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Abstract

Protein kinase B-β (PKBβ/Akt2) is a serine/threonine-specific protein kinase that has

emerged as one of the most important regulators of cell growth, differentiation, and division.

Upregulation of Akt2 in various human carcinomas, including ovarian, breast, and pancre-

atic, is a well-known tumorigenesis phenomenon. Early on, the concept of the simultaneous

administration of anticancer drugs with inhibitors of Akt2 was advocated to overcome cell

proliferation in the chemotherapeutic treatment of cancer. However, clinical studies have

not lived up to the high expectations, and several phase II and phase III clinical studies have

been terminated prematurely because of severe side effects related to the non-selective iso-

meric inhibition of Akt2. The notion that the sequence identity of pleckstrin homology (PH)

domains within Akt-isoforms is less than 30% might indicate the possibility of the develop-

ment of selective antagonists against the Akt2 PH domain. Therefore, in this study, various

in silico tools were utilized to explore the hypothesis that quinoline-type inhibitors bind in the

Akt2 PH domain. A Grid-Independent Molecular Descriptor (GRIND) analysis indicated that

two hydrogen bond acceptors, two hydrogen bond donors and one hydrophobic feature at a

certain distance from each other were important for the selective inhibition of Akt2. Our

docking results delineated the importance of Lys30 as an anchor point for mapping the dis-

tances of important amino acid residues in the binding pocket, including Lys14, Glu17,

Arg25, Asn53, Asn54 and Arg86. The binding regions identified complement the GRIND-

based pharmacophoric features.

Introduction

Akt (Protein Kinase B) is a serine/threonine kinase with three structurally homologous mam-

malian isoforms (Akt1, Akt2 and Akt3) that are respectively encoded by the genes PKBα,

PKBβ and PKBγ [1–4]. The activation of Akt facilitates growth factor-mediated cell survival by
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inhibiting apoptosis via the phosphorylation and inactivation of various pro-apoptotic signals

including Bcl-2-associated death (BAD) [5] and Forkhead box O (FOXOs) [6, 7], and promotes

cell proliferation by phosphorylation and inhibition of the tumour suppressor tuberous sclerosis

complex 2 (TSC2) and the activation of mammalian target of rapamycin complex 1 (mTORC1)

[8, 9]. Additionally, it has been reported that Akt is also involved in the activation of various

oncogenic signalling pathways such as Nuclear factor kappa B (NF-κB), c-myelocytomatosis (c-

Myc), Vascular endothelial growth factor (VEGF) and Cyclin D, thus acting as a central regula-

tor of various cellular functions including cell growth, survival, and metabolism [10].

All three Akt isoforms share a similar structural topology. Each contains a remarkably con-

served amino-terminal pleckstrin homology (PH) domain, a central serine/threonine catalytic

kinase domain (ATP-binding domain) and a small carboxy-terminal regulatory domain [4,

11]. However, the Akt isoforms differ in their physiological function, tissue distribution and

expression in various tumours [12]. For instance, Akt1 and Akt2 are ubiquitously expressed in

the liver, pancreas, colon, adipose tissue and skeletal muscle and; are involved in cell growth or

survival and glucose homeostasis [13–16]. Akt3 has limited distribution and expression in the

central nervous system, the heart, kidneys, lungs and skeletal muscle [16, 17]. Therefore, use of

selective inhibitors of these isoforms during cancer therapy is a promising concept to overcome

cell proliferation in various tumours. The highly conserved ATP-binding domain of the AGC

kinase family is associated with the promiscuous inhibition of the Akt-isoforms and might offer

various off-target toxicities [18–20] and thus has proved to be a major hurdle in developing

small molecule inhibitors against Akt. To overcome this drawback, targeting the PH domain of

Akt to interfere with its binding to phosphatidylinositol 3,4,5 trisphosphate (PIP3) and mem-

brane translocation has been proposed by several researchers in the past [21–24]. Because the

sequence identity of the PH domains of the Akt-isoforms is less than 30%, it might be possible

to develop selective antagonists against the PH domain of the Akt-isoforms [18, 25].

Several reports have described the overexpression of Akt2 in various human cancers includ-

ing, prostate, ovarian, breast, and pancreatic [26–28], and thus its role in tumorigenesis [29],

poor prognosis [30], and chemo- and radio-therapeutic resistance [31] in cancer patients have

been reported in recent investigations.

Akt2 inhibitors have been synthesized and biologically evaluated for their efficacy against

the ATP binding domain. Such inhibitors include a series of diphenyl quinoxalines [22],

imidazopyridine [32], 2-pyrimidyl-5-amidothiophenes [33], prenylated flavonoids [34, 35],

pyrimidines [36] and pyridines [37, 38]. Furthermore, ligand as well as structure-based

modelling strategies, including the support vector classification (SVC) method [39], compara-

tive molecular similarity indices analysis (CoMSIA), comparative molecular field analysis

(CoMFA) [40–42] and molecular docking simulations [40, 43] have been used for the struc-

tural optimization of the identified lead compounds. However, the results of most investiga-

tions were disappointing; only a handful of compounds have reached the clinical investigation

stage, and none could be marketed for routine clinical usage to circumvent cell proliferation

during cancer chemotherapy because of their off-target toxicity. Thus, the development of selec-

tive inhibitors of Akt2 by targeting its PH domain may be worthwhile to obtain safer and more

efficacious drugs to inhibit cell proliferation in cancer chemotherapy. However, the experimen-

tal protocols for the assessment of potency and isoform selectivity are very expensive and, thus,

are not well suited for extensive screening. Therefore, reliable in silico methods to characterize

the interactions of the Akt2 PH domain with small molecular inhibitors would be greatly bene-

ficial and help to reduce late stage failures in clinical studies. The purpose of this study was the

identification of specific 3D structural features important for the interaction with the Akt2 PH

domain. Grid-Independent Molecular Descriptor (GRIND) models were developed for this

purpose on a previously published dataset of quinoline-type inhibitors of Akt2, which are active
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against the PH domain. In addition, molecular docking of selected compounds in a homology

model of Akt2 was done to shed light on the potential binding conformations of these com-

pounds and to develop a specific binding hypothesis for the Akt2 PH domain.

Methodology

Dataset

A series of inhibitors active against the Akt2 PH domain was extracted from the literature [44–52].

The dataset is shown in S1 Table, and comprises 111 compounds which consist of pyrido [2, 3-d]-

pyrimidine, quinoxaline and pyrido [2, 3-d]-pyrizine-type quinoline derivatives. For the present

QSAR study, the reported inhibitory potencies (IC50) of the inhibitors range from 0.019 μM to

230 μM. A diverse subset selection method [53, 54] was used to divide the compounds into a train-

ing (80%) and test set (20%). Briefly, about 300 2D and 3D descriptors available in the MOE ver-

sion 2013.0802 software [55] were employed for the distance calculation of each database entry.

The test set comprised 20% of the data structures (22 compounds) that had greater distance values

from each other and the remaining 89 compounds (80%) were taken as the training set.

Calculation of Physicochemical Parameters (2D-QSAR)

The molecular builder function in MOE version 2013.0802 was used to build 3D structures of

the compounds in the dataset [55], and their energy was minimized by the MMFF94 force

field [56]. For the Hansch analysis, 2D physicochemical descriptors such as lipophilicity, polar-

izability, electronic and steric parameters were calculated with MOE version 2013.0802 [55].

Furthermore, a QuaSAR contingency descriptor selection program [57] was used to extract

the most relevant molecular descriptors for the training set. A partial least squares analysis

using a leave-one-out (LOO) method [58] was used to correlate the most important molecular

descriptors with the inhibitory potency log(1/IC50) values. To verify robustness, an external

test set of 20% compounds was used to validate the final model.

Homology Modelling

Because no crystal structure for the the Akt2 PH domain was available, a homology modelling

technique was adopted to model its 3D structure. The amino acid sequence of the Akt2 PH

domain (P31751) was retrieved from the UniProt database [59]. The crystal structure of PH

domain of Akt1 (PDB ID: 1UNQ) [60] was selected as the template on the basis of good query

coverage, sequence similarity (81%) and the highest resolution (0.98 Å). Clustal Omega [61]

was used with the default parameters to retrieve the template-target sequence alignment, and

the results were analysed via Jalview [62] which aided in the manual editing of the aligned

sequence. Briefly, a total of 100 models were built using Modeller software version 9.12 [63].

The selection of the final model was based on the energy values of each model as indicated

by the ERRAT score [64]. The energy of the selected model was further minimized using a

MMFF94 force field [56] and validated via Ramachandran analysis [65], which evaluates each

side chain conformation against an updated rotamer library. A homology model with a maxi-

mum percentage of residues or peptide bonds in the allowed regions of the Ramachandran

plot was selected for a further docking study.

Docking and Pose Analysis

To elucidate the ligand-receptor binding mode, and to obtain most probable binding confor-

mations of the dataset for the GRIND analysis, 12 training set quinoline compounds were

docked into a homology model of the Akt2 PH domain.
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Compound selection for molecular docking was based on a comprehensive structural activ-

ity relationship (SAR) analysis as explained in the results and discussion section. Pre-process-

ing of all the ligands was done with MOE version 2013.0802 [55]. The docking simulation was

performed with the energy minimized conformation of the ligands using the GOLD suite v

5.2.2 [66]. To ensure the robustness of the docking solutions, 100 poses per ligand were gener-

ated and further evaluated by Gold fitness score.

To evaluate the Gold score fitness function, a decoy test set of 5200 compounds along with

the selected 12 quinolines were re-docked in the binding pocket of the PH domain. The decoy

dataset against subtype Akt2 was retrieved from the online decoy database DUD-E [67] and

energy minimized via the MMFF94 force field [56]. To estimate the effectiveness of the dock-

ing solutions obtained, a simplest enrichment factor (EF) metric method [68] at a given per-

centage (1%, 2%, 5%) of the database was used, which is defined as:

EF ¼ ððtp=ððtpþ f pÞÞÞ =TAÞ=N

Where tp and fp represent the number of true and false positives, TA is the total number of

active compounds, and N is the total number of active and inactive compounds. The results

generated by molecular docking were visualized using a receiver operator characteristic (ROC)

curve where the true positive rate was plotted against the false positive rate. The area under the

ROC curve was used as an evaluation metric.

A complete pose selection methodology is provided in the supporting information (S1 Fig).

Briefly, to obtain the most probable binding conformations of selected quinoline analogues,

the docking solutions were further analysed using an agglomerative hierarchical cluster analy-

sis based on the RMSD of a common ligand scaffold (common scaffold clustering) [69]. The

clustering the binding poses of selected Akt2 inhibitors resulted in a total of 24 clusters at a

RMSD of 2.5 Å. Of these, only one cluster, which was designated as cluster I, accommodated

all the docked ligands (12); however, another cluster that was designated as cluster II with 10/

12 docked ligands was obtained. In order to remove any bias in the pose selection procedure,

both clusters were included for further ligand-protein interaction studies. To further prioritize

the clusters, the ligand-protein interaction patterns of both clusters were compared with SAR

data as explained in the results and discussion section. Furthermore, molecular conformations

in the selected cluster were used for the GRIND analysis, which was highly dependent on the

3D conformations of the molecules.

Grid-Independent Molecular Descriptor (GRIND) Analysis

Selected molecular conformations of quinoline analogues were imported into Pentacle v 1.07

[70] along with their inhibitory potency log(1/IC50) values. Molecular Interaction Fields

(MIFs) were calculated using different probes such as ‘DRY’ for hydrophobic interactions,

‘N1’ for hydrogen bond acceptors, ‘O’ for hydrogen bond donors and ‘TIP’ for steric hot spots

within the molecule. Moreover, each probe was iteratively placed via a GRID to calculate the

total energy as the sum of the hydrogen bond energies (Ehb), the Lennard-Jones energy (Elj)

and the electrostatic energy (Eel):

Exyz ¼
X

Ehb þ
X

Elj þ
X

Eel

The structural characteristics of the dataset explained by the GRIND descriptors were eval-

uated with the AMANDA algorithm [71], which extracts the regions with the most relevant

MIFs. The default grid space (0.5) and the energy cut-off values for probes implemented in

software Pentacle v 1.07 [70] were used to discretize the MIFs. The nodes with energy below

the cut-off value were discarded. Consistently large auto and cross correlation (CLACC)

Exploration of Binding Mode of Quinoline-Type Inhibitors at Pleckstrin Homology (PH) Domain of Akt2

PLOS ONE | DOI:10.1371/journal.pone.0168806 December 30, 2016 4 / 22



algorithms [70] in GRIND were used to encode the pre-filtered nodes, producing persistent

variable sets whose values were directly represented in a correlogram plot. The final GRIND

model was developed and validated using the leave-one-out method as explained in

2D-QSAR. Models with statistically significant r2, q2 and standard error values were further

validated using an external test set of previously discovered quinoline inhibitors.

Results and Discussion

Hansch Analysis

A multiple linear regression analysis was performed using a set of 2D physicochemical descrip-

tors to identify the most important physicochemical features for the high inhibitory potency of

quinoline-type inhibitors of Akt2. The following equation is solely based on molar refractory

(MR) and was derived using the contingency analysis tool in MOE to identify the most impor-

tant descriptors (Eq 1):

log 1jIC50ð Þ ¼ � 3 � 52250þ 0:23173�MR ð1Þ

n ¼ 89; r2 ¼ 0:56; q2

ðLOOÞ ¼ 0:54;RMSE ¼ 0:40

It is evident from the equation that MR is positively correlated with the inhibitory potency

of quinoline derivatives against the Akt2 PH domain. However, no correlation has been identi-

fied between lipophilicity and the log(1/IC50) value for the dataset (data not shown). This indi-

cates that overall polar interactions such as hydrogen bond formation have a positive impact

on the IC50 values of quinoline derivatives against the target protein. So far, no reports that

indicate that MR has an important effect on the high inhibitory potency of Akt2 inhibitors are

available. Fig 1 shows a plot of experimental and predicted inhibitory potency log(1/IC50) val-

ues of the training and test set compounds. No outliers were observed in the training data

(square), and all compounds were well-predicted with a residual value of less than one log unit

and q2 and r2 values of 0.54 and 0.56, respectively.

The external test set was also used to further validate the final model, and all compounds in

the test set (circle) were predicted with a difference of less than one log unit between the exper-

imental and predicted inhibitory potency (log(1/IC50)) for Akt2 (Fig 1). This further demon-

strated the good predictive ability of the selected QSAR model.

Homology Modelling

Because a crystal structure of the Akt2 PH domain was unavailable, a homology model was con-

structed using the highly resolved crystal structure (0.98 Å) of the Akt1 PH domain (PDB ID:

1UNQ) as a template [59]. The template structure of the activated state showed the highest

sequence similarity (81%) with the target protein. A Ramachandran plot (Fig 2) indicated that

97% of the residues lie in the favourable region and 3% in the allowed region; moreover, no resi-

due was seen in the outlier region, which further strengthened the reliability of the final model.

Docking and Pose Analysis

In order to shed light on the 3D interaction pattern and to obtain the most probable binding

conformation of ligands for further GRIND studies, selected pyrido [2,3-d]-pyrimidine ana-

logues were docked into an Akt2 homology model.

Compounds selection (Fig 3) was solely based on the SAR data. Overall, the inhibitory

potency values of the selected compounds varied from 0.019 μM to 3.706 μM. Compounds

1–6 were selected to highlight the importance of carbonyl, methyl and a terminal amino
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substituents on the piperazine ring of R1. For instance, a direct comparison of compounds 1

and 2 revealed that the presence of a carbonyl group adjacent to the piperazine ring at R1

increased the inhibitory potency of compound 1 (IC50(1): 0.019 μM) as compared to com-

pound 2 (IC50(2): 0.039 μM). The two-fold greater inhibitory potency of compound 1 might

be due to an additional hydrogen bond interaction of the carbonyl group at R1. This hypothe-

sis was further strengthened because the removal of the piperazine moiety and the replacement

of the carbonyl group with an amino group in compound 6 led to a two-order-of-magnitude

decrease in the inhibitory potency of compound 6 compared to compound 1 (IC50(1): 0.019

μM, IC50(6): 0.223 μM). Additionally, the removal of one CH2 group adjacent to the carbonyl

group at R1 (IC50 (3):0.177 μM) decreased the inhibitory potency of compound 3 by approxi-

mately one order of magnitude compared to compound 1. This might indicate a contribution

from lipophilic efficiency [72] towards inhibitory potency (LipE(1): 6.22, LipE(3): 4.55). Inter-

estingly, no significant changes in the inhibitory potency of compounds 3 and 4 have been

observed after removal of a terminal tertiary amino group at R1 in compound 4 (IC50(3):

0.177 μM, IC50(4): 0.145 μM). Similarly, the replacement of a terminal amino group in com-

pound 2 with an OH group in compound 5 had a negligible impact on the inhibitory potency

(IC50(2): 0.039 μM, IC50(5): 0.040 μM). Compounds 8–10 were selected to evaluate the impact

of R1 groups other than a piperazine ring on the inhibitory potency against Akt2. Compounds

11 and 12 were selected to investigate the role of pyrimidine (11) or 3-pyridine (12) moieties

at the R2 position in the ligand-protein interaction.

Briefly, the binding site selected included an area of 15 Å near previously known interacting

amino acid residues (Lys14, Arg15, Gly16, Glu17, Tyr18, Ile19, Lys20, Thr21, Arg23, Pro24,

Fig 1. Experimental versus predicted inhibitory potency (log(1/IC50)) values of Akt2 inhibitors. The data

points in square and circle represent training and test set compounds, respectively.

doi:10.1371/journal.pone.0168806.g001
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Arg25, Lys39, Pro51, Leu52, Asn53, Asn54, Phe55, Gln79, Ile84, Glu85, Arg86 and Phe88)

defined in mutagenesis studies [23, 25]. The Gold Score was used as the fitness score to rank

100 poses per ligand. To evaluate the binding mode prediction, 12 active quinoline derivatives

from the training set and 5200 decoy compounds retrieved from DUD-E [66] as the test set

were re-docked within the Akt2 PH domain. The results were further analysed using the

enrichment factor (EF) [68]. Respective EF values of 28.5, 19 and 21.3 at 1%, 2% and 5% from

the dataset show that the docking methodology enriched the set of active compounds. The

results were plotted with a ROC enrichment curve (Fig 4). The area under the enrichment

curve showed that the discovery rate for active ligands was significantly higher than that for

inactive ligands, which was helpful to differentiate the binding mode of active compounds

within the binding pocket. These results supported the use of the docking model as a valuable

tool for predicting the potential binding mode of selected quinoline compounds and further

validated our Akt2 homology model.

A hierarchical cluster analysis based on the RMSD of the common scaffold of the docked

ligands produced a total of 24 clusters at an RMSD of 2.5 Å. Only one cluster, which was desig-

nated as cluster I, contained all 12 docked ligands. We also identified another cluster desig-

nated as cluster II that contained 10 out of 12 docked ligands. The binding conformations of

compounds 10 and 12 were missing in cluster II.

Briefly, the binding solutions for cluster I showed that interactions with Lys14, Glu17,

Arg25, Lys30, Ser34, Asn53, Asn54 and Arg86 amino acid residues were present at 2, 4 and 7

strands of beta sheets and Thr48 at the 1st helical region of the binding cavity, as shown in Fig

5A. Of these residues, Lys30, Ser34 and Thr48 are mainly involved in hydrogen bonding with

different substitutions at R1. The R2 group is surrounded by the Lys14, Glu17, Arg25, Asn53,

and Arg86 amino acid residues while Asn54 shows hydrogen bond interactions with the quin-

oline scaffold. Binding solutions for cluster II showed interactions involving Arg15, Arg23,

Fig 2. Ramachandran plot for Akt2 PH domain homology model. The plot shows 104 amino acid residues in

the favoured region and three amino acid residues in allowed region. None of the amino acid residues lies in

disallowed region.

doi:10.1371/journal.pone.0168806.g002
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Arg25 and Arg86 amino acid residues in 1, 2, 4 and 7 strands of the beta sheets, as shown in

Fig 5B. Of these, only Arg15 is involved in hydrogen bonding with R1, while Arg23 and Arg25

residues showed interactions with substitutions at R2, as shown in Fig 5B.

In the final docking solution of compound 1 (cluster I), the quinoline and triazole rings in

the common scaffold showed respective hydrogen bond interactions with Asn54 and Arg25.

However, carbonyl group at the R1 position forms a hydrogen bond with Lys30, as shown in

Fig 6A. This is further supported by the finding of Meuillet [73], who demonstrated the inter-

action of Lys30 with sulfonamide type inhibitors against the PH domain of Akt. Moreover, a

different study elucidated that the Lys30 and Lys389 pair is involved in cross-linking between

the PH domain and the kinase domain of Akt, thus playing a crucial role in the inter-domain

conformational changes during activation and ligand binding [74].

Fig 3. Selected pyrido [2, 3-d]-pyrimidine analogues used for molecular docking along with inhibitory

potency (IC50 μM), clogp and LipE values.

doi:10.1371/journal.pone.0168806.g003
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Additionally, ligand-protein interaction profiles of the docking solutions for compound 2

revealed that Lys30 forms a hydrogen bond with a terminal amino group at R1 (Fig 6B). How-

ever, replacement of the terminal amino group of compound 2 at the R1 position with an OH

Fig 4. Comparison of the enrichments attained using the active quinoline ligands and DUD-E decoy sets

over the Akt2 protein target. Enrichment is measured using the receiver operator characteristic (ROC) curves.

The curve shows the fraction of selected decoys (x-axis) versus the fraction of active ligands (y-axis) ranked by their

docking score.

doi:10.1371/journal.pone.0168806.g004

Fig 5. Docking solutions of Akt2 obtained from common scaffold cluster analysis. (A) Binding conformation

of cluster I containing 12/12 docked ligands. (B) Binding conformation of cluster II containing 10/12 docked ligands.

doi:10.1371/journal.pone.0168806.g005
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group in compound 5 resulted in a hydrogen bond interaction shift from Lys30 to Thr48 (Fig

6B & 6C) respectively, thus resulting in a negligible difference between the inhibitory potencies

(IC50: 0.039 μM, IC50: 0.041 μM) of the two compounds. Interestingly, in both compounds 2

and 5, the carbonyl group at R1 (Fig 6B & 6C) and C = O. . .NH-Lys30 interactions are absent,

which further strengthens our hypothesis that the two-fold greater inhibitory potency of com-

pound 1 compared to compounds 2 and 5 is might be due to the additional hydrogen bond

interaction between Lys30 and the carbonyl group at R1. Interestingly, the carbonyl group at

the R1 position in both compounds 3 and 4 also showed hydrogen bond interactions with

Lys30, and the quinoline common scaffolds showed hydrogen bond interactions with Asn54

as in compound 1 (Fig 6A, 6D & 6E). However, we did not find any clear interaction for CH2

and terminal amino substitutions in the propanamide chain of R1 in compound 1, but their

absence in compound 3 and 4 resulted in an order of magnitude decrease in the inhibitory

potency (IC50) values. This might be due to the highly lipophilic characteristics of compound 1

and potentially its high membrane permeability (LipE 1: 6.22) compared to compounds 3

(LipE 3: 4.55) and 4 (LipE 4: 4.63), as shown in Fig 3. Similarly, replacement of the propana-

mide chain at R1 with an OH group results in a two-order-of-magnitude decrease in the inhib-

itory potency of compound 8 (IC50: 0.168 μM) compared to compound 1 (IC50: 0.019 μM).

However, the OH group at R1 of compound 8 also forms a hydrogen bond with Lys30 (Fig

6F). As a consequence, a two order of magnitude decrease in the inhibitory potency of com-

pound 8 compared to compound 1 (Fig 6A & 6F) could also be attributed to its low lipophilic

efficiency (LipE(1): 6.22; LipE(8): 4.42). Thus, the propanamide chain at R1 might provide a

basis for the high lipophilic efficiency in the membrane permeability for quinoline-type inhibi-

tors against the Akt2 PH domain. A similar trend has been observed for compound 11, in

which the interaction with Lys30 was shifted to the piperazine ring in the absence of an entire

propanamide chain at R1 (Fig 6F & 6G). Overall, a decreasing trend in the inhibitory potency

and lipophilic efficiency of compounds 6, 9 and 10 (IC50 (6/9/10): 0.22 μM, 0.59 μM, 3.71 μM)

(LipE (6/9/10): 4.93, 3.51, 4.58) was observed in the absence of the piperazine ring and the

replacement of propanamide chain with a primary amino, sulphide, and ether derivative at the

R1 position, respectively. Moreover, a hydrogen bond interaction was observed between Lys30

and the primary amino group at R1 in compounds 6 and 10, which further stresses the impor-

tance of the piperazine and propanamide chains for the high potency of the quinoline ana-

logues. In general, the amino group of pyridine at the R2 position and the triazole ring of the

common scaffold are surrounded by Arg25, Asn53, and Arg86 amino acid residues (Fig 6A–

6H) in all docked ligands in cluster I.

Similarly, the R1 group in the binding conformations of cluster II showed hydrogen bond

interactions with Arg15, whereas the analogous pyridine at R2 interacted with Arg25 and

Arg86 (Fig 5B). Overall, no SAR pattern was observed for the binding solutions of quinoline

analogues in cluster II. Therefore, to select the final cluster for further GRIND analysis, the

main positioning and interacting amino acid residues of both clusters of quinoline analogues

with those of previously known binding interactions of inositol-(1, 3, 4, 5)-tetrakisphosphate,

benzenesulfonamide and sulfonamide derivatives [23, 25] with the Akt2 PH domain were

compared. An overlap of Arg86 was observed between the quinoline analogues in the clusters,

the sulfonamide and the inositol derivatives. Additionally, Lys14 and Glu17 showed an overlap

between cluster I, the sulfonamide and the inositol derivatives. Asn53 only showed an overlap

between cluster I and the inositol derivatives. Cluster II only showed an overlap of Arg23 with

the sulfonamide derivatives as shown in Fig 7.

In conclusion, the ligand-protein interaction pattern identified in cluster I (maximum

docked ligands cluster i.e. 12/12) was supported by the SAR data as well as by previous interac-

tion data [23, 25] for the series. Therefore, cluster I was selected as the template for flexible
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alignment [75] of the rest of the quinoline dataset (S1 Table). The obtained ligand conforma-

tions were used to build a GRIND model for the entire dataset to investigate the 3D structural

requirements of the ligands.

Grid-Independent Molecular Descriptor (GRIND) Analysis

The molecular conformations of the data series obtained in the previous step, along with their

Akt2 inhibitory potency (log(1/IC50)) values were used as inputs for the Pentacle v 1.07 soft-

ware package [70] to develop a 3D-QSAR model using GRIND descriptors. A partial Least

Square (PLS) analysis using the leave-one-out (LOO) cross-validation procedure [57] was car-

ried out to correlate the inhibitory potency (log(1/IC50)) values with the 3D molecular struc-

tures. However, inconsistencies in some of the resultant variables produced a statistically

inferior model. A fractional factorial design (FFD) variable selection algorithm [76] was

applied to eliminate the inconsistencies in selected variables. The final model had satisfactory

statistical parameters (r2 = 0.80, q2 = 0.63) and the standard error of prediction (RMSD) was

0.37. Fig 8 is representing a plot of actual versus predicted inhibitory potency (log(1/IC50))

values (S2 Table) obtained after the LOO cross validation of the training set. It shows that all

compounds in the training set were predicted with a residual difference of less than one. Fur-

thermore, evaluation of the training model by an external test set predicted inhibitory potency

(log(1/IC50)) values of the test set data with a difference of less than one log unit between the

experimental and predicted log(1/IC50) values (Fig 8; S2 Table). No false positive or false nega-

tive predictions in both training and test data further emphasize the robustness of the final

GRIND model.

A PLS coefficient correlogram of the GRIND variables is shown in Fig 9 and depicts impor-

tant 3D structural features that directly/inversely correlate with the inhibitory potencies of the

compounds in the dataset. The PLS coefficient correlogram indicates that the O-O and N1-N1

variables are the primary positive contributors to the overall potency of the Akt2 inhibitors.

However, O-TIP has a negative contribution towards the biological activities of compounds.

More explicitly, the O-O correlogram shows two hydrogen bond donor contours desig-

nated as HBD1 and HBD2 at a mutual distance of 15.2–15.6 Å within the molecule (Fig 10,

Table 1) that represent the distance between the terminal amino groups at R1 and the piperi-

dine rings at the common scaffold in the data series, as shown in Fig 10. Interestingly, this dis-

tance feature has been observed for the highly active compounds (log(1/IC50)<1.00) but it is

absent in the least active (log(1/IC50)>1.00) compounds. Additionally, the backstage projec-

tion of the Akt2 PH domain homology model into identified hydrogen bond donor hotspots

revealed the presence of complementary carbonyl groups in the Thr48 and Asn53 amino acid

residues within the binding cavity, as shown in Fig 10. This further strengthened our docking

outcomes and the validity of our pose selection criteria. A previously pharmacophore-based

study on a benzene sulfonamide analogue revealed the presence of a single hydrogen bond

donor (HBD) in most potent inhibitors of the Akt2 PH domain [23]. The difference in number

of hydrogen bond donors in both studies might be because different chemical series have dif-

ferent hydrogen bond interaction patterns with the binding cavity of the Akt2 PH domain.

Similarly, the N1-N1 variables in Fig 9 show a positive impact of two hydrogen bond accep-

tors at a mutual distance of 21.2–21.6 Å towards the inhibitory potency of the quinoline ana-

logues, indicating the distance between the carbonyl group at R1 (HBA1) and the triazole at

Fig 6. Interaction pattern of binding solutions in cluster I. (A & B): Ligand-protein interaction of

compound 1 and 2. (C, D & E): Interaction pattern of compounds 5, 3 and 4 within the binding cavity of PH

domain of Akt2. (F, G & H): Binding poses of compound 8, 11 and 12 inside the PH domain of Akt2.

doi:10.1371/journal.pone.0168806.g006
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R2 position (HBA2) as shown by the red distance line in Fig 11. Interestingly, the two hydro-

gen bond acceptor regions identified (blue hotspots) and their mutual distances are the com-

plementary NH groups of the Lys30 and Arg25 amino acid residues. This was confirmed by

Fig 7. An overlap of interacting amino acid in cluster I & II with inositol-(1,3,4,5)-tetrakisphosphate,

benzenesulfonamide and sulfonamide derivatives within Akt2 binding cavity.

doi:10.1371/journal.pone.0168806.g007

Fig 8. Experimental versus predicted inhibitory potency (log(1/IC50)) values of quinoline type inhibitors of

Akt2. The data points in square and circle represent training and test set compounds respectively.

doi:10.1371/journal.pone.0168806.g008
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our docking results, which demonstrated the importance of Lys30 and Arg25 for the interac-

tion with the binding cavity of the Akt2 PH domain. These outcomes are also in accord with

another pharmacophore-based study on the isoquinoline analogues of Akt2 inhibitors that

demonstrated that two hydrogen bond acceptors (HBA) and one hydrogen bond donor

(HBD) were crucial for the high inhibitory potency (IC50) of isoquinoline analogues against

the PH domain of the target protein [77]. However, a recent structure-based study on the

kinase domain of Akt1 indicated the significance of one hydrogen bond acceptor and two

Fig 9. PLS coefficient profile of variables contributing positively (sharp positive peaks) and negatively

(sharp negative peaks) towards inhibitory potency of quinoline type inhibitors of Akt2. The activity of the

compounds predominantly increases with the increase in (O–O) and (N1–N1) variable value.

doi:10.1371/journal.pone.0168806.g009

Fig 10. Two hydrogen bond donor HBD (O-O) hotspot regions at a distance of 15.2–15.6Å apart within the

molecule.

doi:10.1371/journal.pone.0168806.g010
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hydrophobic features in the ligand-protein interaction profiles of diphenylmethylamine deriv-

atives [78]. Similarly, another study on a diverse dataset of compounds revealed the presence

of two hydrogen bond acceptors and two hydrophobic features interacting in highly active PH

domain inhibitors of Akt1 [25]. The difference in the number and pattern of hydrogen bond

acceptor regions in these different studies might be due to the difference in the chemical scaf-

folds of the training set that might interact differently. Additionally in our study, a hydrogen

bond acceptor (HBA1) at a distance (orange distance line) of 23.6–24.0 Å from a hydrophobic

feature (DRY-N1) within the molecules positively contributes to the overall inhibitory potency

of the quinoline analogues, as shown in Fig 11 & Table 1. Interestingly, the hydrogen bond

acceptor region (HBA1) in the molecule is the carbonyl group at R1 that is complementary to

the NH group of Ly30 and the hydrophobic region (HY) (yellow hotspots) is a pyridine sub-

stituent at R2 that is complementary to the aliphatic chain of Lys14 (Fig 11). This is in accord

with our SAR and docking outcomes regarding the role of carbonyl group at the R1 position

that confer high inhibitory potency on the quinoline analogues against the Akt2 PH domain.

This is also in accord with two different 3D-QSAR and pharmacophore studies that indicated

Table 1. Important molecular features along with their mutual distances for inhibitory potency values

of quinoline compounds against Akt2.

Molecular Features HBD2 HBA2 HY1

HBD1 15.2–15.6 Å - -

HBA1 16.8–17.2 Å 21.2–21.6 Å 23.6–24.0 Å
HBA3 7.2–7.6 Å - -

doi:10.1371/journal.pone.0168806.t001

Fig 11. Important hotspots regions for the high inhibitory potency of Akt2 inhibitors. Red distance line:

Representing a distance of 21.2–21.6 Å between two hydrogen bond acceptors HBA1 and HBA2 (blue hotspots)

within the molecule. Orange distance line: Representing a distance of 23.6–24.0 Å between hydrophobic HY

contours (yellow hotspots) from hydrogen bond acceptor (HBA1) feature. Blue distance line: Representing

hydrogen bond donor HBD2 (red hotspots) at a distance of 7.2–7.6 and 16.8–17.2 Å from hydrogen bond acceptor

HBA3 and HBA1, respectively.

doi:10.1371/journal.pone.0168806.g011
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that one hydrophobic, one aromatic and one hydrogen bond acceptor affected the inhibitory

potency of pyrrolo-pyrimidine analogues against Akt2 [79, 80].

The presence of one hydrogen bond donor and one steric hotspot indicate a molecular

boundary (O-TIP) at a mutual distance of 13.20–13.60 Å that has a negative effect on the

inhibitory potency against Akt2 inhibitors. This particular pattern was observed in 19% of

compounds while the rest of the dataset showed arbitrary behaviour which indicates the

importance of a single hydrogen bond donor at a certain distance from the steric hotspot

region within the cavity of Akt2 PH domain. Furthermore, the O-N1 pair of probes in the PLS

coefficient correlogram (Fig 9) means that the hydrogen bond donor (HBD2) and the hydro-

gen bond acceptor (HBA3) feature at a mutual distance (blue line) of 7.2–7.6 Å have a negative

impact on the overall inhibitory potency against Akt2; however, similar features (HBD2 and

HBA1) that are present at a longer distance (blue distance line) range of 16.8–17.2 Å have

a positive effect on the biological activity of the quinoline analogues against the Akt2 PH

domain. HBD2 and HBA3 represent the NH of the triazole group in the common scaffold of

the series and the amino group of piperidine, respectively. Moreover, the carbonyl group at

R1 and the pyridine ring of the common scaffold respectively encode HBA1 and HBD2 at

a greater distance (Fig 11). The hydrogen bond acceptor HBA1 (blue hotspots) and donor

HBD2 (red hotspots) at a distance of 16.8–17.2 Å are complementary to an amino group of

Lys30 and a carbonyl group of Glu17. Thus, Lys30 represents the most important interacting

region in the Akt PH domain. The distances of the other amino acid residues such as Glu17,

Arg25 and Lys14 that are complementary to identified pharmacophoric features have been cal-

culated from Lys30 and in turn complement the carbonyl group at R1.

Previously, Vyas and colleagues developed CoMFA and CoMSIA models using carboxa-

mide, pyrimidine and phenylpurine series of compounds against the Akt2 catalytic domain.

Steric and electrostatic features have been shown to play an important role in the high inhibi-

tory potency against the Akt2 catalytic domain [81]. In another study, a pharmacophore

model of pyrimidine analogues indicated that two hydrophobic features, one hydrogen bond

donor and one hydrogen bond acceptor were important in the overall activity of the com-

pounds against the Akt2catalytic domain [80]. Overall, our study provided a deeper insight into

ligand binding at the Akt2 PH domain by mapping the mutual distances of important pharma-

cophoric features (two hydrogen bond donors, three hydrogen bond acceptors and one hydro-

phobic feature) as well as the complementary distances of the interacting amino acid residues

(Lys30, Arg25, Glu17 and Lys14) in the Akt2 PH domain, as shown in Table 1. Moreover, tar-

geting the Akt PH domain might allow isoform selectivity and thus could help reduce off-target

toxicity during cancer chemotherapeutic treatments. Based on our current findings, we suggest

that a more potent inhibitor against the Akt2 PH domain might be obtained by (i) increasing

the hydrogen bond acceptor strength at R1; (ii) increasing the length of the propanamide chain

at R1 to aid in achieving a high lipophilic efficiency or membrane permeability; (iii) maintain-

ing a hydrogen bond acceptor (R1) distance of 16.8–17.2 Å, 21.2–21.6 Å and 23.6–24.0 Å from

a hydrogen bond donor, another hydrogen bond acceptor and a hydrophobic group, respec-

tively; and (iv) avoiding a hydrogen bond acceptor and donor distance of� 7.6.

External validation

In order to further elucidate the robustness of the final QSAR and GRIND models, a previously

published external test set for benzimidazol-2-one was used for model evaluation [50] (Fig 12).

The biological activity (IC50) values of the test data against the Akt2 PH domain varied

from 0.556–8.141 μM, and compound T_5 was a highly active (IC50 = 0.556 μM) analogue, as

shown in Table 2.
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All inhibitory potency (IC50) values were expressed as the average of at least two

determinations ± standard deviation. The biological activity values of all compounds in the

external test set were predicted by our 2D-QSAR and GRIND models. All compounds in the

test set were predicted with a difference of less than one log unit between the actual and pre-

dicted biological activity (Table 2).

Fig 12. Selected 3-[1-[[4-(3-phenyl-2-pyridyl)phenyl]methyl]-4-piperidyl]-1H-benzimidazol-2-one analogues

used for external validation.

doi:10.1371/journal.pone.0168806.g012

Table 2. Selected 3-[1-[[4-(3-phenyl-2-pyridyl)phenyl]methyl]-4-piperidyl]-1H-benzimidazol-2-one analogues used for external validation of

2D-QSAR and GRIND model along with experimental and predicted inhibitory potency (IC50 μM) values.

Compound Experimental Biological Activity IC50 (μM) ± SE log(1/IC50) Predicted log(1/IC50) logP(o/w)

2D-QSAR GRIND (3D-QSAR)

T_1 7.356±5104 -0.867 -0.044 -0.102 6.379

T_2 2.062±1021 -0.314 -0.103 0.115 5.115

T_3 8.141±2584 -0.911 0.013 0.063 5.434

T_4 7.356±5104 -0.866 -0.410 0.099 5.892

T_5 0.556±26 0.255 0.065 0.061 5.505

T_6 1.228±26 -0.089 0.220 0.210 4.811

T_7 0.839±53 0.076 0.579 0.523 5.077

doi:10.1371/journal.pone.0168806.t002
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Overall, in the present study, the binding hypotheses against the Akt2 PH domain derived

from different models were complementary with each other as well as with the available muta-

genesis data, thus indicating the fitness of our models. Moreover, the 2D-QSAR and GRIND

models we developed also predicted the inhibitory potency of an external test set (Table 2)

with reasonable accuracy, which further indicates the robustness of our models. In a follow-up

study, further generalization of the fact will be elucidated by designing and pharmacological

testing of new libraries of a diverse dataset of inhibitors against the Akt2 PH domain.

Conclusion

In this study, we elucidated the binding hypothesis and 3D structural requirements for the

selective inhibition of quinoline analogues in the binding pocket of the Akt2 PH domain.

Although docking studies using homology models are always prone to error, our docking

results augmented SAR, 2D-QSAR and Grid-Independent Molecular Descriptor (GRIND)

analyses as well as the available experimental data. A Hansch analysis indicated the positive

effects of hydrogen bond formation on the inhibitory potency against the target protein. Our

GRIND model indicated the presence of two hydrogen bond acceptors, two hydrogen bond

donors and one hydrophobic region at a certain distance in quinoline analogues that are highly

potent against the Akt2 PH domain. A molecular docking study indicated the role of the

Glu17, Arg25, Lys30, Asn52 and Arg86 residues in the interaction of the quinoline analogues

in the binding region of the Akt2 PH domain. Notably, the Lys30 residue was the most im-

portant interaction point in the binding pocket complementary to the carbonyl group at R,

which might act as an anchor point for mapping the distances of important pharmacophoric

features identified by the GRIND model, thus confirming its contribution to the high inhibi-

tory potency against the Akt2 PH domain. The application of a SAR-guided pose analysis to

develop 3D-GRIND models to retrieve the binding hypothesis as well as the 3D structural

requirements for inhibitors against the Akt2 PH domain could pave the way towards the

design of antagonists specifically directed against the other isoforms of Akt (Akt1-3), and

potentially guide the development of cancer-specific chemotherapeutic treatments with lim-

ited side effects.
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71. Durán Alcaide Á, Martı́nez GC, Pastor Maeso M. Development and validation of AMANDA, a new algo-

rithm for selecting highly relevant regions in Molecular Interaction Fields. J Chem Inf Model 2008 48

(9): 1813–23. 2008. doi: 10.1021/ci800037t PMID: 18693718

72. Jabeen I, Pleban K, Rinner U, Chiba P, Ecker GF. Structure–activity relationships, ligand efficiency,

and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter P-glyco-

protein. Journal of medicinal chemistry. 2012; 55(7):3261–73. doi: 10.1021/jm201705f PMID:

22452412

73. J Meuillet E. Novel inhibitors of AKT: assessment of a different approach targeting the pleckstrin homol-

ogy domain. Current medicinal chemistry. 2011; 18(18):2727–42. PMID: 21649580

74. Huang BX, Kim H-Y. Interdomain conformational changes in Akt activation revealed by chemical cross-

linking and tandem mass spectrometry. Molecular & Cellular Proteomics. 2006; 5(6):1045–53.

75. Labute P, Williams C, Feher M, Sourial E, Schmidt JM. Flexible alignment of small molecules. Journal

of medicinal chemistry. 2001; 44(10):1483–90 PMID: 11334559

76. Baroni M, Costantino G, Cruciani G, Riganelli D, Valigi R, Clementi S. Generating Optimal Linear PLS

Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D-QSAR Problems. Quantitative

Structure-Activity Relationships. 1993; 12(1):9–20.

77. Zhu G-D, Gong J, Claiborne A, Woods KW, Gandhi VB, Thomas S, et al. Isoquinoline–pyridine-based

protein kinase B/Akt antagonists: SAR and in vivo antitumor activity. Bioorganic & medicinal chemistry

letters. 2006; 16(12):3150–5.

78. Liu T, Zhan W, Wang Y, Zhang L, Yang B, Dong X, et al. Structure-based design, synthesis and biologi-

cal evaluation of diphenylmethylamine derivatives as novel Akt1 inhibitors. European journal of medici-

nal chemistry. 2014; 73:167–76. doi: 10.1016/j.ejmech.2013.11.036 PMID: 24389511

79. Fei J, Zhou L, Liu T, Tang X-Y. Pharmacophore modeling, virtual screening, and molecular docking

studies for discovery of novel Akt2 inhibitors. International journal of medical sciences. 2013; 10(3):265.

doi: 10.7150/ijms.5344 PMID: 23372433

80. Vyas VK, Ghate M, Goel A. Pharmacophore modeling, virtual screening, docking and in silico ADMET

analysis of protein kinase B (PKB β) inhibitors. Journal of Molecular Graphics and Modelling. 2013;

42:17–25. doi: 10.1016/j.jmgm.2013.01.010 PMID: 23507201

81. Vyas VK, Gupta N, Ghate M. CoMFA and CoMSIA analysis of protein kinase B (PKBβ) inhibitors using

various alignment methods. Medicinal Chemistry Research. 2013; 22(12):6046–62.

Exploration of Binding Mode of Quinoline-Type Inhibitors at Pleckstrin Homology (PH) Domain of Akt2

PLOS ONE | DOI:10.1371/journal.pone.0168806 December 30, 2016 22 / 22

http://dx.doi.org/10.1042/BJ20031229
http://www.ncbi.nlm.nih.gov/pubmed/12964941
http://dx.doi.org/10.1093/bioinformatics/btp033
http://dx.doi.org/10.1093/bioinformatics/btp033
http://www.ncbi.nlm.nih.gov/pubmed/19151095
http://dx.doi.org/10.1002/prot.10286
http://dx.doi.org/10.1002/prot.10286
http://www.ncbi.nlm.nih.gov/pubmed/12557186
http://www.ncbi.nlm.nih.gov/pubmed/7823319
http://dx.doi.org/10.1021/jm300687e
http://www.ncbi.nlm.nih.gov/pubmed/22716043
http://dx.doi.org/10.1021/ci0503255
http://www.ncbi.nlm.nih.gov/pubmed/16426074
http://www.ncbi.nlm.nih.gov/pubmed/9987851
http://dx.doi.org/10.1021/ci800037t
http://www.ncbi.nlm.nih.gov/pubmed/18693718
http://dx.doi.org/10.1021/jm201705f
http://www.ncbi.nlm.nih.gov/pubmed/22452412
http://www.ncbi.nlm.nih.gov/pubmed/21649580
http://www.ncbi.nlm.nih.gov/pubmed/11334559
http://dx.doi.org/10.1016/j.ejmech.2013.11.036
http://www.ncbi.nlm.nih.gov/pubmed/24389511
http://dx.doi.org/10.7150/ijms.5344
http://www.ncbi.nlm.nih.gov/pubmed/23372433
http://dx.doi.org/10.1016/j.jmgm.2013.01.010
http://www.ncbi.nlm.nih.gov/pubmed/23507201

