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Low serum uric acid levels are associated with the nonmotor 
symptoms and brain gray matter volume in Parkinson’s disease
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Abstract
Background  Uric acid (UA) plays a protective role in Parkinson’s disease (PD). To date, studies on the relationship between 
serum UA levels and nonmotor symptoms and brain gray matter volume in PD patients have been rare.
Methods  Automated enzymatic analysis was used to determine serum UA levels in 68 healthy controls and 88 PD patients, 
including those at the early (n = 56) and middle-late (n = 32) stages of the disease. Evaluation of motor symptoms and non-
motor symptoms in PD patients was assessed by the associated scales. Image acquisition was performed using a Siemens 
MAGNETOM Prisma 3 T MRI scanner.
Results  Serum UA levels in early stage PD patients were lower than those in healthy controls, and serum UA levels in the 
middle-late stage PD patients were lower than those in the early stage PD patients. Serum UA levels were significantly nega-
tively correlated with the disease course, dysphagia, anxiety, depression, apathy, and cognitive dysfunction. ROC assessment 
confirmed that serum UA levels had good predictive accuracy for PD with dysphagia, anxiety, depression, apathy, and cogni-
tive dysfunction. Furthermore, UA levels were significantly positively correlated with gray matter volume in whole brain.
Conclusions  This study shows that serum UA levels were correlated with the nonmotor symptoms of dysphagia, anxiety, 
depression, apathy, and cognitive dysfunction and the whole-brain gray matter volume. That is the first report examining the 
relationships between serum UA and clinical manifestations and imaging features in PD patients.
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Introduction

Parkinson’s disease (PD), which has a prevalence rate of 
5.42/1000 people, is a progressive neurodegenerative disor-
der that involves multiple neurotransmitter pathways [1, 2]. 

A diagnosis of PD depends on the presence of motor symp-
toms, including bradykinesia, rigidity, and tremor [3]. In 
addition to motor disturbances, PD patients also have other 
debilitating symptoms, which are classified as nonmotor 
symptoms [4].
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Oxidative stress contributes to the loss of dopaminergic 
neurons in the substantia nigra of patients with PD and plays 
an important role in the pathogenesis of this disease [5–7]. 
As a natural antioxidant, uric acid (UA) can effectively scav-
enge reactive nitrogen and oxygen free radicals, so it plays 
a protective role in PD [8, 9]. Some studies have shown that 
serum UA levels are related to certain motor and nonmotor 
disturbances [4].

Among the existing methods, voxel-based morphometry 
(VBM) is a well-established structural magnetic resonance 
imaging (MRI) technique used to detect differences between 
groups in brain anatomy at the whole-brain level. VBM is a 
mature method for the evaluation of brain gray matter (GM) 
and white matter lesions that quantitatively calculates and 
analyzes the density and volume in the target area of an 
MRI image, reflecting the differences in the corresponding 
anatomical structures. Therefore, it provides an opportunity 
to discover structural changes that were previously unidenti-
fied, and the widespread use of VBM in the quantification 
of regional GM changes in PD has been encouraged [10].

To the best of our knowledge, there is currently no rel-
evant literature exploring the relationship between serum 
UA levels in PD patients, nonmotor symptoms, and VBM. 
Therefore, this study aims to further explore the relation-
ships between serum UA levels, nonmotor symptoms, and 
VBM and seeks evidence to support UA as a PD biomarker.

Materials and methods

Participants

A total of 89 PD patients from the inpatient ward were con-
secutively recruited from 2018 to 2020. Patients were diag-
nosed by two experienced neurologists, according to the UK 
PD Society Brain Bank Clinical Diagnostic Criteria for PD 
[11]. Patients with atypical and secondary PD or those who 
had been diagnosed with the following conditions that might 
interfere with serum UA levels were excluded as follows: (1) 
patients with cardiovascular and cerebrovascular diseases, 
such as myocardial infarction and cerebral infarction; (2) 
patients with acute or chronic infections or surgical proce-
dures within the previous 3 months; and (3) patients with 
acute or chronic liver and kidney dysfunction or abnormal 
levels of serum creatinine (1.5 mg/dl) [12]. A total of 69 
healthy volunteers participated in this study. All participants 
did not take any hormone treatment during the study.

Clinical characteristics

General clinical data, such as sex and age, were recorded. 
The modified Hoehn and Yahr (H-Y) scale describes disease 
severity more broadly, with the early stage corresponding to 

H-Y stages 1 to 2, while the middle-late stage corresponds 
to H-Y stages 2.5 to 5 [13]. Motor symptoms were evaluated 
by Part III of the Unified Parkinson’s Disease Rating Scale 
(UPDRS) [14]. Nonmotor symptoms were evaluated by the 
Pittsburgh Sleep Quality Index (PSQI), Non-Motor Symp-
tom Scale (NMSS), water swallowing test (WST), 14-item 
Hamilton Anxiety Rating Scale (HAMA-14), 17-item 
Hamilton Depression Rating Scale (HAMD-17), Modified 
Apathy Evaluation Scale (MAES), and Mini-Mental State 
Examination (MMSE). Hoehn and Yahr (H-Y) classification 
and the UPDRS were used to evaluate disease severity. All 
of the assessments were completed once during a patient’s 
off period.

Blood sampling

Between 07:30 and 08:30 am and fasting serum UA concen-
trations were determined by an automated enzymatic assay.

MRI acquisition

Image acquisition was performed using a Siemens MAG-
NETOM Prisma 3 T MRI scanner with a 64-channel head 
coil with the following parameters for the T1-weighted 
3D-MPRAGE sequence: echo time (TE) = 3.43 ms, repeti-
tion time (TR) = 5,000 ms, inversion time (T1) = 755 ms, flip 
angle = 4°, slice thickness = 1.00 mm, slice number = 208, 
bandwidth = 240 Hz/pixel, a matrix of 256 × 256, field of 
view = 256 × 256 mm2, and voxel size = 1.0 × 1.0 × 1.0 mm3.

Voxel‑based morphometry analysis

The Gaussian default longitudinal preprocessing approach 
in the VBM8 toolbox was used with the following standard-
ized steps: (1) registering the follow-up image to the base-
line image for each subject; (2) calculating the mean image 
from the realigned images for each subject and using it as a 
reference image for subsequent spatial realignment; (3) cor-
recting the realigned images for signal inhomogeneities with 
regard to the reference mean image; (4) performing tissue 
segmentation in the bias-corrected mean reference image 
and the bias-corrected realigned images; (5) estimating Dif-
feomorphic Anatomical Registration Through Exponentiated 
Lie Algebra (DARTEL) spatial normalization parameters 
with the tissue segments of the bias-corrected mean refer-
ence image; (6) modulating GM images to preserve relative 
regional volumes and correct for individual differences in 
brain size; (7) applying normalization parameters to the tis-
sue segments of the bias-corrected realigned images; and 
(8) smoothing the resulting normalized tissue segments for 
each time point of each subject with an 8-mm full-width-half 
maximum (FWHM) Gaussian kernel [15].
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Statistical analysis

Quantitative data with a normal distribution in accord-
ance with the Kolmogorov–Smirnov test are expressed 
as the means ± standard deviations, and Student’s t-tests 
were used for comparisons between the two groups. Mul-
tiple groups of data consistent with a normal distribution 
and homogeneity of variance were compared by one-way 
analysis of variance, and post hoc LSD t-tests were used 
to further compare differences in serum UA levels between 
the control group and the early stage and middle-late 
stage PD groups. Data that did not have a normal dis-
tribution are expressed as medians (quartile ranges), and 
the Mann–Whitney U test was used for comparisons. The 
identification of PD with dysphagia, anxiety, depression, 
apathy, and cognitive dysfunction based on serum UA 
was evaluated by receiver operating characteristic (ROC) 
curve analysis. Spearman’s correlation analysis was used 
to evaluate correlations between the serum UA levels and 
various indicators and the total GM volume in the brain. 
All tests were two-tailed, and a probability (p) value of 
less than 0.05 was considered statistically significant. The 
Statistical Package for the Social Sciences (SPSS) program 
version 26.0 was used for all statistical analyses.

To examine between-group differences in regional GM 
volume, the two-sample t-test was used to compare GM 
volume between the low-UA group and the high-UA group 
and was designed with age and sex as covariates. The sta-
tistical threshold was set at a cluster-level family wise 
error (FWE)-corrected p value < 0.05.

Results

Demographic data and serum UA levels in healthy 
controls and PD patients

No difference in age or sex was found between the PD and 
control groups (62.82 ± 6.36 vs. 62.71 ± 7.00, t =  − 0.105, 
p = 0.917; 52.9% vs. 44.9%, t = 0.972, p = 0.324), whereas 
serum UA levels in PD patients were significantly lower 
than those in healthy controls (Fig. 1A). Based on the H-Y 
classification, the PD patients were divided into early stage 
(n = 56) and middle-late stage PD patients (n = 32), and 
there were significant differences across the three groups 
(Fig. 1B). Serum UA levels in the early stage PD patients 
were lower than those in the healthy controls (p = 0.038), and 
serum UA levels in the middle-late stage PD patients were 
lower than those in the early stage PD patients (p = 0.010) 
(Fig. 1B).

Correlations between serum UA and nonmotor 
symptoms in PD patients

UA levels were significantly negatively correlated with 
scores for the disease course, UPDRSIII, dysphagia, 
HAMA-14, HAMD-17, apathy, and NMSS and positively 
correlated with MMSE scores (Table 1). There was no corre-
lation between UA levels and scores on the remaining scales 
(Table 1).

Next, we used the significantly correlated nonmo-
tor symptoms as grouping criteria for the PD patients to 

Fig. 1   Differences in serum uric acid (UA) levels between Parkin-
son’s disease (PD) patients (n = 88) and controls (n = 68). A Serum 
UA levels in PD patients were significantly lower than those in con-
trols. B PD patients were grouped based on the Hoehn and Yahr 
(H-Y) classification, and each of these groups was then compared to 

the controls. The early stage (n = 56) PD patients had lower serum 
UA levels than the controls, while serum UA levels were signifi-
cantly decreased in the middle-late stage (n = 32) PD patients com-
pared with the early stage PD patients. All data are presented as the 
means ± standard deviations. *p < 0.05, **p < 0.01, ***p < 0.001
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compare differences in UA concentrations between each 
pair of subgroups. This study included 88 patients with 
PD, 47 with MAES scores > 14 who had apathy (53.4%), 
46 with WST scores ≥ 3 who had dysphagia (52.3%), 26 
with HAMD-17 scores ≥ 20 who had depression (29.5%), 
50 with HAMA-14 scores ≥ 14 who had anxiety (56.8%), 
and 58 with MMSE scores ≤ 26 who had cognitive dys-
function (65.9%).

Serum UA levels in the PD patients were lower in 
the dysphagia subgroup, anxiety subgroup, depression 
subgroup, apathy subgroup, and cognitive dysfunction 
subgroup than in the non-dysphagia subgroup, non-
anxiety subgroup, non-depression subgroup, non-apathy 
subgroup, and without cognitive dysfunction subgroup 
(229.30 ± 57.12 vs. 283.64 ± 54.13, t = 4.570, p < 0.001; 
229.52 ± 57.36 vs. 289.08 ± 50.40, t = 5.080, p < 0.001; 
213.73 ± 54.02 vs. 272.65 ± 56.58, t = 4.515, p < 0.001; 
242.30 ± 55.61 vs. 270.07 ± 65.70, t = 2.148, p = 0.035; 
233.26 ± 54.60 vs. 297.73 ± 52.43, t = 5.322, p < 0.001, 
respectively). Based on a ROC curve analysis, identifica-
tion of PD with dysphagia, anxiety, depression, apathy, 
and cognitive dysfunction based on serum UA had area 
under the curve (AUC) values of 0.7585, 0.8050, 0.7813, 
0.6518, and 0.8032; sensitivities of 76.19%, 84.21%, 
82.26%, 70.73%, and 88.65%; specificity of 67.39%, 70%, 
61.54%, 61.7%, and 53.54%; and cutoff values of 249, 249, 
224, 249, and 228, respectively (Fig. 2A–J).

UPDRS, Unified Parkinson’s Disease Rating Scale; 
WST, water swallowing test; HAMA-14, 14-item Hamilton 
Anxiety Scale; HAMD-17, 17-item Hamilton Depression 
Scale; MAES, Modified Apathy Evaluation Scale; MMSE, 
Mini-Mental State Examination; PSQI, Pittsburgh Sleep 
Quality Index; NMSS, Non-Motor Symptom Scale. *Sta-
tistically significant.

Correlation between serum uric acid levels and gray 
matter volume in the whole brain

The total brain GM volume in the PD patients with lower 
UA levels was significantly lower than that in the PD 
patients with higher UA levels. UA levels were significantly 
positively correlated with the GM volume in the whole brain 
(Fig. 3).

Discussion

Studies have shown that UA levels are significantly related 
to the severity of dopaminergic impairment in the caudate, 
putamen, and striatum [16]. Therefore, we hypothesized that 
serum UA levels gradually decrease as PD progresses. Our 
study found a decrease in serum UA levels in PD patients. 
To investigate the relationship between serum UA levels and 
disease progression, we evaluated the association between 
UA levels and PD stages. After H-Y classification, the mid-
dle-late stage PD patients exhibited lower serum UA levels 
than the early stage PD patients. Subsequently, we explored 
factors that might have impacted serum UA levels. Correla-
tion analyses showed that serum UA levels were negatively 
correlated with the course and severity of the disease. Simi-
larly, previous studies have also proven that plasma or serum 
UA levels were lower in people with PD than in healthy 
controls [17, 18]. Furthermore, in postmortem substantia 
nigra tissue, UA levels were lower in patients with PD than 
in age-matched controls [19]. In a similar study published 
in 2016 conducted, the results showed that PD patients at 
stage three and over had significantly lower serum UA levels 
than PD patients at earlier stages [20] prospectively followed 
804 PD patients and investigated the relationship between 
PD progression and serum UA levels, and the result was an 
inverse relationship between PD progression and serum UA 
levels, which is similar to what we observed in our study. 
It may be stated that there is an association of serum UA 
and disease progression. Adenosine, as a UA precursor, 
modulates neuronal death on its own, which reflects a neu-
roprotective effect [21]. Meanwhile, studies have proven that 
adenosine A1 and A2A receptors induce either neuroprotec-
tive or neurotoxic effects on dopaminergic neurons [22, 23].

Nonmotor symptoms (NMS) manifest as cognitive, neu-
ropsychiatric, autonomic, and sensory disturbances, which 
frequently worsen with disease progression [24], and the 
assessment and treatment of nonmotor symptoms may help 
improve the health-related quality of life of patients with PD 
[25]. In a large study of patients with PD, O’Sullivan et al. 
[26] suggested that NMS might be a significant feature in 
21% of PD patients and that diagnostic delay and misdi-
agnosis were normal. Similar to previous findings, serum 
UA levels were negatively correlated with the severity of 

Table 1   Relationship between serum UA levels and demographic or 
clinical data in patients with Parkinson’s disease

Means ± standard 
deviations/medians 
(quartile ranges)

Pearson/
Spearman 
rank

p values

Age (y) 62.82 ± 6.36  − 0.206 0.055
Age of onset (y) 58.73 ± 9.32  − 0.116 0.281
Disease duration (y) 4 (2,7)  − 0.279 0.008*
UPDRSIII score 38 (21,50)  − 0.276 0.009*
WST score 3 (1,3)  − 0.503 0.000*
HAMA-14 score 15.45 ± 7.00  − 0.481 0.000*
HAMD-17 score 15 (10,20)  − 0.621 0.000*
MAES score 16 (8,23.75)  − 0.383 0.000*
MMSE score 25 (22,27) 0.506 0.000*
PSQI score 6.5 (3,11.75)  − 0.190 0.076
NMSS score 39 (29,67.75)  − 0.397 0.000*
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Fig. 2   Relationships between 
serum uric acid (UA) concentra-
tions and nonmotor symptoms 
in Parkinson’s disease (PD) 
patients (n = 88). A Serum UA 
levels in the dysphagia and 
non-dysphagia subgroups of 
PD patients. PD patients with 
dysphagia showed lower levels 
of serum UA. B Identification 
of PD with dysphagia based on 
serum UA shown by receiver 
operating curve (ROC) analysis. 
C Serum UA levels in the anxi-
ety and non-anxiety subgroups 
of PD patients. PD patients with 
anxiety showed lower levels of 
serum UA. D Identification of 
PD with anxiety based on serum 
UA shown by ROC analysis. 
E Serum UA levels in the 
depression and non-depression 
subgroups of PD patients. 
PD patients with depression 
showed lower levels of serum 
UA. F Identification of PD with 
depression based on serum UA 
shown by ROC analysis. G 
Serum UA levels in the apathy 
and non-apathy subgroups of 
PD patients. PD patients with 
apathy showed lower levels of 
serum UA. H Identification of 
PD with apathy based on serum 
UA shown by ROC analysis. I 
Serum UA levels in the cogni-
tive dysfunction and without 
cognitive dysfunction subgroups 
of PD patients. PD patients with 
cognitive dysfunction showed 
lower levels of serum UA. J 
Identification of PD with cogni-
tive dysfunction based on serum 
UA shown by ROC analysis

1751Neurological Sciences (2022) 43:1747–1754
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cognitive dysfunction [27–29]. Bowman et al. [30] proved 
that cerebrospinal fluid (CSF) UA and plasma UA levels 
were positively correlated and modified by blood–brain bar-
rier (BBB) integrity and that CSF UA levels were associ-
ated with rates of cognitive decline. Study has confirmed an 
inverse correlation between UA levels and PD in the cortex 
and striatum, thereby supporting the theory that UA might 
have a neuroprotective effect on the cognitive system [31]. 
This may be because UA is both an antioxidant and an iron 
chelator, making it neuroprotective [32].

Neuropsychiatric symptoms, such as apathy, depression, 
and anxiety, are highly prevalent in PD patients and associ-
ated with decreased quality of life and adverse health out-
comes [33]. Decreased serum UA levels have been found 
in PD patients with anxiety and depression [34]. A link 
between oxidative stress and emotional stress is not surpris-
ing, since it is well accepted that oxidative damage in the 
brain causes impairment of the nervous system [35]. Studies 
have proven that anxiety and depression are controlled by the 
nervous system and that the GABAergic and serotoninergic 
systems play important roles in the regulation of anxiety and 
depression [36]. Interestingly, we also found that the severity 
of apathy was positively correlated with serum UA levels. 
This correlation may be because both serum UA levels and 
apathy have been related to the loss of dopamine transporters 
(DAT) in the striatum [16, 37].

Dysphagia in PD patients has been associated with 
α-synuclein accumulation in the sensory nerve axons of the 
pharynx. Among them, the internal branch of the superior 
laryngeal nerve is the most involved. At the same time, it 
has also been found that there is α-synuclein in the efferent 
pathway that innervates the pharyngeal muscles [38, 39]. 
Therefore, the significantly lower UA levels in PD patients 
with dysphagia may further damage the nerves that innervate 
swallowing function, leading to the occurrence of dysphagia 

symptoms. Therefore, we suspect that nonmotor symptoms, 
such as cognitive dysfunction, anxiety, depression, apathy, 
and dysphagia, which often occur in the middle and late 
stages of PD, may be another possible potential cause for 
decreased serum UA levels. However, the correlations 
among the mechanisms of PD, serum UA levels, and non-
motor symptoms need to be further explored.

Finally, we explored the relationship between brain vol-
ume changes and serum UA levels in PD patients. We found 
that serum UA levels were positively correlated with total 
brain GM volume. We did not find a relationship between 
specific GM areas of the brain and serum UA levels. We 
considered the following reason for this conclusion in PD 
patients. Studies have proven that serum UA levels are nega-
tively correlated with the severity of PD [40]. At the same 
time, studies have confirmed that in early PD patients, global 
GM loss, amygdalar atrophy, and cortical thinning in fron-
totemporal regions are specifically associated with the PD 
degenerative process [41]. UA plays a neuroprotective role 
in dopaminergic neurons by regulating neuroinflammation 
and oxidative stress [42]. Oh et al. proved that UA levels 
were positively correlated with dopamine transporter uptake 
in the putamen in female early PD patients, and this find-
ing suggested that UA had a neuroprotective effect, as evi-
denced by the relatively preserved striatal dopamine activity 
in women [43]. Therefore, we speculate that UA, as a protec-
tive substance in PD, has a broad protective effect on brain 
neurons. As UA decreases, its protective effect decreases. 
Therefore, we concluded that, in PD, lower UA levels are 
associated with a decrease in brain volume compared to vol-
umes in those with higher UA levels.

This study has the following limitations. First, this study 
proposed that lower UA levels in PD patients caused a 
decrease in the whole-brain GM volume and testing this 
will require repeated testing and an expanded sample size 
for further verification. Second, the Non-Motor Symptom 
Scale was evaluated, which might be affected by subjective 
factors; therefore, more objective evaluation methods need 
to be used, such as video fluoroscopy studies of swallowing 
(VFSS), to verify these results. Finally, although our data 
showed that serum UA levels gradually decreased as the 
course of the disease progressed, this was a cross-sectional 
study. Therefore, longitudinal studies are needed to clarify 
the relationships between the development of PD and serum 
UA levels in the presence of various confounding factors.

Conclusions

This study shows that serum UA levels can be used to 
assess the possibility of PD with nonmotor symptoms, 
such as cognitive dysfunction, anxiety, depression, apa-
thy, and dysphagia, and are positively correlated with the 

Fig. 3   Relationship between serum uric acid (UA) concentrations and 
total brain gray matter (GM) volume. Serum UA levels were posi-
tively correlated with total brain GM volume (Pearson’s correlation 
coefficient r = 0.326, p = 0.002, n = 88)
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whole-brain GM volume. These findings indicate that 
monitoring serum UA levels may be a potential biomarker 
or treatment strategy for PD. Finally, to clarify the clinical 
significance of serum UA concentration in PD patients, 
larger clinical and preclinical studies are needed to further 
explore the potential mechanism underlying changes in 
serum UA levels in PD.
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