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Abstract15

Recent experimental studies have discovered diverse spatial properties, such as head direction tuning and16

egocentric tuning, of neurons in the postrhinal cortex (POR) and revealed how the POR spatial representa-17

tion is distinct from the retrosplenial cortex (RSC). However, how these spatial properties of POR neurons18

emerge is unknown, and the cause of distinct cortical spatial representations is also unclear. Here, we build a19

learning model of POR based on the pathway from the superior colliculus (SC) that has been shown to have20

motion processing within the visual input. Our designed SC-POR model demonstrates that diverse spatial21

properties of POR neurons can emerge from a learning process based on visual input that incorporates mo-22

tion processing. Moreover, combining SC-POR model with our previously proposed V1-RSC model, we23

show that distinct cortical spatial representations in POR and RSC can be learnt along disparate visual path-24

ways (originating in SC and V1), suggesting that the varying features encoded in different visual pathways25

contribute to the distinct spatial properties in downstream cortical areas.26

1 Introduction27

Animals perform very complex spatial navigation tasks, but how the brain’s navigational system processes28

spatial stimuli to guide behavior is still unclear. In recent decades, experimental studies of brain navigation29

have identified many different types of spatial cells, including place cells (O’Keefe and Dostrovsky, 1971;30

O’Keefe, 1976), head direction cells (Taube et al., 1990a,b), grid cells (Hafting et al., 2005; Stensola et al.,31

2012), boundary cells (Solstad et al., 2008; Lever et al., 2009) and speed cells (Kropff et al., 2015; Hinman32

et al., 2016). Many of these cells code for an allocentric spatial map, which is defined with respect to the33

external environment. Recently, increasingly more experimental studies in the rodent brain have uncovered34

spatial cells that are egocentric, or defined with respect to the animal itself, in different brain areas, including35

lateral entorhinal cortex (Wang et al., 2018), dorsal striatum (Hinman et al., 2019), postrhinal cortex (POR)36

(Gofman et al., 2019; LaChance et al., 2019; LaChance and Taube, 2023; LaChance and Hasselmo, 2024),37

and the retrosplenial cortex (RSC) (Alexander et al., 2020; LaChance and Hasselmo, 2024).38

Alexander et al. (2020) identified egocentric spatial cells in RSC that are selective to the boundaries of the39

arena with a preferred self-centered orientation (e.g., left, right, front or back) at a preferred distance, with40
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the population of RSC egocentric cells displaying a distribution of preferred orientations and distances. In41

an experimental study of neurons in the rat POR, LaChance et al. (2019) discovered egocentric spatial cells42

that encode the egocentric bearing and distance of the geometric center of a square arena. In a follow-up43

study investigating the rat POR in square and L-shape arenas, LaChance and Taube (2023) found that POR44

egocentric cells can encode both local and global aspects of environmental geometry. Moreover, recent work45

by LaChance and Hasselmo (2024) showed that RSC and POR have distinct codes for environment structure46

and symmetry by simultaneously recording cells from both brain areas.47

Animals use their sensory system, that is egocentric in nature, to explore their spatial environment. Conse-48

quently, understanding how an egocentric representation of space arises from sensory input during learning49

is vital to understanding the brain’s navigational system. Using a neural network model with synaptic plas-50

ticity, our previous work showed that egocentric cells in RSC can be learnt from the visual input of the51

primary visual cortex (V1), which can also account for the diversity of RSC cell properties (Lian et al.,52

2023).53

Nevertheless, how POR egocentric spatial cells develop via a learning process is still unknown, and the54

underlying mechanisms that lead to distinct egocentric spatial codes in RSC and POR remain to be un-55

derstood. Solving these important problems will help us better understand how the brain’s navigational56

system develops, and it will assist in identifying the underlying principles of neural mechanisms subserving57

navigation.58

Although both RSC and POR receive visual sensory input, the visual information they receive comes from59

distinct pathways: RSC primarily receives visual input from V1 (van Groen and Wyss, 1992) while POR60

primarily receives visual information via the superior colliculus (SC) (Zhou et al., 2018; Bennett et al., 2019;61

Beltramo and Scanziani, 2019; Brenner et al., 2023). Moreover, cells in V1 and SC have different functional62

properties. Cells in V1, such as simple and complex cells, are selective to bar-like features (Carandini,63

2006), while SC cells are selective to motion contained in the visual input that may reflect processing of64

optic flow information (Ahmadlou and Heimel, 2015; Li et al., 2020; Ge et al., 2021; Teh et al., 2023).65

In this study, we build and investigate a neural network learning model of POR cells based on the SC to POR66

pathway. As a virtual rat runs freely in a simulated environment, the visual input of the virtual rat is captured67
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and then used as the input to train the neural model in which the neural connections between SC and POR68

are updated according to the activity-driven synaptic plasticity of the model. Our results demonstrate that69

this model learns various types of POR egocentric spatial responses that have been observed in experiments70

(LaChance et al., 2019; LaChance and Taube, 2023). Additionally, combining our previous model of RSC71

cells based on the V1 to RSC pathway, these two models can account for the distinct egocentric spatial72

codes found in a recent experimental study (LaChance and Hasselmo, 2024). Our study illustrates how73

POR egocentric spatial cell properties can be learnt from visual input via the SC pathway, and it indicates74

how different visual processing mechanisms in V1 and SC could be the origin of distinct egocentric spatial75

codes in RSC and POR, respectively. Our models are based on the principle of sparse coding, indicating76

that sparse coding may be one of the fundamental principles of the brain’s navigational system.77

2 Methods78

2.1 The simulated environments, trajectory and visual input79

2.1.1 Environments80

The simulated environments were created to mimic the environments in the recent experimental study of81

POR and RSC (LaChance and Hasselmo, 2024), including a square arena with one or two white cue cards82

on walls and a L-shape arena with one white cue card on one wall.83

2.1.2 Trajectory84

Similar to the study by D’Albis and Kempter (2017), the running trajectory rt is generated from the stochas-85

tic process described by the equation:86

drt
dt

= vt [cos(θt), sin(θt)] with θt = σθωt (1)

where vt is the speed sampled from an Ornstein-Uhlenbeck process with long-term mean v̄t = v, θt is the87

direction of movement, ωt is a standard Wiener process, and σθ is the parameter that controls the tortuosity88

of the running trajectory. When the virtual rat is running toward the wall and very close to the wall (within89
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2 cm), the running direction of the rat (θt) is set to the direction parallel to the wall. If the rat location90

generated by Eq. 1 falls outside of the environment, the stochastic process generates alternative iterations91

until a valid location is generated. The running trajectory of the virtual rat is generated at 20 Hz; i.e., the92

position is updated every 50 ms according to Eq. 1. The long-term mean speed, v, is set to 30 cm/s. For93

each session, the virtual rat runs for 1800 s.94

2.1.3 Visual input95

We use the Panda3D game engine (panda3d.org), an open-source framework for creating virtual visual96

environments, to create the environments and generate the corresponding visual input of the virtual rat along97

the trajectories generated above. The visual input of the simulated animal is modelled using a camera with98

a 150◦ field of horizontal view to mimic the wide visual field of rat and a 90◦ field of vertical view. The99

visual input at each time stamp is a 150×90 pixel image where each pixel represents one degree of the visual100

field. The camera is always facing the front, meaning that the head direction is aligned with the movement101

direction for the simulated animal.102

2.2 Learning egocentric cells in POR103

In this study, our model of learning of the response properties of POR egocentric spatial cells is based on the104

experimental evidence that POR receives visual information primarily via the superior colliculus (Beltramo105

and Scanziani, 2019; Brenner et al., 2023).106

2.2.1 Vision processing in superior colliculus107

Cells in the superior colliculus (SC) respond to motion contained in the visual input and the preferred motion108

direction of each cell depends on its position in the visual field (Li et al., 2020). Specifically, the global map109

of visual motion selectivity of SC neurons is bilaterally symmetric and is biased towards upward motion, as110

seen in (Li et al., 2020, Fig. 7). In this study, we create a global map of SC neuron visual motion selectivity111

and build a mathematical model for SC neurons whose responses depend on motion speed and direction.112

The detailed process is as follows: First, the 150×90 visual input is down-sampled by a factor of 5, which113

reduces to 30×18. Second, the 30×18 visual input is used to compute the optic flow; at each point of the114
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30×18 grid, the corresponding optic flow has a motion direction and motion speed. Third, a global map of115

preferred motion direction is created for model SC neurons, as shown in Fig. 1. Fourth, for each SC neuron,116

the response is computed based on its position in the visual field, preferred motion direction, and preferred117

motion speed. At each position of the visual field, there are five different speed preferences (2, 4, 8, 16, or118

32 degrees per second) and four different direction preferences uniformly sampled between θmap − 30◦ and119

θmap +30◦ where θmap is the direction determined by the global motion direction map, illustrated in Fig. 1.120

Therefore, there are altogether 10,800 (=30×18×5×4) SC neurons in the model.

Figure 1: The global map of preferred motion direction of vision processing in superior colliculus (SC).
The preferred direction of one SC visual cell depend on its position in the visual field. In general, SC visual
cells prefer upward motion relative to the central vertical axis of the visual field. This figure is adapted from
(Li et al., 2020, Fig. 7).

121

The response of each SC neuron at any position is given by122

sSC = exp (σθ(cos(θ − θpref)− 1)) exp

(
−
log2( v+v0

vpref+v0
)

2σ2
v

)
(2)

where θ is the direction of the optic flow, θpref is the preferred motion direction, σθ = 1.5 is the bandwidth123

of direction selectivity, v is the speed of the optic flow, vpref is the preferred speed, v0 = 0.33 is the speed124

offset, and σp = 1.16 is the bandwidth of speed selectivity (Beyeler et al., 2016).125
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2.2.2 SC-POR model: modelling POR cells using visual input from SC126

Our previous learning model of RSC egocentric boundary cells is built on the anatomical connection from127

V1 to RSC, as illustrated in Fig. 2B, and the proposed V1-RSC model applies the principle of sparse coding128

to the input from V1 cells that process the visual input according to their preferred spatial features (Lian129

et al., 2023). Similar to the structure of V1-RSC model (Lian et al., 2023), we build a SC-POR model,130

illustrated in Fig. 2A, based on the visual pathway from SC to POR (Brenner et al., 2023) using the principle131

of sparse coding that takes the SC responses as the input.132

Figure 2: Structures of SC-POR model and the previously developed V1-RSC model. The simulated
animal runs in the trajectory (see Section 2.1.2) in the simulated environment. The simulated visual scene
the animal sees at different locations is the visual stimulus of the simulated animal. A) SC-POR model: the
optic flow is computed from the raw visual input and then used to generate responses of SC visual cells that
are selective to different motion speeds and directions; SC cells then project to modelled POR cells and a
SC-POR network is implemented based on non-negative sparse coding. B) V1-RSC model: the raw visual
input is pre-processed by the early visual system and then projected to V1 that involves simple cell and then
complex cell processing; complex cells in V1 then project to modelled RSC cells and a V1-RSC network is
implemented based on non-negative sparse coding (Lian et al., 2023).

In this study we implemented both the V1-RSC and SC-POR models, and the V1-RSC model is exactly the133

same as in our previous study (Lian et al., 2023). The major difference between the previously proposed134
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V1-RSC model and the new SC-POR model presented here is the response of model visual cells. For the135

V1-RSC model, the images captured by the camera of the virtual rat undergo feature selection processing in136

V1 and the response of model V1 cells has no movement dependence. However, for the SC-POR model, the137

response of model SC cells has movement dependence because of the properties described in Section 2.2.1.138

2.2.3 Implementing SC-POR model and V1-RSC model139

The model dynamics and learning rule of implementing SC-POR model is similar to our previous study of140

the V1-RSC model (Lian et al., 2023), as described by141

τ u̇{POR,RSC} = −u{POR,RSC} +AT s{SC,V1} −Ws{POR,RSC}

s{POR,RSC} = max(u{POR,RSC} − λ, 0)

(3)

and142

∆A = η
(
s{SC,V1} −As{POR,RSC}

)
s{POR,RSC}T with A ≥ 0 (4)

where s{SC,V1} is the visual input of cells in SC (Eq. 2 and Fig. 2A) or V1 complex cells (Fig. 2B),143

s{POR,RSC} represent the response (firing rate) of the model neurons in the POR or RSC, u{POR,RSC}
144

can be interpreted as the corresponding membrane potential, A is the matrix that represents the connection145

weights between SC visual cells and model neurons in the POR (Fig. 2A) or between V1 cells and model146

neurons in the RSC (Fig. 2B), W = ATA− 1 and can be interpreted as the recurrent connection between147

model neurons in the POR or RSC, 1 is the identity matrix, τ is the time constant of the model neurons in148

the RSC, λ is the positive sparsity constant that controls the threshold of firing, and η is the learning rate.149

Each column of A is normalised to have length 1. Non-negativity of both s{POR,RSC} and A in Eqs. 3 & 4150

is incorporated to implement non-negative sparse coding.151

Training: The training of the models is as follows: For the implementation of SC-POR and V1-RSC152

models, there are 100 model neurons in POR or RSC and the parameters are given below. For the model153

dynamics and learning rule described in Equations 3 & 4, τ is 10 ms, the time step of implementing the154

model dynamics is 0.5 ms. The simulated visual input generated at different positions along the simulated155

trajectory is used to train the model. Since the simulated trajectory is generated at 20 Hz, at each position of156
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the trajectory, there are 100 iterations of computing the model response using Equation 3. After these 100157

iterations, the learning rule in Equation 4 is applied such that connection A is updated. The animal then158

moves to the next position of the simulated trajectory. As the inputs to the model, sSC and sV1, have different159

statistics, some hyperparameters are slightly different when training the model. For SC-POR model, λ is set160

to 1 and the learning rate η is set to 0.1, while λ is set to 0.2 and the learning rate η is set to 0.3 for V1-RSC161

model. For both models, the learning rate η is set to be 10% of the original value for the final 15% of the162

simulated trajectory.163

2.3 Data Collection164

2.3.1 Recording environment and manipulations165

The experimental environment consisted of a 1.2 x 1.2 m square box with 60 cm high walls. The walls and166

floor were painted black, and a large white cue card (cue A) with a width of 72 cm was placed along the167

south wall and covered the full vertical extent of the wall. A black floor-to-ceiling curtain surrounded the168

environment to block visual perception by the animals of global room cues. Baseline recording sessions169

involved animals foraging for randomly scattered sugar pellets in this environment for 20 min.170

To examine the tuning of egocentric bearing (EB) cells to local or global aspects of environmental geometry,171

local and global geometric cues were placed into conflict by adding additional walls into the environment to172

block access to the northeast quadrant, transforming the environment into an L-shape. Recording sessions173

in the L-shape lasted 15-20 min.174

To examine the responses of head direction (HD) cells to imposed symmetry of visual landmarks, we some-175

times followed the baseline session with a second 20 min session where an identical cue card was placed176

along the north wall (cue B), making the environment visually symmetrical. Bidirectional responses of HD177

cells were then assessed by comparing cell responses in the initial session with cue A only (A1 session) to178

the session with both cues (AB session).179
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2.3.2 Experimental data collection180

To assess the similarity of modeled cells to experimentally recorded cells, we used a previously published181

dataset of neurons recorded from the POR and RSC of female rats during random foraging in an open field182

environment that was manipulated to test specific properties of EB and HD cells (LaChance and Hasselmo,183

2024). These same experiments and relevant analyses were simulated in the current study. Methods concern-184

ing electrophysiological data acquisition can be found in (LaChance and Hasselmo, 2024), while methods185

concerning behavior and data analysis used for both experimental and model cells are included here.186

2.3.3 Model data collection187

For each of the SC-POR and V1-RSC models, we train the model in the 1.2 x 1.2 m square arena with one188

white cue card (A1 session) to mimic the baseline session in the experimental study (LaChance and Has-189

selmo, 2024). In this session, both models undergo a learning process according to the procedure described190

in previous sections. After the models finish learning, the models are tested (i.e., no learning with η = 0)191

in different environments (A1/baseline session, L-shape session, AB session) to collect model responses for192

further analysis. Both models are rate-based descriptions of the neural activity, so model responses are then193

transformed into spikes using a Poisson spike generator with a maximum firing rate 30 Hz for the whole194

modelled population.195

2.4 Data analysis196

2.4.1 Cell classification with a generalized linear model197

Both experimental and model cells were classified as encoding one or more behavioral variables using198

ten-fold cross-validation with a Poisson Generalized Linear Model (GLM), as used in previous studies199

(Hardcastle et al., 2017; LaChance et al., 2019; LaChance and Hasselmo, 2024). Experimental cells were200

classified as encoding one of four behavioral variables: egocentric bearing of the environment center (proxy201

for tuning to outer boundaries); egocentric distance of the environment center; allocentric head direction;202

and linear speed. Linear speed was omitted from the classification procedure for model cells as the simulated203

trajectory maintained a relatively constant speed.204
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Use of this classification scheme has been described previously (LaChance et al., 2019; LaChance and205

Hasselmo, 2024). Briefly, the spike train of a given cell was estimated as the firing rate vector r using the206

following equation:207

r = exp

(∑
i

XT
i βi

)
(5)

where X is a design matrix containing animal state vectors for a given behavioral variable across time points208

T , β is the estimated parameter vector for that variable, and i indexes across variables included in the model.209

The estimated parameter vectors were optimized by maximizing the log-likelihood l of the real spike train210

n across time points t using the following equation:211

l =
∑
t

nt log(rt)− rt − log(nt!) (6)

A smoothing penalty was also incorporated to avoid overfitting, which enforced minimal differences be-212

tween adjacent bins of each parameter vector:213

P =
∑
i

S
∑
j

1

2
(βi,j+1 − βi,j)

2 (7)

where S is a smoothing hyperparameter (20 for all variables), i indexes across variables, and j indexes across214

elements in the parameter vector for each variable. SciPy’s optimize.minimize function was used to estimate215

response parameters by minimizing (P − l). Thirty bins were used for egocentric bearing and allocentric216

head direction parameter vectors, and ten bins were used for egocentric distance and linear speed.217

For each fold of the cross-validation procedure, the recording session was split into training (9/10) and test-218

ing (1/10) data. The full model containing all variables was first optimized on the training data, from which219

the parameter estimates were extracted and used to create all possible smaller models, which were evalu-220

ated on the testing data using log-likelihood increase relative to an intercept-only model. This procedure221

occurred 10 times, until all parts of the data had been used as testing data.222

For model selection, a forward search procedure was used (Hardcastle et al., 2017). Briefly, the log-223

likelihood values from the best one-variable model were compared to the log-likelihood values from the224

best two-variable model that contained that variable using a one-sided Wilcoxon signed-rank test. If the225
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two-variable model performed significantly better, it was compared to the best three-variable model that226

contained those two variables, and so on. If the more complex model did not perform significantly better,227

the simpler model was chosen. The final chosen model was then compared to an intercept-only model that228

only contained the cell’s mean firing rate, and if it performed significantly better than the intercept-only229

model, it was chosen as the cell’s classification. Otherwise, the cell was considered ‘unclassified’.230

2.4.2 Tuning curves and final cell classifications231

For EB and HD measurements, tuning curves were created for each using 12◦ bins. For each cell, a tuning232

curve was constructed by dividing the number of spikes associated with each bin by the amount of time the233

animal spent occupying that bin. The Mean Vector Length (MVL) and mean angle of that tuning curve were234

used to assess the cell’s tuning strength and preferred direction, respectively. A cell was considered an EB235

or HD cell if it: i) passed the GLM classification procedure for EB or HD tuning (discussed above); ii) had236

an MVL that passed the 99th percentile of a within-cell shuffle distribution (discussed below); iii) had a peak237

firing rate that exceeded 1 Hz. A hard MVL cutoff was also imposed (0.10 for EB cells and 0.15 for HD238

cells).239

2.4.3 Local vs. global GLM240

To test if individual cells were more strongly tuned to local geometric features or the global structure of241

the environment in the square and L-shaped arenas, a Poisson GLM was used to compare between these242

two possibilities. The global version of the model was identical to the classification GLM (without the243

smoothing component), and included the following variables: egocentric bearing of the environment center,244

egocentric distance of the environment center, allocentric head direction, and linear speed (for experimental245

cells only). Tuning to the environment centroid is mathematically equivalent to tuning to the full extended246

boundary of the environment (i.e., global geometry tuning).247

In contrast, the local version of the model replaced the egocentric bearing and distance of the centroid with248

the egocentric bearing and distance of the nearest two walls. To accomplish this, for each time point in249

the recording session we calculated the egocentric bearing and distance of the closest point along each of250

the nearest two walls. For each wall, two animal state vectors were created, Xbearingj and Xdistj , where251
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j indicates measurements made relative to the j-th closest wall. We then solved for the optimal parameter252

vectors βbearing and βdist (along with HD and speed parameters) by optimizing the GLM as described above,253

this time modeling the cell’s firing rate as:254

r =
∑
j

(
exp
(
XT

distj
βdist

)
exp
(
XT

bearingj
βbearing

))
exp

(∑
i

XT
i βi

)
(8)

such that the cell’s response to the bearing of each wall is scaled by the distance of each wall and then255

summed before being multiplied by the responses to other behavioral variables (HD and linear speed; in-256

dexed by i). Because we were interested in the explanatory power of each model, we omitted the smoothing257

component and trained and tested the models on the full recording session. We then computed a Globality258

Index (GI) that compared the log-likelihood fits of the local and global models relative to a uniform model259

that only included the cell’s mean firing rate:260

GI =
lcenter − ltwo−wall

lcenter + ltwo−wall
(9)

Values of GI could potentially range from -1 (strictly local) to +1 (strictly global), although due to collinear-261

ity of center and wall measurements, they are generally closer to 0.262

2.4.4 Four-fold symmetry analyses263

To assess four-fold symmetry of EB cell firing in the square environment, we assessed symmetry based on264

three different assumptions for cells with four-fold responses:265

1. HD tuning curves. Cells should preferentially respond to four distinct allocentric HDs, such that their266

HD tuning curves possess four distinct peaks spaced 90◦ apart. To assess this property, we created267

an autocorrelation function for each cell’s HD tuning curve by correlating the original curve with a268

shifted version at all possible directional offsets (i.e., across all 12◦ bins of the tuning curve). This269

autocorrelation function was used to compute a symmetry score (described below).270

2. HD x location correlation structure. Cells should have four distinct firing fields that are each associated271

with a different HD. To assess this property, we created separate firing rate maps for time periods272
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when the animal was facing separate HDs. Rate maps were created for HDs from 0◦ to 360◦ in 3◦273

increments, with each rate map consisting only of times points that the animal faced that particular HD274

(±30◦). We then computed correlations between all possible pairs of rate maps in order to produce275

a correlation matrix. Cells with four discrete firing fields associated with four discrete HDs should276

show four discrete ‘blocks’ of high correlation value along the main diagonal of the matrix, each277

with a width of approximately 90◦. An autocorrelation function was computed for the central 90◦ of278

this matrix by shifting it along its main diagonal. This autocorrelation function was used to compute279

symmetry scores (described below).280

3. Radial symmetry of firing fields. The cell’s HD-associated firing fields should be systematically281

placed radially at 90◦ offsets relative to the center of the environment. To assess this property, we used282

a GLM to model each EB cell’s spike train using 1-dimensional (1D) distance and rotation functions283

(in addition to allocentric HD). The distance function was projected across the environment to create284

a pseudo-2D rate map, and could be rotated about the environment center according to the animal’s285

HD. The degree of rotation associated with each HD was determined by the rotation function, which286

should have a ‘stepwise’ appearance for cells with four-fold symmetry (with steps spaced 90◦ apart),287

as the cells ‘snap’ to a new firing field every 90◦ of rotation. The GLM was optimized in the same way288

as the classification and local vs. global GLMs, but included an additional penalty imposed on the289

mean vector length of the rotation function to ensure sampling of the full range of possible rotations.290

Thirty bins were used for each variable. Following optimization, the rotation function was detrended291

by subtracting a linear range of angles from 0◦ to 360◦, after which an autocorrelation was computed292

from the detrended function and symmetry scores were computed (described below).293

2.4.5 Computation of symmetry scores294

To transform the 1D autocorrelations into four-fold symmetry scores, we took the lowest correlation value295

at 90◦, 180◦, or 270◦ and subtracted the highest correlation value at 45◦, 135◦, 225◦, or 315◦. This method296

is similar to the technique used to detect hexagonal symmetry of grid cell firing (Hafting et al., 2005).297
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2.4.6 Allocentric location firing rate maps298

To assess firing rate distributions over allocentric space, we divided the animal’s 2D location throughout299

the recording session into 4 cm x 4 cm bins. For each cell, the number of spikes associated with each bin300

was divided by the amount of time the animal spent occupying that bin. The resulting firing rate map was301

smoothed with a Gaussian filter.302

2.4.7 Place-by-HD vector plots303

To visualize a cell’s HD preferences across allocentric space, we partitioned the environment into 8 x 8304

spatial bins and created HD tuning curves based on the time points the animal spent occupying each bin.305

30◦ bins were used, as the occupancy time for each bin tended to be small. If the occupancy for a bin was306

under 200 ms, the bin was expanded in steps of 1 cm until the 200 ms threshold was met, similar to ‘adaptive307

binning’ in previous studies (Skaggs et al., 1996; Wang et al., 2018). The MVL and preferred direction were308

computed for each bin and plotted as the length, L̄, and direction, θpref , of the resulting vector, respectively.309

Bins with peak firing rates smaller than 1 Hz were omitted.310

2.4.8 Assessment of HD cell bidirectionality311

To determine if HD cells became bidirectionally tuned in the cue duplication experiment (i.e., fired in two312

opposite directions), we computed a Bidirectionality Index (LaChance et al., 2022; LaChance and Hasselmo,313

2024). Two tuning curves were created for each HD cell: one based on the animal’s actual HD; and one314

where the animal’s HD had been doubled. Angle doubling can be used to transform a symmetrical bimodal315

distribution into a unidirectional one. The bidirectionality index (BI) was then calculated from the resulting316

MVLs, MVLnormal and MVLdoubled, as follows:317

BI =
MVLdoubled −MVLnormal

MVLdoubled +MVLnormal
(10)

2.4.9 Cue modulation measures318

To assess the extent to which HD cell responses could attributed to each cue in the AB session, we fitted a319

bidirectional von Mises distribution (two peaks or troughs separated by 180◦) to each cell’s HD tuning curve320
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in the AB session (LaChance et al., 2022; LaChance and Hasselmo, 2024). As only POR and SC-POR cells321

tended to show trough-locked tuning (i.e., cells that are inhibited when the animal faces a certain direction),322

trough fits were only used for POR and SC-POR cells with maximal firing rates oriented away from the323

cue card, and RSC and V1-RSC cells were modeled using peak fits. Modulation by cue A was assessed by324

finding the von Mises peak or trough closest to the cell’s A1 peak or trough, then computing the firing rate325

difference between that peak or trough and the minimum or maximum of the fit curve, respectively. This326

firing rate difference was then transformed into a modulation index (MI) by dividing it by the maximum327

firing rate of the fit curve (fr = firing rate):328

MIA =
peak frA −min fr(fit curve)

max fr(fit curve)
[for peak or non-POR/SC-POR cells] (11)

OR329

MIA =
max fr(fit curve)− trough frA

max fr(fit curve)
[for POR/SC-POR trough cells] (12)

where A indicates the portion of the tuning curve associated with cue A. The MI for cue B was calculated330

by performing the same computation on the peak or trough 180◦ opposite.331

2.4.10 Shuffling procedure332

Each cell’s spike train was randomly shifted by at least 30 s, with time points that extended beyond the end333

of the session wrapped to the beginning, in order to offset the spike data from the tracking data. Relevant334

tuning scores were computed based on the shifted spike train. This procedure occurred 400 times for each335

cell, and a 99th percentile within-cell cutoff was used to determine significance of tuning for each cell.336

2.4.11 Statistics337

All statistical tests were nonparametric and two-sided, except for GLM classification comparisons which338

were one-sided Hardcastle et al., 2017; LaChance et al., 2019) and used an level of 0.05. Paired comparisons339

were made using Wilcoxon signed rank tests, while unpaired comparisons used a rank-sum test.340
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3 Results341

3.1 Firing properties of experimental and model egocentric bearing cells342

Both SC-POR and V1-RSC models produced simulated neurons with robust spatial tuning. To classify343

the model cells, we used both tuning curve analyses and cross-validation with a generalized linear model344

(GLM) to confirm tuning to one or more of the following three spatial variables: 1) egocentric bearing (EB)345

of the environment boundaries/center; 2) egocentric distance (ED) of the environment boundaries/center;346

3) allocentric head direction (HD; see Methods). Among the 100 SC-POR cells simulated in a 1.2 x 1.2 m347

square arena, 72% were classified as EB cells, 25% as ED cells, and 54% as HD cells. For the 100 V1-348

RSC cells, those numbers were 90%, 64%, and 62%, respectively, as shown in Fig. 3A. In both models,349

the cells often exhibited conjunctive tuning, such that many cells were tuned to more than one variable350

(66% of SC-POR cells and 82% of V1-RSC cells). While the overall percentage of cells that encoded at351

least one variable (SC-POR: 84%; V1-RSC: 93%) was higher than that observed in an experimental dataset352

(POR: 47%; RSC: 53%; LaChance and Hasselmo, 2024), the presence of EB, ED, and HD cells, including353

many conjunctive cells, matched well with the experimental data, as shown in Fig. 3A, C.354

Focusing on EB cells, the baseline firing properties of the SC-POR and V1-RSC cells differed in a similar355

way to the experimental POR and RSC EB cells, as shown in Figs. 4-7, with V1-RSC cells generally356

exhibiting higher mean vector lengths (MVLs; Z = 7.96, P = 1.66e-15), peak firing rates (Z = 5.99, P = 2.10e-357

9), and spatial information content (Z = 9.89, P = 4.79e-23) than SC-POR cells, as shown in Fig. 3B.358

Overall, SC-POR cells tended to have broad tuning profiles with firing that covered a large portion of the359

environment, shown in Fig. 5, compared to V1-RSC cells that fired in a more restricted set of directions360

and locations, shown in Fig. 7. These trends were apparent in the experimental data (Figs. 4, 6), though361

measurement differences only reached significance for MVLs (Z = 2.55, P = 0.011) and spatial information362

content (Z = 2.16, P = 0.030) but not peak firing rates (Z = 0.11, P = 0.91, as shown in Fig. 3D.363

RSC EB cells have been shown to be strongly modulated by local geometric features (e.g., flat walls and364

corners), such that their directional tuning exhibits strong four-fold rotational symmetry in a square environ-365

ment (Alexander et al., 2020; LaChance and Hasselmo, 2024). In contrast, POR EB cells have been shown366

to lack this strong four-fold symmetry, implying a more global account of environmental geometry that is367
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less impacted by local features (LaChance and Hasselmo, 2024). We assessed four-fold rotational symme-368

try among the modeled EB cells across three domains: 1) tuning to four distinct HDs spaced 90◦ apart,369

assessed using each cell’s HD tuning curve; 2) a distinct firing pattern associated with each encoded HD,370

assessed by computing cross-correlations between spatial firing rate maps constructed from epochs where371

the animal was facing distinct HDs; and 3) placement of distinct firing fields at 90◦ rotational offsets relative372

to the environment center, assessed using a GLM (see LaChance and Hasselmo, Methods, 2024). Four-fold373

symmetry scores were computed for each domain based on an autocorrelation analysis (see Methods 2.4.4).374

The three scores for each cell were then combined to produce an aggregate score, to provide an overall375

assessment of symmetrical tuning. We found that V1-RSC cells exhibited higher degrees of rotational sym-376

metry across all three domains than SC-POR cells, as shown in Fig. 8A-C, including the aggregate score377

(HD tuning: Z = 2.52, P = 0.012; HD x location correlations: Z = 2.49, P = 0.013; rotational symmetry378

analysis: Z = 4.98, P = 6.41e-7; aggregate scores: Z = 4.51, P = 6.59e-6; Fig. 8D). This finding mirrored379

results from experimental data (HD tuning: Z = 9.52, P = 1.68e-21; HD x location correlations: Z = 7.17,380

P = 7.64e-13; rotational symmetry analysis: Z = 6.54, P = 6.25e-11; aggregate scores: Z = 9.88, P = 5.00e-381

23; Fig. 8E-H). However, the SC-POR EB cells tended to display higher degrees of four-fold symmetry than382

the experimental POR EB cells, with 29% of SC-POR cells displaying an aggregate score > 0 compared383

to 7% of experimental POR cells. Proportions of EB cells with aggregate scores > 0 among V1-RSC cells384

(58%) and experimental RSC cells (53%) were similar, as shown inFig. 8D, H. Overall, however, the trend385

of RSC EB cells showing stronger four-fold symmetry than POR EB cells was apparent in both the modeled386

and experimental data.387

In a further test of local vs. global geometric tuning among EB cells, it has been shown that transforming388

the square environment into an L-shaped environment reveals stronger tuning to local boundary geometry389

among RSC cells and global boundary geometry among POR cells (LaChance and Hasselmo, 2024). To390

compare these results to our model cells, we simulated SC-POR and V1-RSC cell firing in a 1.2 x 1.2 m391

L-shaped environment, shown in Fig. 9A, B, and used a GLM (LaChance and Taube, 2023; LaChance392

and Hasselmo, 2024) to assess if the cells were more strongly tuned to local or global geometric features393

(e.g., local boundaries vs. the average location of all boundaries; Fig. 9C). The local and global models394

were compared using a Globality Index (GI), with higher values indicating a more global geometric signal395
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(see Methods 2.4.3). Comparison between the square and L-shaped environments revealed that SC-POR396

cells shifted toward a global account of environmental geometry (W = 651, P = 1.99e-4), while V1-RSC397

cells were better fit by a local account of environmental geometry (W = 1310, P = 3.00e-3; Fig. 9D). This398

finding mirrored the experimental data, which exhibited a similar distinction between POR and RSC cells399

in the encoding of local vs. global geometry (POR: W = 289, P = 5.33e-3; RSC: W = 2986, P = 7.84e-13;400

Fig. 9D).401

3.2 Firing properties of model and experimental head direction cells402

In addition to egocentric bearing tuning, a large number of SC-POR and V1-RSC cells exhibited apparent403

tuning to allocentric HD, as shown in Fig. 3A. As the cue card (cue A) along the south wall of the environ-404

ment provided the only allocentric orienting cue, we hypothesized that this HD tuning was related to visual405

processing of the cue card. Both POR and RSC HD cells have been shown to be significantly modulated406

by the presence of similar visual landmarks (Jacob et al., 2017; Zhang et al., 2022; LaChance et al., 2022;407

LaChance and Hasselmo, 2024). Indeed, the preferred HDs of model HD cells appeared to be biased toward408

the direction of the cue card in both SC-POR and V1-RSC populations (270◦; Fig. 10A). To test whether409

the apparent HD signal was driven by the presence of the cue card, we simulated SC-POR and V1-RSC cell410

firing in a square environment with two cue cards placed on opposite walls (cue A and cue B; Fig. 10B).411

Both SC-POR and V1-RSC HD cells fired in two opposite directions in this condition, assessed using a bidi-412

rectionality index (LaChance et al., 2022; SC-POR: W = 0, P = 1.63e-10; V1-RSC: W = 0, P = 7.58e-12;413

Fig. 10C-E). Further, the two cues were represented with relatively equal firing rates, assessed using a mod-414

ulation index (LaChance et al., 2022), although SC-POR cells showed slightly higher modulation by cue A415

than cue B (SC-POR: W = 2638, P = 0.038; V1-RSC: W = 3019, P = 0.30; Fig. 10I). While experimental416

POR and RSC HD cells also tended to display overall bidirectional firing in this condition (POR: W = 1,417

P = 2.33e-10; RSC: W = 111, P = 1.41e-4; Fig. 10F-H), firing to the more familiar cue A was much more418

robust than firing to the more novel cue B (POR: W = 49, P = 3.53e-5; RSC: W = 3, P = 7.28e-11; Fig. 10J),419

suggesting that other non-visual signals have influence over the POR and RSC cells to cause them to repre-420

sent cue A more strongly, unlike SC-POR and V1-RSC cells which respond purely to visual properties of421

the environment.422
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Figure 3: Classifications and egocentric bearing cell statistics.. A) Percent of modeled cells classified as
encoding one or more of three behavioral variables: egocentric bearing (EB), egocentric distance (ED), and
allocentric head direction (HD). B) Population statistics of EB cells compared between SC-POR and V1-
RSC models. From left to right: egocentric bearing mean vector length; peak firing rate; spatial information
content. Note that V1-RSC cells tended to have higher values in all three domains. C-D) Same as (A-B) but
for experimental neurons recorded from POR and RSC.

One striking property of the simulated SC-POR HD cells is that they appeared to comprise two separate423

populations: one that fired most strongly in the general direction of the cue (preferred direction < 180◦) and424

contained a sharp peak in its tuning curve; and one that appeared to be inhibited in the direction the cue (pre-425

ferred direction > 180◦) and contained a sharp trough in its tuning curve, as shown in Fig. 10C, F. Indeed,426

in the two cue condition, ‘peak cells’ tended to adopt a second peak 180◦ opposite the first (Fig. 10K), while427

‘trough cells’ adopted a second trough (Fig. 10L). These properties are highly similar to the ‘peak cells’428

and ‘trough cells’ found in experimental POR data (LaChance et al., 2022; LaChance and Hasselmo, 2024).429

As with the experimental RSC data, V1-RSC cells largely lacked trough-related firing (Fig. 10D, G), and430

in fact almost exclusively exhibited tuning curve peaks in the general direction of the cue card (Fig. 10A,431

D). While this strong concentration of preferred HDs toward the cue card among V1-RSC cells is unlike432

experimentally recorded RSC HD cells (Fig. 10G), this property of the model cells may provide insight into433

how visual signals might interact with HD representations in RSC.434
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Figure 4: Experimental POR egocentric bearing cells..Directional spike plots, tuning curves, place-by-
HD vector plots, and allocentric firing rate maps for six example experimental POR cells with significant
egocentric bearing tuning. The number above the place-by-HD vector plot indicates the highest MVL, while
the number above the allocentric rate map indicates the cell’s peak firing rate.
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Figure 5: Modeled SC-POR egocentric bearing cells. Directional spike plots, tuning curves, place-by-
HD vector plots, and allocentric firing rate maps for six example modeled SC-POR cells with significant
egocentric bearing tuning. The number above the place-by-HD vector plot indicates the highest MVL,
while the number above the allocentric rate map indicates the cell’s peak firing rate.
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Figure 6: Experimental RSC egocentric bearing cells. Directional spike plots, tuning curves, place-by-
HD vector plots, and allocentric firing rate maps for six example experimental RSC cells with significant
egocentric bearing tuning. The number above the place-by-HD vector plot indicates the highest MVL, while
the number above the allocentric rate map indicates the cell’s peak firing rate.
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Figure 7: Modeled V1-RSC egocentric bearing cells. Directional spike plots, tuning curves, place-by-
HD vector plots, and allocentric firing rate maps for six example modeled V1-RSC cells with significant
egocentric bearing tuning. The number above the place-by-HD vector plot indicates the highest MVL,
while the number above the allocentric rate map indicates the cell’s peak firing rate.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.10.617687doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.617687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Population coding of environmental symmetry in a square environment. (full caption below)
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Figure 8: Population coding of environmental symmetry in a square environment. A) Normalized HD
tuning curves for all modeled SC-POR and V1-RSC cells with significant EB tuning, shifted for each cell
such that the maximum firing rate lies at 0◦. Cells are sorted from highest to lowest 4-fold HD symmetry
scores. B) Mean HD x location correlation matrix for all SC-POR and V1-RSC EB cells. C) Normalized
detrended GLM-derived rotation functions for all SC-POR and V1-RSC EB cells. Cells are sorted from
highest to lowest 4-fold radial symmetry scores. D) 4-fold symmetry scores for all modeled EB cells derived
from: top left, HD tuning curves; top right, HD x location correlation matrices; bottom left, GLM-derived
rotation functions; bottom right, aggregate based on summation of individual symmetry scores. E-H) Same
as (A-D) but for experimental neurons recorded from POR and RSC.
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Figure 9: Local vs. global coding of environmental geometry. (full caption below)
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Figure 9: Local vs. global coding of environmental geometry. A) Directional spike plots, place-by-HD
vector plots, and allocentric firing rate maps for three example SC-POR cells simulated in both square and
L-shaped environments. The number above the place-by-HD vector plot indicates the highest MVL, while
the number above the allocentric rate map indicates the cell’s peak firing rate. B) Same as (A) but for three
example V1-RSC cells. C) Schematic illustration of the models used to compare local vs. global encoding
of environmental geometry. D) Change in globality index between square and L-shaped environments for:
left, modeled cells; right, experimental cells. Note that in both modeled and experimental datasets, POR
cells tended toward global geometry encoding while RSC cells tended toward local geometry encoding.
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Figure 10: Coding of bidirectional symmetry by HD cells. (full caption below)
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Figure 10: Coding of bidirectional symmetry by HD cells. A) Distribution of preferred HDs for SC-POR
and V1-RSC HD cells. B) Schematic showing experimental design for the cue duplication experiment.
C) Normalized tuning curves for SC-POR HD cells simulated in both A1 and AB sessions. D) Same as
(C) but for V1-RSC HD cells. E) Change in bidirectionality index between the A1 and AB sessions for
SC-POR and V1-RSC HD cells. F-H) Same as (C-E) but for experimental neurons recorded from POR and
RSC. I) Comparison of the amount of firing rate modulation attributed to cue A vs. cue B in the AB session
for SC-POR and V1-RSC HD cells. J) Same as (I) but for experimentally recorded POR and RSC cells.
K) Example tuning curves for an SC-POR HD cell and POR HD cell that showed a duplication of their
tuning curve peak in the AB session. L) Same as (K) but for cells that duplicated their tuning curve trough
in the AB session.
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4 Discussion435

4.1 Role of different visual pathways436

In this study, we build a learning model based on the visual pathway from SC to POR and demonstrate that437

diverse spatial properties such as HD tuning and egocentric tuning in POR can be learnt from visual input438

that processes motion. By comparing our previously designed V1-RSC learning model (Lian et al., 2023)439

for the area of the RSC, we show that experimentally discovered distinct spatial properties in RSC and POR440

(LaChance and Hasselmo, 2024) can be largely accounted for by our models, V1-RSC and SC-POR. Note441

that the V1-RSC model and SC-POR model only differ in their visual inputs; namely that V1 processing442

represents static feature selectivity similar to simple and complex cells in V1, and SC processing represents443

visual motion selectivity similar to neurons in SC. Therefore, we conclude that these distinct properties444

in RSC and POR may originate from the upstream input of these disparate V1 and SC visual pathways.445

Given that both POR and RSC project to and receive feedback from other areas, including the entorhinal446

cortex and hippocampus, it is possible that both visual pathways contribute to the brain’s internal map of the447

external environment. Furthermore, feature processing in the V1 pathway may contribute more to coding of448

local landmarks, while motion processing in the SC pathway may contribute more to coding of the global449

environment.450

4.2 Comparison between model and experimental data451

Our model can account for diverse spatial properties in both RSC and POR properties, but there are also452

discrepancies between model and experimental data in some aspects, such as the percentage of different453

cell types (Fig. 3), symmetry scores of POR (Fig. 8 DH) and bidirectional symmetry (Fig. 10). One fac-454

tor might be that the model assumes that the head direction of the virtual rat is aligned with movement455

direction, whereas there will be some jitter between head and movement directions in experimental stud-456

ies. More importantly, only visual input is provide to the model. Moreover, to account for distinct spatial457

properties in RSC and POR, we use two disparate vision inputs. Though model data can capture diverse458

spatial properties in POR or RSC and the major difference between them, upstream input in the model is459

much less complicated compared with the input neurons in POR and RSC receive in real neural circuits. As460
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more experimental studies reveal the upstream input these cortices receive, the model could be improved to461

incorporate these inputs and, possibly, more closely match the experimental data.462

4.3 Underlying learning principles of these cortical spatial representations463

Both SC-POR and V1-RSC learning models are based on the principle of sparse coding (Olshausen and464

Field, 1996, 1997) that has been demonstrated to account for the emergence of other spatial cells in the465

brain’s navigational system (Lian and Burkitt, 2021, 2022; Lian et al., 2023). However, this does not sug-466

gest that sparse coding is the only principle that can contribute to learning spatial cells from visual input,467

especially given its relationship with other neural organizing principles such as predictive coding and divi-468

sive normalization (Lian and Burkitt, 2024), and potential other principles.469

4.4 Implications of the study for research on spatial neurons470

The results of this study have significant implications for our understanding of various spatial cell types471

found throughout the brain. Neurons that respond to environmental geometry in an egocentric reference472

frame have been reported in a variety of regions including POR (Gofman et al., 2019; LaChance et al.,473

2019), RSC (Alexander et al., 2020; van Wijngaarden et al., 2020), lateral entorhinal cortex (Wang et al.,474

2018), dorsal presubiculum (Peyrache et al., 2017), and dorsal striatum (Hinman et al., 2019), though it475

remains unclear how the egocentric response properties in these brain regions may differ from each other.476

Consideration of the specific visual inputs to these regions may provide insight into the mechanisms behind477

their egocentric firing (e.g., optic flow vs visual feature processing), as well as applying the rotational sym-478

metry and local vs. global analyses outlined here and in a previous study (LaChance and Hasselmo, 2024).479

It is worth considering that POR and RSC are also reciprocally connected (Burwell and Amaral, 1998a;480

Agster and Burwell, 2009) and share connections with all of the regions listed above (Sugar et al., 2011;481

Monko and Heilbronner, 2021; Estela-Pro and Burwell, 2022), so the EB cells in each brain area may show482

heterogeneity or mixed response properties given their varied inputs. It has been shown previously that even483

POR EB cells can show heterogeneity in their responses to local vs. global aspects of environmental ge-484

ometry (LaChance and Taube, 2023) despite the overall population being significantly global-shifted when485

compared to the more local-shifted RSC EB cells (LaChance and Hasselmo, 2024), so individual cells in486
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each region likely fall along a continuum between visual motion and visual feature processing.487

One particularly notable aspect of the simulated dataset is its generation of HD cells that overall match the488

distinct firing properties of empirically recorded HD cells in POR and RSC (LaChance et al., 2022). Many489

HD cells in both POR (LaChance et al., 2022; LaChance and Hasselmo, 2024) and RSC (Jacob et al., 2017;490

Zhang et al., 2022; Sit and Goard, 2023; LaChance and Hasselmo, 2024) (but see Lozano et al. (2017))491

have been shown to be capable of firing along two opposite preferred directions when a visual landmark is492

duplicated along two opposite walls of an environment, an effect captured by both SC-POR and V1-RSC493

models presented here. However, three important properties of the simulated cells may provide special494

insight into the integration of visual landmarks into the HD system. First, much like the empirical POR495

data, only the SC-POR model produced both peak and trough cells (i.e., HD and anti-HD cells), whereas the496

V1-RSC model produced only peak cells, suggesting that optic flow processing may be especially suited for497

producing the kind of dichotomous (toward landmark vs. away from landmark) firing preferences observed498

among HD cells in POR. Second, the secondary peak or trough adopted by the SC-POR and V1-RSC cells499

was generally the same size as the original peak or trough, unlike the empirical data where the original peak500

or trough was almost always larger. This effect in the empirical data may be due to input from vestibular-501

based ‘classic’ HD cells (Taube et al., 1990a; Yoder and Taube, 2014) which continue to fire in a single502

direction (the ‘true’ allocentric direction) despite bidirectional symmetry of visual landmarks (LaChance503

et al., 2022) and which were not simulated in the current study. Third, the V1-RSC model almost entirely504

produced cells with preferred directions oriented toward the cue card, whereas empirical RSC HD cells505

have uniformly distributed preferred directions (Jacob et al., 2017; Zhang et al., 2022; Sit and Goard, 2023;506

LaChance and Hasselmo, 2024). As with the previous point, this discrepancy could likely be corrected by507

incorporating inputs from ‘classic’ HD cells with a uniform distribution of preferred directions, which can508

be bound to the external world by the visually-based ‘HD’ cells produced by the V1-RSC model. Thus, the509

exclusive presence of landmark-directed cells in the V1-RSC model hints at how visual landmark processing510

in RSC may differ from and integrate with the ‘classic’ HD signal to bind it to specific environmental features511

(also see Bicanski and Burgess (2016); Page and Jeffery (2018); Yan et al. (2021)).512

These results also suggest ways in which POR and RSC neurons may differentially impact allocentric spatial513

cell firing in downstream regions. Notably, both POR and RSC provide strong inputs to the hippocampal514
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formation, including direct projections to the entorhinal cortex (Wyass and Van Groen, 1992; Burwell and515

Amaral, 1998b; Koganezawa et al., 2015; Doan et al., 2019) and subiculum (Wyass and Van Groen, 1992;516

Naber et al., 2001). The medial subdivision of the entorhinal cortex (MEC) in particular contains allocentric517

grid cells (Hafting et al., 2005), border cells (Solstad et al., 2008), and object vector cells (Høydal et al.,518

2019), whereas the subiculum contains allocentric boundary vector cells (Lever et al., 2009), corner cells519

(Sun et al., 2024), and geometry-agnostic place cells (Sharp, 2006), all of which are likely to be informed by520

the egocentric visual representations in upstream POR and RSC. Future physiology studies could investigate521

how each of these allocentric spatial cell types may be differentially impacted by visual motion processing522

in POR or visual feature processing in RSC. For example, inactivating POR may disrupt the MEC grid cell523

global firing pattern but not affect the stability of firing fields relative to local boundary features, whereas524

inactivating RSC may cause unstable firing near boundary features despite maintenance of the overall struc-525

ture of the grid pattern. Both optic flow (Raudies et al., 2012; Raudies and Hasselmo, 2012) and visual526

features (Alexander et al., 2023) have been proposed to shape both grid cell and boundary vector cell firing.527

Other spatial cell types should be considered in terms of these visual information streams and their relative528

contributions to cell firing, as well as neurally plausible transformations that must take place to integrate the529

specific egocentric representations in POR and RSC into an allocentric reference frame downstream in the530

hippocampal formation.531
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Peyrache A, Schieferstein N, Buzsáki G (2017) Transformation of the head-direction signal into a spatial619

code. Nat. Commun. 8:1752.620

Raudies F, Hasselmo ME (2012) Modeling boundary vector cell firing given optic flow as a cue. PLoS621

Comput. Biol. 8:e1002553.622

Raudies F, Mingolla E, Hasselmo ME (2012) Modeling the influence of optic flow on grid cell firing in the623

absence of other cues. J. Comput. Neurosci. 33:475–493.624

Sharp PE (2006) Subicular place cells generate the same “map” for different environments: comparison625

with hippocampal cells. Behav. Brain Res. 174:206–214.626

Sit KK, Goard MJ (2023) Coregistration of heading to visual cues in retrosplenial cortex. Nat. Com-627

mun. 14:1992.628

Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal629

neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172.630

Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the631

entorhinal cortex. Science 322:1865–1868.632

Stensola H, Stensola T, Solstad T, Frøland K, Moser MB, Moser EI (2012) The entorhinal grid map is633

discretized. Nature 492:72–78.634

Sugar J, Witter MP, van Strien NM, Cappaert NL (2011) The retrosplenial cortex: intrinsic connectivity and635

connections with the (para) hippocampal region in the rat. an interactive connectome. Front. Neuroin-636

form. 5:7.637

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.10.617687doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.617687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sun Y, Nitz DA, Xu X, Giocomo LM (2024) Subicular neurons encode concave and convex geometries.638

Nature 627:821–829.639

Taube JS, Muller RU, Ranck JB (1990a) Head-direction cells recorded from the postsubiculum in freely640

moving rats. I. Description and quantitative analysis. J. Neurosci. 10:420–435.641

Taube JS, Muller RU, Ranck JB (1990b) Head-direction cells recorded from the postsubiculum in freely642

moving rats. II. Effects of environmental manipulations. J. Neurosci. 10:436–447.643

Teh KL, Sibille J, Gehr C, Kremkow J (2023) Retinal waves align the concentric orientation map in mouse644

superior colliculus to the center of vision. Sci. Adv. 9:eadf4240.645

van Groen T, Wyss JM (1992) Connections of the retrosplenial dysgranular cortex in the rat. J Comp.646

Neurol. 315:200–216.647

van Wijngaarden JB, Babl SS, Ito HT (2020) Entorhinal-retrosplenial circuits for allocentric-egocentric648

transformation of boundary coding. Elife 9:e59816.649

Wang C, Chen X, Lee H, Deshmukh SS, Yoganarasimha D, Savelli F, Knierim JJ (2018) Egocentric coding650

of external items in the lateral entorhinal cortex. Science 362:945–949.651

Wyass JM, Van Groen T (1992) Connections between the retrosplenial cortex and the hippocampal forma-652

tion in the rat: a review. Hippocampus 2:1–11.653

Yan Y, Burgess N, Bicanski A (2021) A model of head direction and landmark coding in complex environ-654

ments. PLoS Comput. Biol. 17:e1009434.655

Yoder RM, Taube JS (2014) The vestibular contribution to the head direction signal and navigation. Front.656

Integr. Neurosci. 8:32.657

Zhang N, Grieves RM, Jeffery KJ (2022) Environment symmetry drives a multidirectional code in rat658

retrosplenial cortex. J. Neurosci. 42:9227–9241.659

Zhou N, Masterson SP, Damron JK, Guido W, Bickford ME (2018) The mouse pulvinar nucleus links the660

lateral extrastriate cortex, striatum, and amygdala. J Neurosci 38:347–362.661

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.10.617687doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.617687
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	The simulated environments, trajectory and visual input
	Environments
	Trajectory
	Visual input

	Learning egocentric cells in POR
	Vision processing in superior colliculus
	SC-POR model: modelling POR cells using visual input from SC
	Implementing SC-POR model and V1-RSC model

	Data Collection
	Recording environment and manipulations
	Experimental data collection
	Model data collection

	Data analysis
	Cell classification with a generalized linear model
	Tuning curves and final cell classifications
	Local vs. global GLM
	Four-fold symmetry analyses
	Computation of symmetry scores
	Allocentric location firing rate maps
	Place-by-HD vector plots
	Assessment of HD cell bidirectionality
	Cue modulation measures
	Shuffling procedure
	Statistics


	Results
	Firing properties of experimental and model egocentric bearing cells
	Firing properties of model and experimental head direction cells

	Discussion
	Role of different visual pathways
	Comparison between model and experimental data
	Underlying learning principles of these cortical spatial representations
	Implications of the study for research on spatial neurons


