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Introduction
Prostate cancer is one of the most common types of cancer 
among men worldwide. It is estimated that more than 1 in 
1.2 million men were diagnosed with prostate cancer in 2015, 
resulting in more than 335 000 deaths.1 A current obstacle in 
improving patient care is the inability to accurately predict 
tumors that are at a high risk for progression. Identifying reli-
able prognostic biomarkers to guide treatment decisions is a 
high priority in the prostate cancer field.

Next-generation sequencing (NGS) has revolutionized 
genomic and transcriptomic analysis. RNA-Seq reads the tran-
scriptome at a single-nucleotide resolution, revealing unex-
plored genomic and transcriptomic territories not revealed 
using conventional technologies, such as microarray,2,3 RNA-
Seq represents a high-throughput technique capable of identi-
fying nonconventional biomarkers, such as noncoding RNA 
and alternative splicing events.2,3 Alternative splicing can pro-
duce protein isoforms with potentially different functions from 
the same DNA sequence. Indeed, approximately half of all 
active splicing events are altered in ovarian and breast tumors.4 
RNA-Seq can also measure transcriptomic activity and tran-
scriptome assembly to provide a better understanding of the 
regulation of corresponding protein isoforms.5-8 A typical 
RNA-Seq experiment, however, produces a large amount of 
data, and therefore, demands considerable computational 
resources in both time and space. Using machine learning to 
analyze RNA-Seq data can reduce redundant and irrelevant 
information while providing a selection of potentially sig-
nificant biomarkers for biological validation. Optimizing a 

computational approach to effectively isolate novel splice vari-
ants from RNA-Seq data may provide invaluable clues about 
novel biomarkers for detecting and predicting the progression 
of prostate cancer.

Several studies have used RNA-Seq to identify new poten-
tial biomarkers for prostate cancer. Feng et al9 presented a com-
prehensive review of the most recent studies on alternative 
splicing in cancer using RNA-Seq data. This included an over-
view of several publicly available RNA-Seq data sets and the 
most recent open-source bioinformatics tools for RNA-Seq 
data analysis. Recent studies using RNA-Seq for prostate can-
cer analysis include genome-wide association and variation 
studies, noncoding RNAs (eg, microRNA, lincRNA, and 
siRNA), somatic mutations, chimeric RNA, and gene fusion. 
Kannan et al10 used RNA-Seq on 20 human prostate cancer 
and 10 matched benign prostate tissues from patients who had 
received no preoperative therapy prior to radical prostatectomy 
and identified a potential link between increased chimeric 
RNA events and prostate cancer.

Pflueger et al11 used RNA-Seq data from 25 human pros-
tate cancer samples and isolated 7 novel gene fusions related to 
prostate cancer, including TMPRSS2-ERG. TMPRSS2-ERG 
gene fusion is present in 50% to 90% of human prostate cancers 
and has been identified as an early molecular event associated 
with invasion of the disease.12 Ren et al13 also identified recur-
rent gene fusions in 14 primary prostate tumors from a Chinese 
population. Although they found TRMPRSS2-ERG fusion to 
occur at a very low frequency, they isolated additional novel 
gene fusions, CTAGE5-KHDRBS3 and USP9Y-TTTY15, 
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that frequently occurred in the Chinese cohort. These conflict-
ing reports illustrate that disparity exists among prostate cancer 
patients of different ethnic backgrounds.

In another study, Xu et  al14 identified 92 new genes with 
somatic mutations in human prostate cancer. Their study used 
RNA-Seq data from 5 cancer patients to detect variants of 
chromosomal rearrangements, insertions, and deletions. Of 
significance, they identified a frame-shift mutation in the cod-
ing region of TNFSF10 that disrupts its ability to induce apop-
tosis, a change that may promote tumor progression. Prensner 
et al15 focused on new noncoding RNA and found an unan-
notated lincRNA, PCAT-1, a prostate-specific regulator of cell 
proliferation.

Exploiting the high-resolution features of RNA-Seq that 
allow for reconstructing the transcriptome, inferring protein 
isoforms, and their corresponding protein function can offer an 
integrative approach to better understand the onset and pro-
gression of the disease. Thus, in this study, we extended our 
earlier study16 for detecting differential expressed transcripts in 
prostate cancer using RNA-Seq data. This model identifies 
transcripts associated with malignant tumors as compared with 
corresponding matched normal samples and transcripts that 
are differentially expressed during disease progression through 
different TNM stages. Our analysis revealed several transcripts 
that may be used as potential biomarkers for predicting pros-
tate cancer and disease progression.

Methods
Data preprocessing

Figure 1 depicts the pipeline of our proposed model. Initially, 
samples are pre-processed individually by filtering the mRNA 
reads of each sample17 and mapping them to the Human 
Genome (hg19) using Tophat2,18 2 fast methods for mapping 
splice junctions and aligning short reads, respectively. In the 
next step, we use Cufflinks6 for assembling the transcriptome 
using the mapped reads from the previous step based on 
RefSeq annotation.19 For all samples, we used Cufflinks to 
estimate the relative abundances of the transcripts in fragments 

per kilobase of exon per million of mapped reads (FPKM) val-
ues. We run Tophat2 and Cufflinks using the default values.

Obtaining discriminative transcripts

The deliverables of our study are 2-fold. First, we aim to iden-
tify a gene signature that predicts prostate cancer by comparing 
cancer versus their matched normal counterparts. Second, we 
focus on the differential expression of gene transcripts in a 
pairwise analysis of various stages of prostate cancer progres-
sion; these transcripts are considered as discriminative tran-
scripts for a specific stage. Using the latter, we anticipate that 
this type of analysis will reveal discriminative transcripts that 
are potential biomarkers for prediction of disease progression. 
The literature confirms that those discriminative transcripts 
are strongly related to cancer progression; however, a deeper 
investigation with wet-lab experiments are required to confirm 
them as predictive or biomarker transcripts. The products of 
these biomarkers may then be identified using routine blood or 
urine tests to predict progression.

Normal versus malignant. We consider the identification of 
differentially expressed transcripts in normal versus malignant 
prostate cells as a 2-class classification problem, where each 
transcript is used as a feature along with FPKM as feature 
value. After obtaining the transcripts using Cufflinks, we used 
minimum Redundancy Maximum Relevance (mRMR).20 
mRMR tries to select a subset of features that maximize the 
relevance, which means to increase the correlation within a 
class and minimize the correlation between themselves (redun-
dancy). The method incorporates the standard classifier and 
forward-selection the features that improve the classification 
measurements.

After feature selection, we used several standard classifiers 
to find the best accuracy for classifying the consecutive stages/
sub-stages. The selected transcripts from the previous step 
were used to optimize the classification performance; it is also 
easier to validate a smaller subset of genes. The classifiers used 
for comparison include support vector machine (SVM)21 with 
the radial basis function (RBF), linear and polynomial kernels, 
random forest,22 decision tree,23 and naïve Bayes.24

Prostate cancer progression. We modeled the machine learning 
problem as binary class problems; for each 2 consecutive stages/
sub-stages, we created a binary class problems. We considered 
the stages/sub-stages from Table 2 as the classes, so we selected 
T1c versus T2, T2 versus T2a, and so on to create the binary class 
problems. For each binary class problem, the reconstructed 
transcripts are the features and the quantified FPKM values for 
each sample’s transcript are the values of the features, and the 
labels are the stages/sub-stages of the samples from that pair of 
binary consecutive classes. To avoid overfitting, we merged all 
T3 and its sub-stage (T3a, T3b) samples with T4 samples, and 
then labeled the merged class samples with T3/T4 class label. 

Figure 1. A Schematic view of the proposed workflow for finding 

differential transcripts between benign versus malignant tumours and 

across various stages of prostate cancer.
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The discriminative transcripts serve as differentially expressed 
transcripts because they are able to identify class from another.

We started the feature selection process on 43 497 recon-
structed transcripts, and then the numbers were narrowed 
down at each binary classification problem to a few discrimina-
tive transcripts; we used Weka24 data mining tool to run 
mRMR on the features. We first normalized the features and 
then used mRMR on SVM with linear kernel as a classifier 
inside the wrapper method. The reason behind choosing the 
linear kernel is because of the heavy cost of applying forward-
selection in the wrapper method using polynomial or RBF 
kernels.

Data Availability
We used 3 data sets, Kim’s,25 Ren’s,13 and Kannan’s,10 each con-
taining matched normal versus malignant prostate cancer 
tumor samples. Ren’s data set used random hexamer primers, 
whereas the others’ data sets used oligo (DT) primers. All these 
data sets are in sequence read archive (SRA) file format and are 
publicly available from the National Center for Biotechnology 
Information (NCBI) repository. Table 1 shows the number of 
samples in each data set.

In addition, we used the data set from Long et al26 which 
contains prostate cancer progression stages using 104 samples 

from 100 patients. Table 2 shows the distribution of samples 
across various stages of prostate cancer in this data set.

Results
Using the proposed model, we conducted 2 different experi-
ments: first, on malignant tumors versus their matched normal 
counterparts, and second, on samples from various stages of 
prostate cancer progression.

Malignant versus matched normal comparison

We tested and validated our proposed wrapper-based feature-
selection method on 3 different data sets (Kannan’s, Kim’s, and 
Ren’). Table 3 and Figure 2 show the differentially expressed 
transcripts (i.e., malignant versus normal) identified in each 
data set. Two of the identified transcripts (NM_019024 and 
NM_001242889; corresponding to genes HEATR5B and 
DDC, respectively) were common between Kannan’s and Kim’s 
data sets, whereas one identified transcript (NR_024490; cor-
responding to the gene GABPB1-A51) was common between 
both Kim’s and Ren’s data sets.

Figure 3 shows the average of transcript abundance for 
malignant versus matched normal samples. The bars represent 
mean FPKM values for the 3 common transcripts selected. 
The averages of FPKM values were calculated for both 

Table 1. Data sets used in this study for malignant versus normal analysis with the number of samples in each data set.

DATA 
SET

NO. OF TUMOR SAMPLES REFERENCES

MALIGNANT MATCHED NORMAL

Kim 7 4 Kim et al18

Ren 14 14 Ren et al13

Kannan 10 10 Kannan et al10

Table 2. Distribution of Long’s data set17 samples in various stages of prostate cancer.

PROSTATE STAGES DESCRIPTION NO. OF PATIENTS

T1c The tumor can be a needle biopsy due to the elevated PSA level. But 
still cannot be detected during imaging test.

14

T2 The tumor is found only in the prostate. 10

T2a The tumor exists in less than a half (or half at most) in only one of 
prostate glands.

23

T2b The tumor exists in more than a half in only one of prostate glands. 11

T2c The tumor exists in both sides of the prostate. 30

T3 The tumor has grown through prostate tissue into the outside. 2

T3a The tumor has grown through the prostate either on 1 or both sides of 
the prostate.

6

T3b The tumor has spread into the seminal vesicles 8

T4 The tumor has spread to other organs. 1

Abbreviation: PSA, prostate-specific antigen.
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malignant and matched normal samples in the 3 data sets in 
such a way that the result of each data set is comparable on an 
uneven field. Transcript NM_001242889 (DDC) was found to 
be differentially expressed in malignant samples compared 
with matched normal samples. DDC has previously been 
shown to be over-expressed in cancer samples compared with 
their matched normal samples.27 Similar patterns were 
observed in our results, which suggest that DDC gene is a rel-
evant biomarker for prostate cancer.

Figure 4 shows the performance of 5 different classifiers 
on discriminating malignant samples from their matched 
normal counterparts in the 3 data sets. The classifiers were 
trained with default parameters and validated via the 10-fold 
cross-validation approach. We used accuracy (ACC) and area 
under receiver operating characteristic curve (AUC) to evalu-
ate the performance of the classifiers, which show that the 
SVM classifier with a linear kernel outperformed all other 
classifiers for the 3 data sets. These classification results show 
that using a handful of transcripts—less than 10 for each data 
set—malignant tumors can be easily identified with almost 
perfect accuracy, in most cases. This has an important impli-
cation in clinical contexts, by virtue of the fact that effective 
and simple tools for diagnosis and prognosis of the disease 
can be developed.

Table 3. Differentially expressed transcripts identified in Kannan’s, Kim’s, and Ren’s data sets.

DATA SET TRANSCRIPT ID GENE NAME GENE DESCRIPTION

Kannan 
et al10

NM_019024 HEATR5B HEAT repeat containing 5B

NM_001242889 DDC Dopa decarboxylase, transcript variant 6

NM_152228 TAS1R3 Taste 1 receptor member 3

NM_001204401 XIAP X-linked inhibitor of apoptosis, transcript variant 2

Kim et al18 NR_024490 GABPB1-AS1 GABPB1 antisense RNA 1

NM_001242889 DDC Dopa decarboxylase, transcript variant 6

NM_019024 HEATR5B HEAT repeat containing 5B

NM_032415 CARD11 Caspase recruitment domain family member 11, transcript variant 2

Ren et al13 NR_024490 GABPB1-AS1 GABPB1 antisense RNA 1

NM_000424 KRT5 Keratin 5

NM_001128826 NCS1 Neuronal calcium sensor 1, transcript variant 2

NM_000494 COL17A1 Collagen type XVII alpha 1 chain

NM_000700 ANXA1 Annexin A1

NM_005567 LGALS3BP Galectin 3 binding protein

Transcripts that start with prefix NM are mRNAs, whereas the ones that start with NR are lncRNAs.

Figure 2. Genes corresponding to the differentially expressed transcripts 

identified in Kannan’s, Kim’s, and Ren’s data sets.

Figure 3. Expression of transcripts in malignant versus matched normal 

samples.



Alkhateeb et al 5

Prostate cancer progression

We applied the proposed method to compare different stages 
of prostate cancer using the data set from Long et al26 for this 
comparison. Our method identified 44 transcripts expressed 
differentially between pairs of stages (e.g., T1, T2, T3, and T4) or 

sub-stages of prostate cancer progression (e.g., T2a, T2b, and 
T2c), collectively. Each pair of consecutive stages, namely, T1c-
T2, T2-T2a, T2a-T2b, T2b-T2c, T2c-T3a, T3a-T3b, and T2c-T3/T4 was 
fed to a classifier, modeled as a 2-class dichotomizer that dis-
tinguishes stage A versus stage B, for an A–B pair. Then, 
mRMR as a wrapper-based feature selection approach was 
applied to the data set. SVM was used as a classifier with 
default parameters to obtain the best set of features, where the 
performance measure is accuracy.

As a result of applying the feature selection and classifica-
tion algorithms, each pair of consecutive stages led to 6, 7, 6, 5, 
5, 3, and 12 differentially expressed transcripts, respectively. 
Tables 4 to 10 provide a list and the corresponding description 
of the top discriminative transcripts between different pairs of 
stages/sub-stages of prostate cancer progression. As shown in 
the tables, the largest number of discriminative transcripts was 
found between the T2c-T3/T4 pairwise stages.

The results of applying mRMR feature selection method to 
identify the most differentially expressed transcripts between 
pairs of consecutive classes were compared with the results 
obtained after applying CuffDiff,6 a tool that uses statistical 
methods to identify differentially expressed transcripts. The 
reason for selecting CuffDiff rather than the other state-of-art 
differential expression analysis tools is that it outperforms the 
other tools when it comes to isoforms analysis despite reports 
that it is less accurate and performs slower than other tools.28 

Figure 4. Performance of 5 different classifiers for matched normal 

versus malignant classification.

Table 4. The list of the transcripts that differentiate stage T1C from T2.

TRANSCRIPT CHR. GENE GENE DESCRIPTION

NR_003669 16 MT1IP Metallothionein 1I, pseudogene (MT1IP), transcript variant 1

NM_001160393 11 TRPT1 tRNA phosphotransferase 1 (TRPT1), transcript variant 6

NM_001161345 12 CHFR Checkpoint with forkhead and ring finger domains, E3 
ubiquitin protein ligase (CHFR), transcript variant 2

NM_052857 17 ZNF830 Zinc finger protein 830

NR_003594 8 REXO1L2P RNA exonuclease one homolog (S. cerevisiae)-like 2

NR_033240 14 SLC25A21 SLC25A21 antisense RNA 1

Table 5. The list of the transcripts that differentiate stage T2 from T2A.

TRANSCRIPT CHR. GENE GENE DESCRIPTION

NM_004860 17 FXR2 Fragile X mental retardation, autosomal homolog 2

NM_052850 19 GADD45GIP1 Growth arrest and DNA-damage-inducible, gamma interacting protein 1

NM_001272095 16 STX4 Syntaxin 4, transcript variant 1

NM_001261390 17 CALCOCO2 Calcium binding and coiled-coil domain 2, transcript variant 1

NM_153274 1 BEST4 Bestrophin 4

NM_001252641 19 URI1 Prefoldin-like chaperone, transcript variant 3

NR_038352 5 DCP2 Decapping mRNA 2, transcript variant 3
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Table 6. The list of the transcripts that differentiate stage T2A from T2B.

TRANSCRIPT CHR. GENE GENE DESCRIPTION

NM_032023 10 RASSF4 Ras association (RalGDS/AF-6) domain family member 4

NM_080792 20 SIRPA Signal-regulatory protein alpha (SIRPA), transcript variant 3

NM_000095 19 COMP Cartilage oligomeric matrix protein

NM_003102 4 SOD3 Superoxide dismutase 3, extracellular

NM_080797 20 DIDO1 Death inducer-obliterator 1, transcript variant 3

NM_002725 1 PRELP Proline/arginine-rich end leucine-rich repeat protein, transcript variant 1

Table 7. The list of the transcripts that differentiate stage T2B from T2C.

TRANSCRIPT CHR. GENE GENE DESCRIPTION

NM_001711 X BGN Homo sapiens biglycan

NM_032023 10 RASSF4 Ras association (RalGDS/AF-6) domain family member 4

NM_001014443 1 USP21 Ubiquitin-specific peptidase 21, transcript variant 3

NM_021724 17 NR1D1 Nuclear receptor subfamily 1 group D, member 1

NM_012098 9 ANGPTL2 Angiopoietin-like 2

Table 8. The list of the transcripts that differentiate stage T2C from T3A.

TRANSCRIPT CHR. DESCRIPTION GENE

NM_001198979 1 Small ArfGAP2 (SMAP2), transcript variant 2 SMAP2

NM_001099285 2 Prothymosin, alpha (PTMA), transcript variant 1 TMSA

NM_001198899 1 YY1 associated protein 1 (YY1AP1), transcript variant 6 YY1AP1

NM_001130048 13 Dedicator of cytokinesis 9 (DOCK9), transcript variant 2 DOCK9

NM_000899 12 KIT ligand (KITLG), transcript variant b KITLG

Table 9. The list of the transcripts that differentiate stage T3A from T3B.

TRANSCRIPT CHR. DESCRIPTION GENE

NR_034169 2 Family with sequence similarity 133 member D pseudogene FAM133DP

NM_015380 22 Sorting and assembly machinery component 50 homolog, protein coding SAMM50

NR_046417 15 Olfactory receptor family 4 subfamily F member 13 pseudogene OR4F13P

Table 10. The list of the transcripts that differentiate stage T2C from T3/T4.

TRANSCRIPT CHR. DESCRIPTION GENE

NM_001257413 17 IKAROS family zinc finger 3 (Aiolos), transcript variant 12 IKZF3

NM_003940 3 Ubiquitin-specific peptidase 13 (isopeptidase T-3) USP13

NM_001142274 2 Cytoplasmic linker associated protein 1, transcript variant 3 CLASP1

NM_001199165 17 Centrosomal protein 112kDa, transcript variant 3 CEP112

NM_052965 1 tRNA splicing endonuclease subunit, transcript variant 1 TSEN15
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In each pair of consecutive stages, the proposed model identi-
fied fewer selected transcripts as compared with the CuffDiff 
model (Table 11). We evaluated the performance of the 2 mod-
els above using different performance measures that include 
ACC, F-measure (FM), Matthews correlation coefficient 
(MCC), and AUC. For classification, we used the cost-sensi-
tive meta-classifier model along with random forest classifier 
(100 trees) with the same settings for both models. In each 
case, we obtained a much higher performance using transcripts 
selected from our feature-selection method as compared to 
CuffDiff. Importantly, we observed no overlap between tran-
scripts detected by the 2 models, stressing the importance of 

the new method for isolating hits as biomarkers for progression 
of prostate cancer.

Figures 5 to 11 depict transcripts listed in Tables 4 to 10, 
respectively, across different stages of prostate cancer. The 
x-axis shows the stages of prostate cancer, whereas the y-axis 
shows the median of FPKM values of samples in each stage. Of 
particular interest are transcripts that are significantly altered at 
the critical transition from stage T2 to T3/T4 (Figures 9 
and 11). DOCK9 (Figure 9) and FLVCR2 IK2F3, USP13, 
PTGFR, CLASP1 (Figure 11) are all transcripts that signifi-
cantly increase at the T2 transition and remain elevated in 
advanced prostate cancer stages. These may represent novel 

TRANSCRIPT CHR. DESCRIPTION GENE

NM_001195283 14 Feline leukemia virus subgroup C cellular receptor family, member 2, 
transcript variant 2

FLVCR2

NM_001023567 15 Golgin A8 family, member B, transcript variant 1 GOLGA8B

NM_001143766 10 Zinc finger protein 438, transcript variant 1 ZNF438

NR_003004 4 Small Cajal body-specific RNA 22 SCARNA22

NM_017753 9 Lipid phosphate phosphatase-related protein type 1, transcript variant 2 LPPR1

NM_000959 1 Prostaglandin F receptor (FP), transcript variant 1 PTGFR

NM_004772 5 Neuronal regeneration related protein, transcript variant 1 NREP

Table 10. (Continued)

Table 11. Comparison between CuffDiff and our feature-selection method for identifying differentially expressed transcripts between each pair of 
consecutive stages of prostate cancer.

STAGE METHOD NO. OF 
SELECTED 
TRANSCRIPTS

NO. OF COMMON 
TRANSCRIPTS

ACC FM MCC AUC

T1C-T2 (14 
versus 10)

CuffDiff 21 0 70.8% 0.710 0.410 0.846

Proposed method 6 95.8% 0.958 0.917 0.971

T2-T2A (10 
versus 23)

CuffDiff 43 0 69.7% 0.650 0.159 0.580

Proposed method 7 93.9% 0.939 0.857 0.970

T2A-T2B (23 
versus 11)

CuffDiff 35 0 64.7% 0.601 0.068 0.634

Proposed method 6 85.3% 0.851 0.657 0.826

T2B-T2C (11 
versus 30)

CuffDiff 38 0 65.8% 0.647 0.078 0.645

Proposed method 5 87.8% 0.880 0.699 0.885

T2C-T3A (30 
versus 8)

CuffDiff 29 0 73.7% 0.722 0.130 0.612

Proposed method 5 89.4% 0.895 0.683 0.948

T3A-T3B (8 
versus 9)

CuffDiff 27 0 58.8% 0.588 0.181 0.750

Proposed method 3 94.1% 0.941 0.887 1.000

T2C-T3/T4 (30 
versus 17)

CuffDiff 49 0 57.4% 0.568 0.055 0.483

Proposed method 12 95.7% 0.957 0.908 0.988

Abbreviations: ACC, accuracy; FM, F-measure; MCC, Matthews correlation coefficient; AUC, area under receiver operating characteristic curve.
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Figure 5. Stage-specific expression level of transcripts that have been selected based on their significant expression changes between stages T1c and T2.

Figure 6. Stage-specific expression level of transcripts that have been selected based on their significant expression changes between stages T2 and T2a.
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biomarkers—either individually or combined as a signature. 
They may also represent novel targets for therapeutic 
intervention.

Discussion
Identifying novel biomarkers to clearly distinguish between 
low and high-risk prostate cancer progression is a significant 

step toward directing treatment strategies that are efficacious 
yet minimally invasive. Using the power of NGS and machine 
learning techniques, we found several transcripts that have the 
potential to serve as prognostic indicators in guiding treatment 
decisions. These transcripts constitute a genomic and tran-
scriptomic signature of prostate cancer and its progression, 
which has never been characterized before. Further studies 

Figure 7. Stage-specific expression level of transcripts that have been selected based on their significant expression changes between stages T2a and T2b.

Figure 8. Stage-specific expression level of transcripts that have been selected based on their significant expression changes between stages T2b and T2c.
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using wet-lab experiments and clinical assays will be essential 
to confirm the presence of these biomarkers in particular bio-
logical processes involved in the disease and its progression.

Some of our isolated genes have previously been linked to 
other forms of cancer. For example, NREP (P311) is a tran-
script upregulated in stages T3 to T4 as compared with T2c. 
Although there are no published reports on the role of NREP 
on prostate cancer, it has been shown to be involved in glioma 
motility and invasion via the reorganization of the actin 
cytoskeleton at the periphery of these cells.29 Upregulation of 
NREP expression from stages T3 to T4 is consistent with the 
invasion of prostate cancer cells extending beyond the prostatic 
capsule during this stage. Our results also revealed upregula-
tion of the gene expression of the small Cajal body-specific 
RNA (SCARNA22) from stages T2c to T3/T4. SCARNA22 is 
a noncoding RNA involved in the maturation of other RNA 

molecules, and along with other small nucleolar RNA, it has 
been linked to human cancers.30 Typically located in the introns 
of host genes, upregulation of SCARNA22 was found in mul-
tiple myeloma harboring chromosomal translocations and may 
suppress oxidative stress, facilitate cell proliferation, and protect 
cells from the effects of chemotherapy.31 Our study is the first 
to link SCARNA22 with prostate cancer and progression of 
the disease.

In particular, we have isolated a set of transcripts that are 
significantly altered at the critical transition between stages T2 
and T3/4 and remain elevated. These are transcripts from the 
genes DOCK9, FLVCR2, IK2F3, USP13, PTGFR, and 
CLASP1. In the human protein atlas, Dock9, Clasp1, and 
USP13 protein levels are highly expressed in prostate cancer 
tissues. Dock9 is a Rho GEF responsible for activating Rho-
GTPases and known to be implicated in tumorigenesis,32,33 

Figure 9. Stage-specific expression level of transcripts that have been selected based on their significant expression changes between stages T2c and T3a.

Figure 10. Stage-specific expression level of transcripts that have been selected based on their significant expression changes between stages T3a 

and T3b.
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Although the protein atlas has not detected PTGFR as highly 
stained in prostate cancer, gene expression of PTGFR is asso-
ciated with cell proliferation and in vivo progression to 
castration-recurrent prostate cancer, an end stage of the dis-
ease.34 PTGFR is a membrane receptor for the prostaglandin 
F2alpha and a potent luteolytic agent. It has previously been 
shown to be highly expressed in endometrial adenocarcinomas.35 
In ovarian cancer, overexpression of PTGFR stimulates the 

spontaneous development and secretion of autoantibodies 
against the protein, as detected in the serum samples of patients 
with cancer.36 Autoantibodies against PTGFR may serve as 
biomarkers for early serological detection of the disease. 
Overexpression of PTGFR has also been reported in human 
tumor-endothelial cells of renal cell carcinoma where it is 
believed to be involved in tumor angiogenesis.37 Whether these 
transcripts or their protein products can be used alone or in 

Figure 11. Stage-specific expression level of transcripts that have been selected based on their significant expression changes between stages T2c 

and T3/T4.
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combination as a prognostic indicator for prostate cancer is an 
important next step of this work. It is also interesting to con-
sider that these protein products may represent novel drug tar-
gets for advanced disease.
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