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Enhancing synchronization stability 
in a multi-area power grid
Bing Wang1,2, Hideyuki Suzuki3 & Kazuyuki Aihara2

Maintaining a synchronous state of generators is of central importance to the normal operation 
of power grids, in which many networks are generally interconnected. In order to understand the 
condition under which the stability can be optimized, it is important to relate network stability with 
feedback control strategies as well as network structure. Here, we present a stability analysis on a 
multi-area power grid by relating it with several control strategies and topological design of network 
structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal 
communication network for the local and global control strategies. Finally, we consider relationship 
between the interconnection pattern and the synchronization stability; by optimizing the network 
interlinks, the obtained network shows better synchronization stability than the original network does, 
in particular, at a high power demand. Our analysis shows that interlinks between spatially distant 
nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real 
systems but provide a potential guide for the design of stable power systems.

Electric power grids can operate normally only if the total electricity demand matches the total supply from all 
the power plants in the grid. All generators of the network have to be stabilized at the same frequency even after a 
perturbation. A disruption in synchronization may cause the malfunction of generators and the outages of power 
grids with cascading catastrophic failures of power plants, as have been observed at New York in 1965 and at the 
Western American network in 19961.

Synchronization stability is strongly affected by the distribution of power demand2–4. A decentralized grid 
is found to enhance the network robustness against structural damage, while it becomes more sensitive to the 
dynamical perturbations2,3. Usually, due to fluctuation of the real power demand, the robustness of load nodes 
is also used to measure the network robustness to the fluctuation5. On the other hand, network topology plays 
an important role in the stability of network synchronization. As a paradoxical example, the additionof a trans-
mission line or the increase of line capacity may weaken the synchronization, which is known as Braess’s para-
dox phenomena6,7. Synchronization stability can be further improved by relating the system parameters to the 
network topology. Motter et al. derived the master stability function in terms of the eigenvalues of the coupling 
matrix and the network parameters8. By tuning the dynamical parameters such as the damping coefficients and 
the feedback gains, to match the network topology, the synchronization stability could be optimized.

The information and communication technologies have altered the dynamics of real power systems. In order to 
maintain synchronization in a power grid, the operation is based on the controlled areas. A power controlled area is 
a part of the system under the supervision of a control center, where operators balance supply and demand without 
creating overloads as well as underload. In practice, generators are often controlled by governors; the mechanical 
power input to generators is adjusted according to the generator’s frequency as self-feedback control9,10. It is also 
feasible to take the information of neighboring generators into account and adjust the power input to the generator 
accordingly9. Thus, generators can communicate with each other through a communication network. Since the 
communication network itself is not necessarily the same as the substrate network, building a reliable communica-
tion network where each pair of connected generators can efficiently exchange information, is necessary11. From the 
view point of complex networks, the communication network and the power grid can be represented as a multiplex 
network12. The layer of the communication network influences the dynamics of the power grid.

Power grid networks are often composed of a number of areas, which are densely connected internally and 
weakly interconnected with each other. This is because generators and loads are often spatially connected and the 
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lengths of transmission lines are usually limited. The dynamical processes such as synchronization13–16 and diffusion 
processes17 on local subnetworks can further affect the dynamics on the entire system. For instance, phenomena of 
breathing synchronization where two groups synchronize at different frequencies can also emerge15.

The frequency control of generators has to take the network structure into account. In order to enhance the 
synchronization stability, building an efficient communication network where each pair of connected generators 
can exchange information is necessary. In this paper, we investigate the steady-state stability of an interconnected 
power grid network under different control strategies. By the steady state stability, we mean the local stability of a 
system, i.e., its ability to return to the pre-perturbed state after a small disturbance is introduced. This is different 
from the basin stability, where we consider large perturbation occurring in the network18–21. Based on the phe-
nomena of multi-area power grid networks, we investigate the enhancement of the synchronization stability in 
terms of the control strategies and the topology design of network interlinks. Regarding the control strategies, we 
compare three possible control strategies. The first one is the self-feedback control, where the governors adjust the 
power input to the generator according to its frequency; second, a local feedback control is achieved by building a 
local communication network based on the local network topology of the power grid, where governors adjust the 
power input according to the information of its neighboring generators in the communication network; finally, a 
global control of the entire network is assumed to be built on the communication network of generators located at 
different subnetworks. We derive the master stability function for the swing equations with the incorporation of 
these control strategies and build the communication network accordingly. Although a similar idea of designing 
stabilizing controllers was previously studied22, our emphasis is to build a proper communication network by 
relating the oscillators’ states to the network connectivity.

The design of a real power grid is practically a consequence of the trade-off between the length of transmission 
lines and the degree of stability, since longer grid lines often need enormous cost. The way of adding interlinks 
between different areas is highly related to the network synchronizability. A pattern of high-degree nodes connecting 
with high-degree nodes has been found to promote synchronization most23. In order to relate the interconnected 
network to the synchronization stability, we investigate the enhancement of the network synchronization stability by 
changing the network interlinks. Although the optimized network and the original network are different in topol-
ogy and their respective steady states are different, it is still possible to measure their ability to return to their own 
pre-perturbed states. By adding interlinks for the optimized routine, the optimized network shows better stability 
than the original network does for a range of power demand. By this study, we clarify the impacts of the network 
structure on the synchronization stability and get insights on the design of real power grid networks.

Results
The model. A typical swing equation is often used to describe the dynamics in a power grid and can be taken 
as a second-order Kuramoto model with inertia24. The swing equation that governs the mechanical dynamics of 
generator i is given by

θ θ+ = −̈H D P P , (1)i i i i m i e i, ,

where i =  1, … , n, and n is the number of machines in the network; Hi and Di are the inertia and damping coeffi-
cients of generator i, respectively. Pm,i is the mechanical power injected in i and Pe,i is the electric power output of 
i; θi is the rotor angle of generator i in respect to a synchronously rotating reference frame in radians. Equation (1) 
can be converted to a set of first-order differential equations as follows:
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for i =  1, … , n, where θik =  θi −  θk represents the phase difference between generators i and k; |Vi| and θi are the 
voltage and the phase of generator i, respectively; ωi is the phase frequency of generator i. The admittance matrix 
Y is composed of complex numbers, expressed as Yik =  Gik +  jBik, with j2 =  − 1, where Gik and Bik are conductance 
and susceptance between generators i and k, respectively.

In what follows, we assume that a power grid network is composed of two subnetworks ‘a’ and ‘b’, whose num-
bers of nodes are na and nb, respectively. We denote the set of nodes in the network as ∪=: a b   , where 

∪=a a aN G L , N G L∪=b b b, and a  (or b) and a  (or b ) denote the set of generators and that of loads in 
subnetwork ‘a’ (or subnetwork ‘b’). We further denote the set of generators in the network as ∪= a b   . The 
analysis of a network with two subnetworks here can be naturally extended to the one that contains an arbitrary 
number of subnetworks. The dynamics of the entire system, including the load nodes, can be reduced to the 
dynamics of a system composed only of the generators (see Supplementary Information S1). Then, the swing 
equations for the entire system are given by
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for ∈i a  and ∈j b. The matrix Gaa (or Gbb) is the conductance matrix in subnetwork ‘a’ (or subnetwork ‘b’), 
while Gab is the conductance matrix that connects generators in subnetwork ‘a’ with those in subnetwork ‘b’; the 
matrix Baa (or Bbb) is the susceptance matrix that connects the generators in subnetwork ‘a’ (or subnetwork ‘b’), 
and Bab (or Bba) is the susceptance matrix that connects the generators in subnetwork ‘a’ (or subnetwork ‘b’) with 
the generators in subnetwork ‘b’ (or subnetwork ‘a’), see Supplementary Information S2. In the following, based 
on equation (3), we carry out the steady-state stability analysis with the incorporation of different control 
strategies.

Steady-state stability with self-feedback control. Maintaining the rotator frequency is a prerequisite 
for the stable operation of power systems. Usually, a self-feedback control of rotator is often implemented by 
governors9. Thus, the mechanical power input into generator i, Pm,i, for ∈i , is adjusted in order to keep the 
frequency close to the standard frequency. Assume that the mechanical power input at generator i in subnetwork 
‘a’ is controlled with the derivative of the phase frequency θd

dt
i
a
, that is,
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where γa >  0 is the feedback gain of generators in subnetwork ‘a’. The equation is rewritten as
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,0 is the constant power input into generator i.
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introducing vectors X1 and X2 defined as
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we obtain the following equations (see Supplementary Information S4 for the details):
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where 0 is the zero matrix and I is the identity matrix; the matrices K and M are the self-feedback control matrix 
and the damping matrix (see Supplementary Information S4). The matrix C is an (na +  nb) ×  (na +  nb) Laplacian 
matrix representing the topology of subnetwork ‘a’, subnetwork ‘b’, and the network interlinks between them, 
which relate to the synchronized state, defined as
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The matrix Cbb can be defined in a similar way as Caa. We also assume that the network is undirected, so we 
have Cba =  (Cab)T. Since C is the Laplacian matrix, it can be further diagonalized as J =  QCQ−1, where Q is com-
posed of the eigenvectors of C, and J is the diagonal matrix of the corresponding eigenvalues, 
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λ λ λ= ≤ … ≤ +0 C C C n n,1 ,2 , a b
. With the transformation Z1 =  Q−1X1 and Z2 =  Q−1X2, equation (7) is equivalent 

to
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The synchronization stability is determined by the following eigenvalues (see Supplementary Information S4):
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In order to keep stable synchronization, the real parts of all the eigenvalues should be less than zero, that is,


λ < .

∈
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For simplicity, we denote λΛ = ±R( )i i,  for ∀ ∈i  and Λ max =  maxi Λ i. The synchronous stability can be 
enhanced by reducing Λ max. In equation (11), the eigenvalue λM represents the effect of the inertia and the damp-
ing coefficients, which can be tuned by the parameters Ha,i (or Da,i) for ∈i a and Hb,i (or Db,i) for ∈i b. λC,i 
represents the role of network structure at the synchronized state, while λK is determined by the self-feedback 
gain at generators. If the network structure is fixed, the combination of the parameters Ha,i (or Hb,i) and γa,i (or γb,i) 
can cooperate to minimize Λ max.

Let us denote λ λ λ∆ = − −4( )i M C i K
2

, , for i =  1, … , na +  nb. If Δ i <  0, the stability condition Λ i <  0 for ∀i, is 
trivial, since λK <  0 is always satisfied. The maximum value of Λ i, Λ max, is given by Λ = − λmax 2

M  and does not 
change even if λK is further decreased by tuning the parameters γa,i and Ha,i for ∀ ∈i .

If Δ i >  0, Λ i is negative and decreases with the increase of λC,i −  λK, which is determined by λC,2 −  λK, where 
λC,2 is the smallest nonzero positive eigenvalue of the matrix C. To enhance the synchronization stability, one 
possible way is to reduce λK by increasing the intensity, controlled by the parameter γa or γb. For instance, assume 
that γa =  γb =  γ and Ha,i =  Hb,i =  H for ∀ ∈i . Then, the minimum value of the feedback gain γ0 can be solved 
with the following equation:
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from which we obtain γ λ λ= −(4 )H
C M0 4 ,2

2 . The other way to improve synchronization stability is to increase λC,2 
as much as possible, which can be achieved by changing the inter-subnetwork structure. We will discuss it later.

We performed the numerical experiments using the data of the eastern Japan power grid network5, which is 
composed of the Tokyo area (subnetwork ‘a’) and the Tohoku area (subnetwork ‘b’), respectively. When the fre-
quency control of generators is absent, the network converges to a phase-locked state with an appropriate value of 
the power demand. In Fig. 1, the phases of the generators in the two areas (the blue and red curves) are calculated 
with equations (S3) and (S4) in Supplementary Information S2.

Figure 2 shows the real part of the largest eigenvalue of the matrix L, Λ max, under the self-feedback control 
strategy. For simplicity of demonstration, we assume that the feedback control gains in the two subnetworks ‘a’ 
and ‘b’ are the same, i.e., γa,i =  γb,i =  γ for ∀ ∈i . Unless specified explicitly, we assume that the inertia coefficient 
and the damping coefficient are constant, i.e., Ha,i =  Hb,i =  H, Da,i =  Db,i =  1 for ∀ ∈i . We observe that Λ max 
decreases with the increase of the control gain, γ, and reaches the minimum value −λ

2
M  at γ0. On the other hand, 

Λ max decreases with the decrease of the inertia coefficient H.
Figure 3 shows the real part of the maximum eigenvalue Λ max versus γa and γb. We find that Λ max decreases 

with the increase of the feedback gain, γ. If γa ≥  γa,0 and γb ≥  γb,0, Λ max reaches the minimum value and keeps it. 
Furthermore, we find that γb,0 <  γa,0, which indicates that the self-feedback control of generators in subnetwork ‘b’ 
is more efficient than that in subnetwork ‘a’ by yielding smaller control strength.

Steady-state analysis with local- and global-feedback controls in communication networks. It 
is important to maintain the standard frequency at a constant value in electric power systems. If the power 
demand exceeds a critical value, the standard frequency cannot be maintained. In the real power grids, the fre-
quency is often controlled by local feedback using governors and a global regulation by the control center. Based 
on the network structure of a multi-area power grid, we compare two kinds of control strategies. One is the local 
control of generators in subnetwork ‘a’ (or subnetwork ‘b’), while the other is the global control of generators 
located at different subnetworks.

Local control of generators can be accomplished by building a communication network, where the mechanical 
power input to generator i is adjusted according to the received information from neighboring generators within 
the same area. For instance, in Fig. 4, the local control center is built in subnetwork ‘a’ (the blue triangle), and 
generators connected to the control center can exchange information and adjust the power input accordingly. 
For a multi-area power grid, building a reasonable communication network is fundamental to efficiently control 
the frequency of generators. Intuitively, a complete communication network, where each generator can receive 
information from all the other generators, would be most efficient. However, in actual power grids, it is hard to 
build such a completely connected communication network due to the extremely high cost. Hence, building an 
effective communication network with less cost is necessary.
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The issue of building a communication network in subnetwork ‘a’ can be formulated as a problem to find a 
communication matrix ×Ãn n

aa
a a

, such that
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Figure 1. The dynamics of the generators in the Japan power grid network. Generators in the two areas are 
shown in blue and red, respectively. The parameters are set as Ha,i =  Hb,i =  1, Da,i =  Db,i =  1, and = = .P P 0 2m i

a
m j
b

, ,  
for ∀i, ∈j . Gij =  0 and Bij =  10 if there is a link between node i and j; Gij =  0 and Bij =  0 otherwise. We employ 
the fourth-order Runge-Kutta method for the generators with equation (S3) and Newton’s method for the load 
equation (S4) alternately (see Supplementary Information S2).

Figure 2. (Left)The real part of the largest eigenvalue Λmax versus γ for different values of H with the self-
feedback control strategy. The parameters are set as γa,i =  γb,i =  γ and Ha,i =  Hb,i =  H for ∀ ∈i . (Right) Λ max 
versus γa,i (or γb,i) and Ha,i (or Hb,i) for ∀ ∈i .

Figure 3. The real part of the largest eigenvalue Λmax versus γa and γb with the self-feedback control 
strategy. The parameters are set as Ha =  Hb =  2, γa,i =  γa , and γb,i =  γb for ∀ ∈i .
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where i k indicates that generator i is connected with generator k by the communication network of subnet-
work ‘a’. The mechanical power input to generator i in subnetwork ‘a’ is then given by
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θ
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dt
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Our goal is to find a matrix Ã
aa

 such that the synchronization stability can be improved most. In a similar way, 
the efficient local control of subnetwork ‘b’ is achieved by finding an efficient communication network matrix 

×Ãn n
bb

b b
. Finally, the efficient global control of generators is achieved by building a communication network matrix 

+ × +Ã n n n n
ab
( ) ( )a b a b

 such that generators in subnetwork ‘a’ can communicate with generators in subnetwork ‘b’, see 
Fig. 4 (the red dashed links). In the following, we only present the stability analysis with the local control in sub-
network ‘a’ (see Supplementary Information S5 for the details).

Equation (14) is rewritten as
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,
,0 is a constant mechanical power input.

With similar analysis as we did for the self-feedback control and by setting the variables as in equation (6), we 
obtain an equation analogous to equation (7) for variables X1 and X2 as follows:
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The local feedback control matrix K is defined as
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Figure 4. Diagram of a communication network built on a network composed of two subnetworks  
‘a’ and ‘b’. Self-control of generators (the purple dashed line); a local communication network on subnetwork 
‘a’ or ‘b’ (the blue dashed lines); the global communication network connecting generators in subnetwork ‘a’ 
with those in subnetwork ‘b’ (the red dashed lines). The control centers are denoted by triangles. Each pair of 
generators connected to the control center can exchange the information.
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for i, ∈k a, and Ã
aa

 denotes the communication matrix in subnetwork ‘a’; Kaa is the Laplacian matrix similar to 
the matrix C.

The analysis here can be processed in the same way as that in the self-feedback control. However, the main 
difference between the two strategies is that in the self-feedback control strategy, Kaa is a diagonal matrix, while in 
the local control strategy, Kaa is a Laplacian matrix with the eigenvalues λ λ= ≤ … ≤0 K K n,1 , a

. The number of 
zero eigenvalues depends on the number of components in the communication subnetwork ‘a’.

By diagonalizing the matrix C +  K, we obtain the matrix L as

=




− −
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J M ,
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The synchronization stability is determined by the eigenvalues of L,
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Again, we denote the real part of λ±,i as Λ i, the maximum of which as Λ max, and λ λ∆ = − 4i M CK i
2

, . The con-
dition Λ i <  0 is always satisfied because λCK,i >  0 is always satisfied. If Δ i >  0, Λ i decreases with the increase of 
λCK,i. Therefore, in order to improve the synchronization stability, the communication links have to be chosen 
such that Λ max is minimized or equivalently, λCK,2 is maximized.

If a global control of generators is implemented, a global communication matrix that connects generators in 
subnetwork ‘a’ with generators in subnetwork ‘b’ is established. Then, the matrix ×Ãn n

ab
a b

 is defined as:

=





Ã i k1 ,
0 otherwise,ik

ab

for ∈i a , ∈k b . The control matrix K can be defined from the relation to Ã
ab

 (see Supplementary Information S5).
As an example, we used the network structure of the power grid in eastern Japan5, and built the local commu-

nication network in subnetwork ‘a’ (Tokyo), subnetwork ‘b’ (Tohoku), and the global communication network, 
respectively, by following the algorithm in Supplementary Information S5. In Fig. 5, we compared the largest real 
part of the eigenvalues Λ max with the local control strategy of subnetwork ‘a’ (crosses), that of subnetwork ‘b’ 
(squares), and the global control of the entire network (circles) for different feedback gains with γ =  0.2, 0.4, and 
0.6, which are assumed to be the same for all the generators, i.e., γa,i =  γb,i =  γab,i =  γ for ∀ ∈i . The total number 
of the communication links is set as 10. Figure 5 shows that Λ max decreases as the number of communication links 
increases with all the control strategies that we tested. In particular, the global control of generators located at 
different subnetworks is most efficient, while the local control of generators in subnetwork ‘a’ is more efficient 
than that in subnetwork ‘b’.

In Fig. 6, we show the local communication network built in subnetwork ‘Tokyo’ ((a)), that in subnetwork 
‘Tohoku’ ((b)), and the global communication network that connects generators in the different two subnetworks 
((c)), respectively. We find that for the local-feedback control strategy (Fig. 6(a,b)), the communication networks 
are centralized where hub controllers are formed. This can be easily understood since the appearance of hub 
nodes benefits the communication among nodes, as has been observed in other dynamical processes, such as the 
spread of message and infectious diseases. For the global control strategy (Fig. 6(c)), we observe that most of the 
communication links are those whose end nodes are spatially distant.

Figure 5. Comparison of the improved real part of the eigenvalue, Λmax, obtained by establishing the 
communication networks with different three feedback control strategies: namely, the local control of 
subnetwork ‘a’ (crosses), that of subnetwork ‘b’ (empty squares), and the global control of the network by 
connecting generators in subnetwork ‘a’ with generators in subnetwork ‘b’ (empty circles). All oscillators are 
assumed to be controlled with the same strength, i.e., γa,i =  γb,i =  γab,i =  γ for ∀ ∈i ; (a) γ =  0.2; (b) γ =  0.4;  
(c) γ =  0.6. The other parameters are set at Ha,i =  Hb,i =  1 for ∀ ∈i . The total number of the communication 
links is 10.
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Enhancement of synchronization stability by changing the interlinks. It is well known that the 
system synchronization strongly depends on the network topology14,25,26. Intuitively, the more interlinks there are 
between subnetworks, the more synchronizable the network is. However, due to the economical considerations, 
the number of interlinks has to be very limited in the actual power systems. Therefore, building effective network 
interlinks between subnetworks is fundamental in the design of the real power systems. In order to understand 
the impact of network interlinks on the synchronization stability, we investigate the improvement of the synchro-
nization stability by changing the network interlinks.

The variational equation for node i is rewritten as:

∑
θ
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ω
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This is in the same general form with the variational equation for the coupled oscillators at the synchronous 
state s27 as follows:

∑σ= +
=


D W Dx f s x H s x( ) ( ) ,

(22)j

n

iji i j
1

for i =  1, … , n, where =

x f x( )i i  describes the node dynamics. Df(s) and DH(s) are both constant matrices; σ is 

the coupling strength; Cij in equation (21) corresponds to σWij in equation (22). The Laplacian matrix W =  D −  A, 
where D is the diagonal matrix with the row sums of A as the diagonal elements, and A is the adjacency matrix of 
the network. The ascending order of the real parts of the eigenvalues is given as λ λ λ= < ≤ … ≤¯ ¯ ¯0 n1 2 . The 
larger λ̄2 is, the more synchronously stable the network is.

We apply perturbation analysis to improve λ̄2 by adding interlinks appropriately in the two interconnected 
networks. Assume that the weight of a link connecting nodes i and j is wij >  0. When the two subnetworks ‘a’ and 
‘b’ are isolated, the weighted Laplacian matrix is given by

=












W W
W

0
0

,
(23)

a

b

where Wa and Wb represent the weighted Laplacian matrices of the subnetworks ‘a’ and ‘b’, respectively. Since W 
is a real symmetric matrix, it has na +  nb real eigenvalues, which are ordered as λ λ λ λ= = ≤ ≤ … ≤ +

¯ ¯ ¯ ¯0 n n1 2 3 a b
, 

where 0 is the eigenvalue with multiplication 2 due to the two isolated subnetworks with the eigenvectors all of 
whose components are 1.

The second nonzero eigenvalue of W′  =  W +  Δ W is perturbed around λ2, i.e., λ λ λ′ = + ∆ +¯ ¯ ¯ O( ) ( )2 2 2   , 
where ϵ is the coupling strength. By setting the eigenvector of λ̄2 as = … … +u u u u( , , , , )n n n

(2)
1
(2) (2) (2)

a a b
, where the 

superscription denotes the Fiedler vector while the subscription denotes the node index. Since ΔW is 
semi-definite, we have λ∆ ≥¯ 02 . The larger λ∆ ¯ 2 is, the larger λ′¯ 2 is; hence, the more synchronizable the entire 
network is. Therefore, we can add such an interlink that maximizes λ∆ ¯ 2, that is,

− .
∈ ∈

w u umax ( )
(24)i j

ij i j
,

(2) (2) 2

a b 

In the Japan power grid network, there are totally 13 interlinks connecting the Tohoku area with the Tokyo 
area (see Supplementary Information S7). In order to evaluate whether the synchronization stability can be fur-
ther improved by designing appropriate interlinks, we implemented an optimization algorithm  

Figure 6. Communication networks built based on different control strategies. (a) Local control of 
generators in subnetwork ‘a’ (Tokyo, generators are denoted by green circles); (b) Local control of generators in 
subnetwork ‘b’ (Tohoku, blue circles); (c) Global control of generators in different subnetworks. The links in 
pink represent the interlinks between the two subnetworks. The links in blue are the communication links being 
built. The gray dashed curves show the controlled areas. The parameters are set at γa,i =  γb,i =  γab,i =  γ =  0.2 

∀ ∈i . The total number of the communication links is 10.
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(see Supplementary Information S6 for the details), and calculated the second-nonzero eigenvalue of the 
Laplacian matrix of the entire network, λ̄2. If we take the geographical distance between generators into account, 
after calculation, we found that almost all the present interlinks in the original network are optimally intercon-
nected, which implies that the geographical distance is a fundamental factor when designing the real system. 
Therefore, we omit the result in the main text. Then, we turn to the unweighted case where wij =  1 for all the 
interlinks. In this case, the added interlinks are different from the original ones, see Fig. 7(a,b).

Spatial distance between machines seems to be a priority to be considered for the design of a real system 
(Fig. 7(a)), while the optimized interconnected network is spatially separated. The observation of spatial connec-
tions here is consistent with the global communication network as shown in Fig. 6. The optimized interconnected 
network takes an advantage at the improvement of the synchronizability. We observe that the improved λ̄2 is 
approximately the same as that in the original network when adding only 8 links. By adding more interlinks, λ̄2 
can be further improved up to twice as high as the original value (Fig. 7(c)).

In order to compare the synchronization stability between the optimized interconnected networks and the 
original network, we set all the parameters, such as the power demand Pe,i, the inertia, and the damping coeffi-
cients, to be the same in the two networks, although the steady states of the two systems are different. Then, each 
phase of generator i at the synchronous state θ*,i is perturbed at t =  0 following the Gaussian distribution with 
mean zero and standard deviation 0.05. To see whether the state can eventually return to the synchronized state, 
we measure the difference between the perturbed phase θi and the original synchronized phase θ*,i in the two 
networks, respectively, denoted as Δ θi =  θi1 −  θ*,i1, where θ1 is taken as a reference phase. Each synchronous state 
is obtained by using different power demands Pe,i =  Pe =  0.1, 0.2, 0.3, 0.35, and 0.4. In Fig. 8(a,b), we observe that 
the optimized interconnected network maintains better synchronization stability, where all phases can return to 
their synchronous state with less difference Δ θi than that in the original network. To quantify the difference of 
the phase, we measure the maximum absolute value of Δ θi, max |Δ θi|, at the final stable state for all the power 
demand Pe we tested in Fig. 8(c), which shows that when the power demand Pe is small, max |Δ θi| in the two net-
works are close, while with the increase of Pe, max |Δ θi| of the original network is larger than that of the optimized 
network, which indicates that the optimized network possesses better synchronization stability than the original 
network.

Discussion
Network topology can play a key role in the network synchronization. Based on the observation that a power grid 
is often interconnected, we have revealed and analyzed the synchronization stability of coupled phase oscillators 
in an interconnected power grid network with the incorporation of different control strategies and the design 
of interlinks. For the self-feedback control strategy, the optimal control strength can be obtained by relating the 
system parameters such as the inertia coefficient, with the network structure at the steady state. For the local feed-
back control strategy, the optimal local communication network on subnetwork ‘a’, and that on subnetwork ‘b’, are 
built, respectively. Then, the global communication network that connects generators in subnetwork ‘a’ with those 
in subnetwork ‘b’ is built. We found that the global communication network can improve the synchronization 
stability most.

Relating the network interlinks with the synchronization state, we improved the network synchronization 
by changing the network interlinks. By testing the synchronization stability in the optimized network and the 
original network, respectively, for a number of synchronous states, we found that at lower power demands, the 
optimized network and the original network show similar stability; while at high power demands, the optimized 
network shows better synchronization stability than the original network does. This result highlights the role of 
the network interlinks in the synchronization of coupled oscillators. Both the optimized interconnected network 
and the optimized communication network show similar connectivity patterns, that is, connecting nodes that are 
spatially distant. In the present situation, the design of such an ideally stable power grid network seems unfeasible 
due to the enormous cost for building the long electric power lines. Therefore, while the network interlinks are 
optimal in the context of complex network theory, they may be hard to be implemented in practice. The design 

Figure 7. (a) The original Japan power grid network; (b) The optimized interlinks that connect the Tohoku and 
the Tokyo areas; (c) Comparison of λ2 of the Laplacian matrix in the original (the filled square) and the 
optimized (the empty squares) networks. There are totally 13 interlinks connecting the Tohoku and the Tokyo 
areas.
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of real power grids seems to depend more on the spatial distance; the shorter geographical distance is preferred 
in the design of a power grid. In the near future, a model that balances the trade-off between spatial distance and 
synchronization stability would be expected.

References
1. Venkatasubramanian, V. & Li, Y. Analysis of 1996 western american electric blackouts. Proc. Bulk Power System Dynamics and 

Control-VI, Cortina D’Ampezzo, Italy, August 22–27, 685–721 (2004).
2. Rohden, M., Sorge, A., Timme, M. & Witthaut, D. Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 

064101 (2012).
3. Rohden, M., Sorge, A., Witthaut, D. & Timme, M. Impact of network topology on synchrony of oscillatory power grids. Chaos 24, 

013123 (2014).
4. Manik, D. et al. Supply networks: instabilities without overload. Eur. Phys. J. Special Topics 223, 2527–2547 (2014).
5. Nagata, M. et al. Node-wise robustness against fluctuations of power transmission in power grids. Eur. Phys. J. Special Topics 223, 

2549–2559 (2014).
6. Witthaut, D. & Timme, M. Braess’s paradox in oscillator networks, desynchronization and power outrage. New J. of Phys. 14, 083036 

(2012).
7. Pade, J. P. & Pereira, T. Improving the network structure can lead to functional failures. Sci. Rep. 5, 9968 (2015).
8. Motter, A. E., Myers, S. A., Anghei, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 

(2013).
9. Sagakuchi, H. & Matsuo, T. Cascade failure in a phase model of power grids. J. Phys. Soc. Jpn. 81, 074005 (2012).

10. Matsuo, T. & Sakaguchi, H. Phase model with feedback control for power grids. J. Phys. Soc. Jpn. 82, 094007 (2013).
11. Gajduk, A., Todorovski, M. & Kocarev, L. Improved steady-state stability of power grids with a communication infrastructure. 

arXiv:1410.2168v1 (2014).
12. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).
13. Um, J., Minnhagen, P. & Kim, B. J. Synchronization in interdependent networks. Chaos 21, 025106 (2011).
14. Martin-Hernandez, J., Wang, H., Van Mieghem, P. & D’Agostino, G. On synchronization of interdependent networks. 

arXiv:1304.4731v1 (2013).
15. Louzada, V., Araujo, N., Andrade, J. & Herrmann, H. Breathing synchronization in interconnected networks. Sci. Rep. 3, 3289 

(2013).
16. Pecora, L. M., Sorentino, F., Hagerstrom, A. M., Murphy, T. & Roy, R. Cluster synchronization and isolated desynchronization in 

complex networks with symmetries. Nat. Commun. 5, 4079 (2014).
17. Wang, B., Tananka, G., Suzuki, H. & Aihara, K. Epidemic spread on interconnected metapopulation networks. Phys. Rev. E 90, 

032806 (2014).
18. Menck, P., Heitzig, J., Marwan, N. & Kurths, J. How basin stability complements the linear stability paradigm. Nat. Phys. 9, 89–92 

(2013).
19. Menck, P. J., Heitzig, J., Kurths, J. & Schellnhuber, H. J. How dead ends undermine power grid stability. Nat. Commun. 5, 3969 

(2014).
20. Gajduk, A., Todorovski, M. & Kocarev, L. Stability of power grids: An overview. Eur. Phys. J. Special Topics 223, 2387–2409 (2014).
21. Nardelli, P. H. J. et al. Models for the modern power grid. Eur. Phys. J. Special Topics 223, 2423–2437 (2014).
22. Ishizaki, T., Sadamoto, T. & Imura, J.-I. Hierarchical distributed stabilization of power networks. Eur. Phys. J. Special Topics 223, 

2461–2473 (2014).
23. Aguirre, A., Sevilla-Escoboza, R., Gutiérre, R., Papo, D. & Buldú, J. Synchronization of interconnected networks: The role of 

connector nodes. Phys. Rev. Lett. 112, 248701 (2014).
24. Filatrella, G., Nielsen, A. & Pedersen, N. Analysis of a power grid using a kuramoto-like model. Eur. Phys. J. B 61, 485–491 (2008).
25. Pinto, R. S. & Saa, A. Synchrony-optimized power grids. arXiv:1408.6702v1 (2014).
26. Skardal, P. S., Taylor, D. & Sun, J. Optimal synchronization of complex networks. Phys. Rev. Lett. 113, 144101 (2014).
27. Pecora, L. M. & Carroll, T. L. Master stability functions for synchronised coupled systems. Phys. Rev. lett. 80, 2109–2112 (1998).

Acknowledgements
This research was supported by Core Research for Evolutional Science and Technology (CREST), Japan Science 
and Technology Agency (JST).

-0.015
-0.01

-0.005
 0

 0.005
 0.01

 0.015

 0  4  8  12  16  20

(a)Ori

∆θ
i

t

-0.015
-0.01

-0.005
 0

 0.005
 0.01

 0.015

 0  4  8  12  16  20

(b)Opt

∆θ
i

t

 0.0002
 0.0004
 0.0006
 0.0008

 0.001
 0.0012
 0.0014
 0.0016

 0.1  0.2  0.3  0.4

m
ax

|∆
θ i

|

Pe

Ori
Opt

Figure 8. Comparison of the synchronization stability between the original (ori) and the optimized (opt) 
networks. (a) The difference of phases before and after perturbation in the original network; (b) The difference 
of phases before and after perturbation in the optimized network; (c) The maximum difference of the phases 
before and after perturbation in the original (the red squares) and the optimized networks (the blue squares), 
respectively, versus power demand Pe, where Pe,i =  Pe =  0.1 (red), 0.2 (blue), 0.3 (black), 0.35 (green), and 0.4 
(cyan) for ∀ ∈i . The perturbation was applied to the phase of each generator in the synchronous state at t =  0, 
and was drawn from the Gaussian distribution with mean zero and standard deviation 0.05 rad. Each point 
shows the averaged results of 200 times of random perturbations. The difference of the phases is defined as 
Δθi =  θi1 −  θ*,i1 for ∀ ∈i , where θ*,i is the synchronous state. The parameters are set at Ha,i =  Hb,i =  2.5 for 
∀ ∈i .
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