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Abstract: Camellia oleifera is one of the most valuable woody edible-oil crops, and anthracnose
seriously afflicts its yield and quality. We recently showed that the CfSnt2 regulates the pathogenicity
of Colletotrichum fructicola, the dominant causal agent of anthracnose on C. oleifera. However, the
molecular mechanisms of CfSnt2-mediated pathogenesis remain largely unknown. Here, we found
that CfSnt2 is localized to the nucleus to regulate the deacetylation of histone H3. The further
transcriptomic analysis revealed that CfSnt2 mediates the expression of global genes, including
most autophagy-related genes. Furthermore, we provided evidence showing that CfSnt2 negatively
regulates autophagy and is involved in the responses to host-derived ROS and ER stresses. These
combined functions contribute to the pivotal roles of CfSnt2 on pathogenicity. Taken together, our
studies not only illustrate how CfSnt2 functions in the nucleus, but also link its roles on the autophagy
and responses to host-derived stresses with pathogenicity in C. fructicola.
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1. Introduction

Camellia oleifera is one of the most valuable woody edible-oil crop and has been grown
in China for over 2300 years [1]. The oil extracted from its seed has been widely utilized
in cooking, lubricant, and cosmetics [2,3]. Through the planting areas of C. oleifera was
4.39 million hectares in China, and anthracnose afflicted its high yield and quality [4–6]. We
recently showed that the dominant causal agent of anthracnose on C. oleifera is Colletotrichum
fructicola, and CfSnt2 regulates the pathogenicity of C. fructicola through mediating the
formation of functional appressorium [6,7]. However, the molecular mechanisms of CfSnt2-
mediated pathogenesis is unclear.

The Snt2 protein was initially identified and named for the DNA binding SANT
domain, and it was widely conserved in fungal species [8,9]. The ScSnt2 acts as an E3
ubiquitin ligase to regulate the degradation of excess histone proteins H3 and H4 [8]. The
yeast ScSnt2 also recruits histone deacetylase ScRpd3 to the promoters of genes related
to oxidative stress for the transcriptional response [10]. In phytopathogenic fungi, there
are only limited studies on Snt2 proteins. In Fusarium oxysporum and Neurospora crassa,
Snt2 proteins mediate fungal respiration and reactive oxidative stress by regulating the
expression of oxidase genes [11]. Further study in F. oxysporum firstly revealed the roles of
Snt2 in fungal autophagy and pathogenicity [12]. Furthermore, in Fusarium graminearum,
Snt2 links histone deacetylation, autophagy, and pathogenicity [13].

Macroautophagy/autophagy is a highly conserved process, by which proteins, mem-
branes, and organelles are degraded in the vacuole (lysosome) and recycled to satisfy energy
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needs [14–17]. A growing body of evidence points to the pivotal roles of autophagy in fun-
gal pathogenicity [18–20]. In Magnaporthe oryzae, autophagy is important for the formation
of functional appressoria, lipid metabolism, and pathogenicity [21,22]. In F. graminearum,
targeted gene deletion of autophagy-related genes FgATG9 showed decreased pathogenicity
in wheat, which was caused by the severe defects in autophagy and lipid metabolism [23].
We also previously revealed that the CfATG8 gene deletion mutant in C. fructicola was
non-pathogenic to C. oleifera [24].

Recent studies in the phytopathogenic fungus have shown the critical regulatory
roles of acetylation levels for autophagy-dependent pathogenicity. The histone acetyltrans-
ferase MoHat1 governs autophagy-dependent pathogenicity through acetylates MoAtg3
and MoAtg9 in M. oryzae [25]. The M. oryzae histone acetyltransferase MoGcn5 links the
acetylation of MoAtg7 between the light-induced autophagy and pathogenicity [26]. The
F. graminearum FgGcn5 acetylates histone H3 and FgAtg8, governing the function associated
with autophagy and pathogenicity [27]. Our recent study also revealed that CfGcn5 regu-
lates development and pathogenicity in C. fructicola [28]. Whether acetylation modifications
are related with autophagy-dependent pathogenicity in C. fructicola is unknown.

In the present study, we revealed that CfSnt2 is localized to nucleus for the deacety-
lation of histone H3, resulting in its regulation of global genes expression. Meanwhile,
we revealed that CfSnt2 mediates the expression of multiple CfATG genes and negatively
regulates autophagy. In addition, we also demonstrated that CfSnt2 is involved in the
tolerance of oxidative and endoplasmic reticulum (ER) stress.

2. Results
2.1. CfSnt2 Is Localized to the Nucleus and Mediates H3 Deacetylation

To further dissect the function of CfSnt2, we fused a GFP tag to the C-terminus of
CfSnt2 and found that CfSnt2-GFP showed a slight fluorescence affecting visualization.
Therefore, we fused the GFP tag to the N-terminus of CfSnt2 and found that GFP-CfSnt2 was
clearly visible as spot green fluorescence. To investigate whether the spot green fluorescence
represents the nucleus, we fused the RFP tag to histone H1, a widely used nucleus marker.
The co-localization of GFP-CfSnt2 and H1-RFP showed that CfSnt2 localized to the nucleus
in the mid and tip regions of hyphae and conidia (Figure 1A,B). We then wondered whether
CfSnt2 mediates H3 deacetylation in the nucleus. The previous study in M. oryzae revealed
that H3K18 acetylation (H3K18ac) mediated by the histone acetyltransferase MoTig1 is
essential for pathogenicity [29]. The immunoblotting assays, using the anti-H3K18ac and
anti-H3 antibodies, revealed the increased acetylation levels of histone H3K18 in ∆Cfsnt2
mutant, compared with the wide type (WT) and complemented strains ∆Cfsnt2/CfSNT2-
1 and ∆Cfsnt2/CfSNT2-2 (Figure 1C). Since the complemented strains ∆Cfsnt2/CfSNT2-1
and ∆Cfsnt2/CfSNT2-2 showed similar phenotypes, we selected ∆Cfsnt2/CfSNT2-1 for our
further study.

2.2. Transcriptomic Analysis of the WT and ∆Cfsnt2 Mutant

To test the roles of CfSnt2-mediated H3 deacetylation in the nucleus, we carried out
transcriptome analysis for the WT and ∆CfSnt2 mutant by RNA sequencing (RNA-seq).
Three biological replicates were established for each strain, and six RNA-seq data sets were
generated, among which, more than 90% reads were mapped to the genome of C. fructicola
(GenBank accession number: GCA_000319635.2). All raw data were submitted to the NCBI
SRA database, with accession numbers SRR19052615, SRR19052614, and SRR19052613
for WT 1-3 and SRR19052618, SRR19052617, and SRR19052616 for ∆Cfsnt2 1-3. Principal
component analysis (PCA) of WT and ∆Cfsnt2 mutant revealed a clear separation of the
two tested strains, as well as the proximity of the biological replicates (Figure 2A). Gene
expression analysis revealed that a total of 9572 predicted genes were expressed in both the
WT and ∆Cfsnt2 mutant, and 990 and 924 predicted genes were specifically expressed in
the WT and ∆Cfsnt2 mutant (Figure 2B). Differentially expressed genes (DEGs) analysis
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showed that 2408 predicted genes were up-regulated and 2565 predicted genes were down-
regulated at least two-fold (p < 0.01) in the ∆Cfsnt2 mutant (Figure 2C).
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Figure 1. CfSnt2 is localized to the nucleus and mediates the deacetylation of H3K18. (A) The
localization pattern of CfSnt2 in the mid and tip regions of the hyphae. The merged images of
GFP-CfSnt2 and H1-RFP indicated that GFP-CfSnt2 is localized to the nucleus. (B) Localization
pattern of CfSnt2 in conidia. Bar = 5 µm. (C) Total proteins extracted from mycelia of WT, ∆Cfsnt2
mutant and complemented strains ∆Cfsnt2/CfSNT2-1 and ∆Cfsnt2/CfSNT2-2 were immunoblotted
with the anti-H3K18ac and anti-H3 antibodies. The intensity of the protein bands were analyzed by
Image J, and the intensity of WT was defined as a reference, with 1.00.

2.3. Gene Ontology Enrichment of the DEGs

All the DEGs were further analyzed by gene ontology (GO) enrichment (p < 0.01),
and a total of 25 GO enrichment terms were categorized into three main categories: bi-
ological process, cellular component, and molecular function (Figure 3). The biological
process contains nine terms, including translation, response to oxidative stress, amine
metabolic process, cellular amide metabolic process, fatty acid biosynthetic process, repli-
cation fork protection, amide biosynthetic process, invasive growth in response to glu-
cose, and limitation peptide metabolic process. The cellular component contains three
terms, including ribosome, integral component of membrane, and small ribosomal subunit.
The molecular function contains 13 terms, including structural constituent of ribosome,
N-acetyltransferase activity, ATPase activity, coupled to transmembrane movement of
substances, pyridoxal phosphate binding, aspartic-type endopeptidase activity, molybde-
num ion binding, glutamate-ammonia ligase activity, glutaminase activity, ATPase activity,
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alpha-1,6-mannosyltransferase activity, unfolded protein binding, copper ion binding, and
nucleotidyltransferase activity.
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green dots indicate downregulated genes; black dots indicate unchanged genes.
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2.4. KEGG Pathway Enrichment of the DEGs

Significantly enriched (p < 0.01) KEGG pathways of the DEGs were also analyzed. The
results showed that 10 KEGG pathways were significantly enriched, including one carbon
pool by folate, arginine biosynthesis, nitrogen metabolism, steroid biosynthesis, ribosome,
nicotinate and nicotinamide metabolism, glyoxylate and dicarboxylate metabolism, alanine,
aspartate and glutamate metabolism, butanoate metabolism, and glycine, serine, and
threonine metabolism (Figure 4).
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2.5. CfSnt2 Mediates the Expression of Multiple CfATG Genes

To verify the gene expression profiles in the transcriptomic data, three up-regulated
and three down-regulated genes were also analyzed by qRT-PCR. Though the magnitude
of fold changes showed a slight change to the transcriptomic data, the qRT-PCR data were
all consistent with that from the transcriptomic data (Figure 5A). In the RNA-seq data,
we also found most autophagy-related genes (Table S1), particularly for the homologs
of pathogenicity-associated macro-autophagy in M. oryzae [21], were among the DEGs.
The qRT-PCR analysis demonstrated the upregulation of 13 CfATGs among 15 genes,
including CfATG1, CfATG2, CfATG3, CfATG4, CfATG6, CfATG7, CfATG8, CfATG9, CfATG10,
CfATG12, CfATG13, CfATG15, and CfATG18 (Figure 5B). These results revealed that CfSnt2
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mediates the expression of most autophagy-related genes, and we hypothesized its roles
in autophagy.

J. Fungi 2022, 8, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 5. The gene expression levels in WT and ΔCfsnt2 mutant. (A) QRT-PCR analysis of the ex-

pression levels for selected 3 up-regulated genes and 3 down-regulated genes in the transcriptomic 

data of WT and ΔCfsnt2 mutant. (B) QRT-PCR analysis of the expression levels of CfATG genes in 

WT and ΔCfsnt2 mutant. Error bars indicate standard deviation (SD) of three biological replicates 

(** p < 0.01). 

2.6. CfSnt2 Is Involved in the Rapamycin Response 

To demonstrate our hypothesis, we firstly test whether CfSnt2 is involved in the re-

sponse of rapamycin, which induces autophagy via the Tor (target of rapamycin) signal-

ing pathway [30,31]. When exposed to 25 nM rapamycin, the ΔCfsnt2 mutant exhibited a 

significantly higher inhibition rate than that of WT and ΔCfsnt2/CfSNT2 (Figure 6A,B). 

The results indicated that CfSnt2 is involved in the rapamycin response. 

 

Figure 6. CfSnt2 is involved in the rapamycin response. (A) The strains of WT, ΔCfsnt2 mutant, and 

complemented strain ΔCfsnt2/CfSNT2 were incubated in PDA media or PDA media with 25 nM 

rapamycin at 28 °C for 3 days. (B) Statistical analysis of inhibited rates of the strains to rapamycin 

stress. Three independent experiments were performed, with three biological replicates each time. 

Error bars indicate SD of three replicates (** p < 0.01). 

2.7. CfSnt2 Negatively Regulates Autophagy 

To examine how CfSnt2 mediates autophagy, the fusion gene GFP-CfATG8, homo-

logs of which were widely used as markers for macro-autophagy in other organisms 

[32,33], were introduced into the WT and ΔCfsnt2. When grown in PDA-rich medium, 

ΔCfsnt2 mutant proved to be more autophagosomes than WT (Figure 7A,B). We further 

assessed autophagic flux by immunoblot in MM-N condition, another way to induce au-

tophagy [34]. The free GFP (26 kDa) and full length GFP-CfAtg8 (46 kDa) could easily be 

Figure 5. The gene expression levels in WT and ∆Cfsnt2 mutant. (A) QRT-PCR analysis of the
expression levels for selected 3 up-regulated genes and 3 down-regulated genes in the transcriptomic
data of WT and ∆Cfsnt2 mutant. (B) QRT-PCR analysis of the expression levels of CfATG genes in
WT and ∆Cfsnt2 mutant. Error bars indicate standard deviation (SD) of three biological replicates
(** p < 0.01).

2.6. CfSnt2 Is Involved in the Rapamycin Response

To demonstrate our hypothesis, we firstly test whether CfSnt2 is involved in the
response of rapamycin, which induces autophagy via the Tor (target of rapamycin) signaling
pathway [30,31]. When exposed to 25 nM rapamycin, the ∆Cfsnt2 mutant exhibited a
significantly higher inhibition rate than that of WT and ∆Cfsnt2/CfSNT2 (Figure 6A,B). The
results indicated that CfSnt2 is involved in the rapamycin response.
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complemented strain ∆Cfsnt2/CfSNT2 were incubated in PDA media or PDA media with 25 nM
rapamycin at 28 ◦C for 3 days. (B) Statistical analysis of inhibited rates of the strains to rapamycin
stress. Three independent experiments were performed, with three biological replicates each time.
Error bars indicate SD of three replicates (** p < 0.01).

2.7. CfSnt2 Negatively Regulates Autophagy

To examine how CfSnt2 mediates autophagy, the fusion gene GFP-CfATG8, homologs
of which were widely used as markers for macro-autophagy in other organisms [32,33],
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were introduced into the WT and ∆Cfsnt2. When grown in PDA-rich medium, ∆Cfsnt2
mutant proved to be more autophagosomes than WT (Figure 7A,B). We further assessed
autophagic flux by immunoblot in MM-N condition, another way to induce autophagy [34].
The free GFP (26 kDa) and full length GFP-CfAtg8 (46 kDa) could easily be detected in both
the WT- and ∆Cfsnt2 mutant-expressing GFP-CfATG8 strains. Before MM-N induction,
WT showed lower amounts of free GFP than GFP-CfAtg8, but the ∆Cfsnt2 mutant showed
comparable free GFP to GFP-CfAtg8. Upon MM-N induction for 4 h, ∆Cfsnt2 mutant
contained a slight GFP-CfAtg8, which contrasted with the still large amounts of GFP-
CfAtg8 in WT (Figure 7C). The level of autophagy was also evaluated by measuring free
GFP, compared with the total of free GFP and intact GFP-CfAtg8 together. The ratio of GFP
in ∆Cfsnt2 mutant was significantly higher than that in WT, both in the non-induction and
induction conditions (Figure 7D), indicating the increased autophagy in ∆Cfsnt2 mutant.
The results revealed that CfSnt2 negatively regulates autophagy.
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in WT and ∆Cfsnt2 mutant. Strains expressing the GFP-CfATG8 in WT and ∆Cfsnt2 mutant were
observed by fluorescent microscopy. Bar = 5 µm. (B) Statistical analysis of autophagosome numbers
in hyphal tips. Error bars indicate SD and asterisk represents significant differences (* p < 0.05).
(C) Immunoblot analysis of GFP-CfAtg8 proteolysis. Strains expressing the GFP-CfATG8 in WT
and ∆Cfsnt2 mutant were cultured in MM-N for 4 h, and the mycelial proteins were extracted and
immunoblotted with anti-GFP antibody. (D) Relative intensity of GFP/(GFP-CfAtg8 + GFP) ratios.
Asterisks represent significant differences (** p < 0.01).

2.8. CfSnt2 Regulates Pathogenicity and the Responses to Oxidative and ER Stresses

CfSnt2 is involved in pathogenicity in C. fructicola (Figure 8A,B), partially due to its
roles in the formation of functional appressoria [7]. To explore other underlying mechanism
in the pathogenesis, we found that the response to oxidative stress and unfolded protein
binding terms are among the GO enrichment of the DEGs. The reactive oxygen species
(ROS) is a general defense response for the plants in plant–pathogen interactions, and it is
necessary for the successful infection of pathogens to overcome host-derived ROS [35,36].
Additionally, the previous studies showed that pathogens must also activate the unfolded
protein response to face host-derived ER stress during infection [37,38]. Thus, we used H2O2
and dithiothreitol (DTT) to mimic the host-derived ROS and ER stress, respectively. We
found that ∆Cfsnt2 mutant were more sensitive to both H2O2 and DTT stresses, compared
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with WT and ∆Cfsnt2/CfSNT2 (Figure 8C,D). These results indicated that CfSnt2 mediates
pathogenicity and the responses to oxidative and ER stresses.
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Figure 8. CfSnt2 regulates pathogenicity and the responses to oxidative and ER stresses. (A) Wounded
C. oleifera leaves were inoculated with mycelial plugs of WT, ∆Cfsnt2, and ∆Cfsnt2/CfSNT2. Diseased
symptoms were observed at 4 days post inoculation. CK: control check, agar plugs were inoculated
on wounded leaves. (B) Statistical analysis of lesion sizes measured by Image J. Asterisks represent
significant differences (** p < 0.01). (C) The strains of WT, ∆Cfsnt2 mutant, and ∆Cfsnt2/CfSNT2 were
incubated in PDA media or PDA media with H2O2 and DTT at 28 ◦C for 3 days. (D) Statistical
analysis of inhibited rates of the strains to oxidative and ER stresses. Three independent experiments
were performed with three biological replicates each time. Error bars indicate SD of three replicates
(** p < 0.01).

3. Discussion

Colletotrichum spp. is ranked as the eighth most important fungal phytopathogens
in plant pathology and causes anthracnose disease on almost every crop [39]. Despite
the economical and genetic importance, its pathogenesis remains in a state that is largely
unclear, particularly for the species of C. fructicola. We previously revealed that CfSnt2
regulates the pathogenicity by mediating the formation of functional appressorium in
C. fructicola, but the underlying molecular mechanisms are unknown [3]. In this study,
we not only provided evidence regarding how the CfSnt2 mechanism regulates global
gene expressions, but also highlighted its roles in the pathogenicity-related autophagy and
stress responses.

The yeast ScSnt2 protein was localized to the promoters of the stress response genes in
the nucleus [10]. The M. oryzae MoSnt2 protein was also localized to the nucleus in different
developmental stages [13]. Consistent with these studies, our research revealed that CfSnt2
was localized to the nucleus in the hyphae and conidia of C. fructicola, thus indicating its
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conserved regulatory roles in the nucleus. The further decreased acetylation level of H3K18
supports its functions on histone deacetylation in nucleus.

Acetylation and deacetylation of histones are pivotal epigenetic modifications for the
transcription of genes [40,41]. Over the past decade, growing cases have indicated that the
epigenetic acetylation and deacetylation of histones share important functions in fungal patho-
genesis by regulating gene expression and other mechanisms [42,43]. The large amount of
DEGs (2408 up-regulated and 2565 down-regulated) in the ∆Cfsnt2 mutant of the transcrip-
tomic data revealed its roles in gene expression through histone deacetylation. However,
histone deacetylation is generally associated with transcriptional inactivation [40,44]. The
slightly more down-regulated genes, rather than up-regulated genes, indicated that Cfsnt2
might also mediate the acetylation of other histones. This was apparent in the recent study
of F. graminearum, which demonstrated that FgFng3 not only regulates H3 acetylation, but
also mediates H4 deacetylation [45]. This might be interesting for illustrating the link between
CfSnt2-mediated acetylation and gene expression, and further studies are warranted.

The GO and KEGG enrichment analysis of the DEGs indicated that CfSnt2 regulates
the genes that are mainly involved in translation, ribosomal biogenesis, amino acid, and
carbohydrate biosynthesis/metabolism, thus revealing the basic roles of CfSnt2 in the physi-
ological process of C. fructicola. Particularly, most of the pathogenicity-related CfATG genes
were significantly increased in the ∆Cfsnt2 mutant, thus forecasting its roles in autophagy.
The contributions of CfSnt2 on rapamycin stress response further confirmed this hypothesis.
Indeed, the autophagosome abundance was increased in the ∆Cfsnt2 mutant, which showed
similar phenotype to the F. graminearum and F.oxysporum ∆snt2 mutant [12,13]. Again, the
furthermore immunoblot analysis also demonstrated the negative role of CfSnt2 in autophagy.
Multiple evidences point to the essential roles of autophagy in fungal pathogenicity [21,38].
The disruption of autophagic homeostasis in the ∆Cfsnt2 mutant might be one reason for the
pathogenicity defects. Additionally, the ∆Cfsnt2 mutant is sensitive to the mimicked host-
derived ROS and ER stresses, which might be another reason for its pathogenicity defects.

In summary, we demonstrated that CfSnt2 is localized to the nucleus, whereby it
reduces the acetylation abundance of histone H3, resulting in the changed expression of
multiple genes associated with developmental processes, including pathogenicity-related
autophagy and ROS and ER stress responses. The identification of epigenetic histone and
non-histone modifications for CfSnt2 in pathogenesis remains interesting work, and further
studies are highly warranted.

4. Materials and Methods
4.1. Strains and Culture Conditions

The C. fructicola CFLH16 strain was used as WT in this study. The CfSNT2 gene deletion
mutant was generated by the standard one-step gene replacement strategy in our previous
study [7]. Briefly, two~1.0 kb sequences flanking the CfSNT2 gene were PCR amplified
and overlapped to the flanks of hygromycin resistance cassette (1.4 kb), respectively. After
sequencing, the~3.4 kb fragment was transformed into the protoplasts of WT for gene
deletion. The complement fragment, which contains the entire CfSNT2 gene and its native
promoter region, was amplified by PCR and inserted into pYF11 (bleomycin resistance) to
complement the ∆Cfsnt2 mutant. All strains were cultured on potato dextrose agar (PDA)
agar plates in the darkness at 28 ◦C. Liquid potato dextrose broth (PDB) medium was used
to culture the mycelia for DNA, RNA, and protein extraction.

To test the autophagic flux, the strains were incubated in MM-N medium (0.52 g KCl,
0.152 g MgSO4·7H2O, 1.52 g KH2PO4, 0.01 g vitamin B1, 1 mL trace elements, and 10 g
D-glucose in 1 L of distilled water).

4.2. Generation of the CfSnt2-GFP, H1-RFP, and GFP-CfSnt2 Constructs

For generating CfSnt2-GFP, PCR fragment of the~1.5 kb CfSNT2 native promoter and
gene coding sequence was co-transformed with XhoI-digested pYF11 into yeast strain
XK1-25 [46]. Then, the fused CfSnt2-GFP construct was transformed into the Escherichia
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coli TreliefTM 5α (TsingKe Biological Technology Co., Ltd, Beijing, China) and further
sequenced. Similarly, the H1-RFP construct was generated by cloning the H1 gene into the
pHZ126 vector (hygromycin resistance). For generating GFP-CfSnt2, the native promoter,
0.7 kb GFP fragment, and full-length of CfSNT2 were successively fused together and then
inserted into the pYF11.

4.3. Localization Assays

The hyphae and conidia of the strain co-transformed with GFP-CfSnt2, and H1-RFP
were visualized under a fluorescent microscope (ZEISS, Axio Observer. A1, Jena, Germany).

4.4. Protein Extraction and Immunoblot Analysis

The protein was extracted as described previously [38]. Briefly, the mycelia were
filtered with Mirocloth, blotted dry, and ground into powder in liquid nitrogen using
a mortar and pestle. The mycelial powder was then re-suspended in 1 mL RIPA lysis
buffer (1%Triton X-100, 1% sodium deoxycholate, 0.1% SDS, (EpiZyme, PC101)) with 10 uL
protease inhibitor cocktail (EpiZyme, GRF101), followed by being shaken once each (10 min)
for 30 min on ice. The samples were centrifuged under 12,000× g at 4 ◦C for 20 min, and
the supernatant liquids were acquired as total proteins. The immunoblot analysis was
performed with 10% SDS-PAGE, followed by GFP (1:10,000, ABways, AB0045), α-H3K18ac
(1:3000, Beyotime, AF5617), and α-H3 (1:2000, Cell Signaling Technology, 4499) antibodies.

4.5. Transcriptome Sequencing and Analysis

The RNA of the collected sample was extracted from WT and ∆Cfsnt2 mutant with
three biological replicates for each strain. Transcriptome sequencing was carried out by the
Biomarker Technologies Company (Beijing, China). The libraries were sequenced on an
Illumina HiSeq platform with 150 bp paired-end reads, followed by the alignment to the
reference genome by Hisat2 [47]. DEG analysis were performed with an adjusted p < 0.01
and fold change ≥2 by DESeq2 [48].

4.6. QRT-PCR Assays

Total RNA were reverse transcribed into first-strand cDNA. The qRT-PCR using
2×TSINGKE® Master qPCR Mix (SYBR Green I, TsingKe Biological Technology Co., Ltd,
Beijing, China) with primers (Table S2) was run on the ABI QuantStudio 3. The ACTIN
gene was used as an internal reference for relative expression analysis. The experiment was
repeated in at least 3 biological experiments independently, with 3 replicates.

4.7. Stress Response Analysis

The strains were cultured on PDA, and PDA added with 25 nM rapamycin, 10 mM or
20 mM H2O2, and 5 mM DTT. After 3 days of growth, the colony diameters were examined,
and the inhibited rates were analyzed statistically.

4.8. Pathogenicity Assays

The pathogenicity assays were performed as previously described [49]. The mycelial
plugs of the strains were inoculated onto the margin area of the wounded C. oleifera leaves.
After incubation in a humidity plate with 12 h light and 12 h dark cycles for 4 days, the
inoculated leaves were photographed and analyzed by Image J.

4.9. Statistical Analysis

Each result was presented as the mean ± SD of three replicates. The significance
of differences between samples were analyzed by ANOVA (analysis of variance) with
Duncan’s new multiple range test. The level of significance was set at p < 0.01 or p < 0.05.
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