Petkov V, Vonbank K, Funk G, Schenk P, Ziesche R
et al. (2003). Long-term treatment with oral sildenafil in addition to
continuous IV epoprostenol in patients with pulmonary arterial
hypertension. Chest 123: 1293–1295.

Stocker C, Penny DJ, Brizard CP, Cochrane AD, Soto R,
Shekerdemian LS (2003). Intravenous sildenafil and inhaled nitric
oxide: a randomised trial in infants after cardiac surgery. Intensive
Care Med 29: 1996–2003.

Sun CK, Lee FY, Sheu JJ, Yuen CM, Chua S, Chung SY et al. (2009).
Early combined treatment with cilostazol and bone marrow-derived
endothelial progenitor cells markedly attenuates pulmonary arterial
hypertension in rats. J Pharmacol Exp Ther 330: 718–726.

Tapper EB, Knowles D, Heffron T, Lawrence EC, Csete M (2009).
Portopulmonary hypertension: imatinib as a novel treatment and
the Emory experience with this condition. Transplant Proc 41:
1969–1971.

Ten FH, Dumitrescu D, Bovenschulte H, Erdmann E, Rosenkranz S
(2009). Significant improvement of right ventricular function by
imatinib mesylate in scleroderma-associated pulmonary arterial
hypertension. Clin Res Cardiol 98: 265–267.

Thenappan T, Shah SJ, Rich S, Gomberg-Maitland M (2007). A
USA-based registry for pulmonary arterial hypertension: 1982–2006.
Eur Respir J 30: 1103–1110.

Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS,
Marchesan D et al. (2009). Evidence of dysfunction of endothelial
progenitors in pulmonary arterial hypertension. Am J Respir Crit
Care Med 180: 780–787.

Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L
et al. (1999). Prostacyclin synthase expression is decreased in lungs
from patients with severe pulmonary hypertension. Am J Respir
Crit Care Med 159: 1925–1932.

Vanderford PA, Wong J, Chang R, Keefer LK, Soifer SJ, Fineman JR
(1994). Diethylamine/nitric oxide (NO) adduct, an NO donor,
produces potent pulmonary and systemic vasodilation in intact
newborn lambs. J Cardiovasc Pharmacol 23: 113–119.

Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R,
van de Borne P (2004). Increased sympathetic nerve activity in
pulmonary artery hypertension. Circulation 110: 1308–1312.

Vermeersch P, Buys E, Pokreisz P, Marsboom G, Ichinose F, Sips P
et al. (2007). Soluble guanylate cyclase-alpha1 deficiency selectively
inhibits the pulmonary vasodilator response to nitric oxide and
increases the pulmonary vascular remodeling response to chronic
hypoxia. Circulation 116: 936–943.

Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD,
Meldrum DR et al. (2006). Right ventricular function and failure:
report of a National Heart, Lung, and Blood Institute working
group on cellular and molecular mechanisms of right heart failure.
Circulation 114: 1883–1891.

Weissmann N, Hackemack S, Dahal BK, Pullamsetti SS, Savai R,
Mittal M et al. (2009). The soluble guanylate cyclase activator
HMR1766 reverses hypoxia-induced experimental pulmonary
hypertension in mice. Am J Physiol Lung Cell Mol Physiol 297:
L658–L665.

Welsh DJ, Harnett M, MacLean M, Peacock AJ (2004). Proliferation
and signaling in fibroblasts: role of 5-hydroxytryptamine2A
receptor and transporter. Am J Respir Crit Care Med 170: 252–259.

Westermann D, Riad A, Richter U, Jager S, Savvatis K, Schuchardt M
et al. (2009). Enhancement of the endothelial NO synthase
attenuates experimental diastolic heart failure. Basic Res Cardiol
104: 499–509.

Wharton J, Strange JW, Moller GM, Growcott EJ, Ren X,
Franklyn AP et al. (2005). Antiproliferative effects of
phosphodiesterase type 5 inhibition in human pulmonary artery
cells. Am J Respir Crit Care Med 172: 105–113.

Wilkens H, Guth A, Konig J, Forestier N, Cremers B, Hennen B et al.
(2001). Effect of inhaled iloprost plus oral sildenafil in patients with
primary pulmonary hypertension. Circulation 104: 1218–1222.

Wilkins MR, Ali O, Bradlow W, Wharton J, Taegtmeyer A,
Rhodes CJ et al. (2010). Simvastatin as a treatment for pulmonary
hypertension trial. Am J Respir Crit Care Med 181: 1106–1113.

Willers ED, Newman JH, Loyd JE, Robbins IM, Wheeler LA,
Prince MA III et al. (2006). 5-HT transporter polymorphisms in
familial and idiopathic pulmonary arterial hypertension. Am J
Respir Crit Care Med 173: 798–802.

BJPEmerging therapies for pulmonary hypertension

British Journal of Pharmacology (2011) 163 125–140 139



Williamson DJ, Wallman LL, Jones R, Keogh AM, Scroope F,
Penny R et al. (2000). Hemodynamic effects of Bosentan, an
endothelin receptor antagonist, in patients with pulmonary
hypertension. Circulation 102: 411–418.

Wohlfart P, Xu H, Endlich A, Habermeier A, Closs EI, Hubschle T
et al. (2008). Antiatherosclerotic effects of small-molecular-weight
compounds enhancing endothelial nitric-oxide synthase (eNOS)
expression and preventing eNOS uncoupling. J Pharmacol Exp Ther
325: 370–379.

Xie W, Wang H, Wang H, Hu G (2004). Effects of iptakalim
hydrochloride, a novel KATP channel opener, on pulmonary
vascular remodeling in hypoxic rats. Life Sci 75: 2065–2076.

Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD,
Jeffery TK et al. (2005). Dysfunctional Smad signaling contributes to
abnormal smooth muscle cell proliferation in familial pulmonary
arterial hypertension. Circ Res 96: 1053–1063.

Yip HK, Chang LT, Sun CK, Sheu JJ, Chiang CH, Youssef AA et al.
(2008). Autologous transplantation of bone marrow-derived
endothelial progenitor cells attenuates monocrotaline-induced
pulmonary arterial hypertension in rats. Crit Care Med 36:
873–880.

Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N,
Platoshyn O et al. (2004). Enhanced expression of transient receptor
potential channels in idiopathic pulmonary arterial hypertension.
Proc Natl Acad Sci USA 101: 13861–13866.

Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL
et al. (2009). A functional single-nucleotide polymorphism in the
TRPC6 gene promoter associated with idiopathic pulmonary arterial
hypertension. Circulation 119: 2313–2322.

Yuan JX, Rubin LJ (2005). Pathogenesis of pulmonary arterial
hypertension: the need for multiple hits. Circulation 111: 534–538.

Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998).
Attenuated K+ channel gene transcription in primary pulmonary
hypertension. Lancet 351: 726–727.

Zhai FG, Zhang XH, Wang HL (2009). Fluoxetine protects against
monocrotaline-induced pulmonary arterial hypertension: potential
roles of induction of apoptosis and upregulation of Kv1.5 channels
in rats. Clin Exp Pharmacol Physiol 36: 850–856.

Zhao L, Hughes JM, Winter RJ (1992). Effects of natriuretic peptides
and neutral endopeptidase 24.11 inhibition in isolated perfused rat
lung. Am Rev Respir Dis 146: 1198–1201.

Zhao L, Long L, Morrell NW, Wilkins MR (1999). NPR-A-Deficient
mice show increased susceptibility to hypoxia-induced pulmonary
hypertension. Circulation 99: 605–607.

Zhao L, Mason NA, Strange JW, Walker H, Wilkins MR (2003).
Beneficial effects of phosphodiesterase 5 inhibition in pulmonary
hypertension are influenced by natriuretic Peptide activity.
Circulation 107: 234–237.

Zhao YY, Zhao YD, Mirza MK, Huang JH, Potula HH, Vogel SM
et al. (2009). Persistent eNOS activation secondary to caveolin-1
deficiency induces pulmonary hypertension in mice and humans
through PKG nitration. J Clin Invest 119: 2009–2018.

Zhu Y, Zhang S, Xie W, Li Q, Zhou Y, Wang H (2008). Iptakalim
inhibited endothelin-1-induced proliferation of human pulmonary
arterial smooth muscle cells through the activation of K(ATP)
channel. Vascul Pharmacol 48: 92–99.

Zhu SP, Mao ZF, Huang J, Wang JY (2009). Continuous fluoxetine
administration prevents recurrence of pulmonary arterial
hypertension and prolongs survival in rats. Clin Exp Pharmacol
Physiol 36: e1–e5.

BJP RS Baliga et al.

140 British Journal of Pharmacology (2011) 163 125–140


