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Deep learning for end-to-end kidney cancer diagnosis on
multi-phase abdominal computed tomography
Kwang-Hyun Uhm 1,4, Seung-Won Jung 1,4, Moon Hyung Choi2,4, Hong-Kyu Shin 1, Jae-Ik Yoo 1, Se Won Oh2, Jee Young Kim2,
Hyun Gi Kim2, Young Joon Lee2, Seo Yeon Youn 2, Sung-Hoo Hong 3✉ and Sung-Jea Ko 1✉

In 2020, it is estimated that 73,750 kidney cancer cases were diagnosed, and 14,830 people died from cancer in the United States.
Preoperative multi-phase abdominal computed tomography (CT) is often used for detecting lesions and classifying histologic
subtypes of renal tumor to avoid unnecessary biopsy or surgery. However, there exists inter-observer variability due to subtle
differences in the imaging features of tumor subtypes, which makes decisions on treatment challenging. While deep learning has
been recently applied to the automated diagnosis of renal tumor, classification of a wide range of subtype classes has not been
sufficiently studied yet. In this paper, we propose an end-to-end deep learning model for the differential diagnosis of five major
histologic subtypes of renal tumors including both benign and malignant tumors on multi-phase CT. Our model is a unified
framework to simultaneously identify lesions and classify subtypes for the diagnosis without manual intervention. We trained and
tested the model using CT data from 308 patients who underwent nephrectomy for renal tumors. The model achieved an area
under the curve (AUC) of 0.889, and outperformed radiologists for most subtypes. We further validated the model on an
independent dataset of 184 patients from The Cancer Imaging Archive (TCIA). The AUC for this dataset was 0.855, and the model
performed comparably to the radiologists. These results indicate that our model can achieve similar or better diagnostic
performance than radiologists in differentiating a wide range of renal tumors on multi-phase CT.
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Kidney cancer is one of the 10 most common cancers, and by far
the most common type of kidney cancer is renal cell carcinoma
(RCC), which occurs in 9 out of 10 cases of all kidney cancer1.
According to 2016 World Health Organization statistics, the three
major subtypes of RCCs are clear cell RCC (ccRCC), papillary RCC
(pRCC), and chromophobe RCC (chRCC), which account for 90% of
all RCCs, while the majority of benign renal tumors are
angiomyolipoma (AML) and oncocytoma2. In the retrospective
study of 916 patients who underwent partial nephrectomy for
presumed RCC from preoperative imaging, 129 (14.1%) patients
revealed benign pathology on the final diagnosis, including 66
(51.2%) oncocytomas and 37 (28.7%) AMLs3. To avoid unnecessary
biopsy or surgery, it is important to accurately differentiate benign
tumors from malignant ones in preoperative images4–7. Moreover,
since treatment planning and prognosis prediction are highly
dependent on the pathological subtype of renal tumor, it is
required to correctly classify tumor subtypes in images.8–11. Multi-
phase abdominal computed tomography (CT) is often used for
detection and evaluation of renal tumors8,9,12. Typically, multi-
phase CT is analyzed on the basis of the enhancement
characteristics of the tumors13. However, there are strong overlaps
in image-level features between renal tumor subtypes, which
make subtype classification difficult and cause inter-observer
variation9. These clinical challenges point to the need to develop
automatic systems that can reduce misdiagnosis and inter-
observer variation14.
Recently, deep learning based on convolutional neural networks

(CNNs) has shown promising results on several medical image
analysis tasks15–18. For renal lesions, deep learning has been
applied to tumor segmentation19–21 and classification4,22–24.

However, in most prior studies on tumor classification, lesions
were classified into only two classes (benign/malignant)4,22,23 or
the three RCC classes (ccRCC, pRCC, and chRCC)24. Moreover, the
previous diagnosis systems required the manual lesion identifica-
tion process, in which the regions of tumors are drawn by
radiologists.
To overcome these limitations, we designed and evaluated an

end-to-end deep learning framework for the classification of renal
tumor subtypes into five classes including both benign and
malignant tumors using multi-phase abdominal CT scans as the
input data (Fig. 1). We investigated the performance of six
radiologists in differential diagnosis of renal tumors and compared
our deep learning model with the radiologists. We integrated
tumor segmentation and subtype classification into a unified
framework for the diagnosis solely on CT data without manual
intervention, improving its practical utility.
Our framework first extracts the kidney and tumor masks from

the whole CT volume for each phase using the three-dimensional
(3D) CNN-based segmentation model. We obtained voxel-level
segmentation labels to train this model. Then, the CT volumes of
different phases are aligned based on the segmented regions, and
finally, the CNN-based classification model analyzes the aligned
tumor regions and predicts the subtype. Postoperative pathology-
confirmed tumor labels were used to train the
classification model.
In this study, we constructed a large dataset consisting of 1035

CT images from 308 patients who underwent nephrectomy for
renal tumors between 2003 and 2020. This dataset contains five
major subtypes of renal tumors including both benign and
malignant tumors: oncocytoma, AML, chRCC, pRCC, and ccRCC,
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where all tumors in the dataset have been pathologically
confirmed by surgery. We randomly selected 50 cases with at
least three CT phases to test the model, and the rest of the cases
were used for the training. Patient demographics, the distribution
of kidney tumor subtypes, tumor size, and CT phases for training/
testing are summarized in Table 1. For each patient, multiple
phases were acquired at different times such as non-contrast,
arterial (20–30 s after contrast injection), portal (60–70 s), and
delayed (>180 s) phases. We collected voxel-level segmentation
labels for each CT scan, where trained annotators manually
delineated kidneys and tumors in the images and then a
radiologist (experience of 11 years) refined the annotations.
Supplementary Table 1 shows the manufacturers and model
names of the CT scanners used in the training and test sets.
On the test dataset, we compared the diagnostic performance

of the model to six board-certified radiologists (average experi-
ence of 14 years, ranging 5–24 years). The radiologists indepen-
dently reviewed the multi-phase CT scans of the test cases and
had access to the patient’s age and gender, while this information
was not provided to the model. The radiologists were instructed
to provide up to two differential diagnoses. When the radiologist
was sufficiently confident with the first diagnosis, the second
diagnosis was not provided. Performance of radiologists was
measured using the first diagnosis (top-1 performance) and using
both the first and second diagnoses (top-2 performance).
Figure 2a shows the receiver operating characteristic (ROC)

curves of the model and the performance of the radiologists. We
calculated the area under the curves (AUCs) with 95% confidence
interval (CI) for each curve. The model achieved an average AUC of
0.889 (95% CI, 0.827–0.945), and exceeded both the top-1 and top-
2 performance of the radiologists in most cases. In particular, the
points indicating the average performance of the radiologists fell
on or below the ROC curves of the model for all subtype classes.
See Supplementary Fig. 1 for the precision–recall curves of the
model. Figure 2b shows the confusion matrices for the model and
all individual radiologists. We observed that chRCC, AML, and
oncocytoma were frequently misclassified as ccRCC by the
radiologists, whereas they were more correctly classified by the
model. The model achieved the accuracy of 0.72, exceeding both
the average top-1 and top-2 accuracy of radiologists, which were
0.42 and 0.56, respectively. Compared to the average radiologist,
the model demonstrated statistically significant improvements in
top-1 sensitivity (P < 0.05) for chRCC and AML, and even in top-2
sensitivity (P < 0.05) for AML (Fig. 2c). Also, there were statistically

significant improvements in specificity (P < 0.05) for ccRCC and
oncocytoma (Fig. 2d).
To explore the generalizability of our model to different

populations, we evaluated the model on an independent test
dataset from The Cancer Imaging Archive (TCIA)25, which is a large

Fig. 1 Overall deep learning framework. Our framework takes a multi-phase CT scan as an input. The framework first produces the kidney
and tumor masks for each phase using a shared 3D segmentation model. The framework then aligns the tumor regions across phases and
outputs a probability distribution over five subtype classes of renal tumor through a classification model. In the segmentation results, the
green and magenta represent the kidney and tumor, respectively.

Table 1. Patient demographics, subtype, and tumor size distributions
for training/test dataset.

Total Training set Test set

Patients (n) 308 258 50

Age (years)

−40 29 23 6

40–50 73 62 11

50–60 96 80 16

60–70 71 57 14

70– 39 36 3

Gender

Female 167 140 27

Male 141 118 23

Subtype

ccRCC 66 54 12

pRCC 69 58 11

chRCC 68 58 10

AML 60 51 9

Oncocytoma 45 37 8

Tumor size (cm)

1–2 79 66 13

2–3 84 71 13

3–4 56 51 5

4–5 33 27 6

5–6 29 21 8

6– 27 22 5

CT phases

Four phase 183 145 38

Three phase 66 54 12

Two phasea 46 46 –

Single phasea 13 13 –

aThe single-phase and two-phase CT scans are used only for training our
segmentation model.
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public repository for research on cancer images. We collected 184
multi-phase CT scans of patients with renal tumors (163 ccRCC, 14
pRCC, and 7 chRCC). The cases of oncocytoma and AML are not
available in this repository. We included cases with at least three
CT phases for the study. The ROC curves on this test set are shown
in Fig. 2a. The model achieved the average AUC of 0.855 (95% CI,
0.763–0.940), and the accuracy of 0.64. See Supplementary Figs. 2

and 3 for the precision–recall curves and the confusion matrix of
the model. These results demonstrated that the model trained on
the data collected from our hospital generalizes to the indepen-
dent test set from different populations.
For the diagnostic performance comparison with radiologists,

40 cases (19 ccRCC, 14 pRCC, and 7 chRCC) were reviewed by the
six radiologists. Supplementary Tables 2 and 3 provide the patient

Fig. 2 Kidney cancer diagnosis performance of the model and radiologists. a The ROC curves of the model and the performance of the six
radiologists are plotted for each tumor subtype. For the three RCCs, the results of testing the model on the TCIA dataset are also plotted.
b Confusion matrices for the model and individual radiologists. Comparison of the sensitivities (c) and specificities (d). P values were
calculated using the two-sided permutation test.
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demographics, the number of individual tumor subtypes and CT
phases, and the manufacturers and model names of the CT
scanners for the full and radiologist-reviewed test sets. The ROC
curves of the model and the performance of the radiologists are
presented in Fig. 3a. The model achieved an average AUC of 0.863
(95% CI, 0.753–0.954) and performed on par with the radiologists.
The points for the top-1 and top-2 performance of the average
radiologist fell below the ROC curves of the model for pRCC and
chRCC classes. Figure 3b shows the confusion matrices of the
model and all individual radiologists. We observed that at least
five chRCC cases were misclassified by radiologists, while only
three chRCC cases were missed by the model. The model achieved
the accuracy of 0.75, which exceeded the average top-1 accuracy
of radiologists (0.63) and was slightly lower than the top-2
accuracy of radiologists (0.79). The model showed statistically
significant improvement in top-1 sensitivity (P= 0.0112) for chRCC
class compared to the average radiologist (Fig. 3c).
We also evaluated the performance of our segmentation and

multi-phase registration models on the test dataset. First, we
evaluated the segmentation model by measuring the Dice
similarity coefficient (DSC)26, which quantifies the volume overlap
between manual annotations and the masks produced by the
model for the kidney and tumor regions. The average DSCs for the
kidney and tumor were obtained as 0.969 ± 0.014 and 0.856 ±
0.131, respectively, while the DSCs for individual phases are
presented in Supplementary Table 4a. The DSC for the tumor was
higher than 0.87 in all phases except for the non-contrast phase.

Second, we evaluated the registration model by measuring the
DSC between the manual segmentation labels from the reference
phase (portal phase) and the aligned labels from the other phases.
The model achieved average DSCs of 0.934 ± 0.028 and 0.854 ±
0.092 for the kidney and tumor, respectively, which were much
higher than those obtained by simply aligning the center of mass
of the kidney volume (0.909 ± 0.053 and 0.770 ± 0.160). The results
for all phases are summarized in Supplementary Table 4b.
There are several limitations of our study. First, the patients

included in our dataset were only from Seoul St. Mary’s Hospital.
Although we verified the performance from the external TCIA
dataset as well as the separated internal test set, data collection
from multiple centers in different countries is needed to train and
test our model on more diverse populations. Second, we
investigated the classification performance for the five renal
tumor subtypes in this study. It would be beneficial to classify a
wider range of subtype classes for the diagnosis, e.g., differentiat-
ing between type 1 pRCC and type 2 pRCC.
This study demonstrates that an end-to-end deep learning

model can achieve radiologist-level performance for kidney cancer
diagnosis using CT data. The proposed model successfully
performed fine-grained classification of renal tumor into five
major pathological subtypes including benign and malignant
tumors. These results highlight the potential for fully automated
systems to assist radiologists in diagnosing kidney cancer patients.
Further studies with larger numbers of cases will be needed to
validate the applicability of the model in clinical practice. In

Fig. 3 Performance comparison on an independent test dataset. a The ROC curves of the model and the performance of radiologists on the
dataset from The Cancer Imaging Archive (TCIA) are plotted. This dataset contains three RCC subtypes. b Confusion matrices for the model
and individual radiologists. Comparison of the sensitivities (c) and specificities (d). P values were calculated using the two-sided
permutation test.
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addition, we believe the presented deep learning framework
could also be extended for the analysis of other cancer types and
other modalities such as magnetic resonance imaging and
positron emission tomography.

METHODS
Dataset
Patients who underwent nephrectomy for renal tumor between 2003 and
2020 in Seoul St. Mary’s hospital were eligible. Among them, we selected
308 patients who underwent abdominal CT scans at Seoul St. Mary’s
Hospital or other hospitals within 3 months before surgery. The CT scans
were obtained with various imaging protocols and scanners. A radiologist
reviewed all images and confirmed that the image quality was acceptable.
Subtype labels were confirmed by pathological examination of the
surgically removed tumors. All participants provided informed consent.
This study was approved by the Seoul St. Mary’s Hospital Institutional
Review Board. The slice thickness used was 5 mm in the majority of cases
(71.2%) but could vary from 1 to 7mm, and pixel spacing used ranged
from 0.53 to 0.94 mm. To obtain pixel-level segmentation labels, 10
annotators supervised by a radiologist (experience of 11 years) first
delineated the kidneys and tumors in the CT images, and these
annotations were all checked and refined by the radiologist.
We also used image data from TCIA for validation of the model on an

independent dataset. TCIA is a large public archive of cancer images where
image data are contributed by multiple clinical institutions. We collected
multi-phase CT scans of patients with RCC from The Cancer Genome Atlas
kidney renal clear cell carcinoma (TCGA-KIRC)25,27, kidney renal papillary
cell carcinoma (TCGA-KIRP)25,28, and kidney chromophobe (TCGA-
KICH)25,29 databases. The results shown here are in whole or part based
upon the data generated by the TCGA Research Network: http://
cancergenome.nih.gov/. Cases for oncocytoma and AML were not
available in TCIA. Only patients with three or more CT phases were
included. The final dataset used consists of 600 CT images from 184
patients with the majority of tumor subtypes being ccRCC (163 cases). The
TCIA data were only used for model testing. The slice thickness of the CT
scans was 3 or 5 mm in most cases (535 scans), while the pixel spacing
ranged from 0.54 to 0.98mm. Supplementary Tables 2 and 3 describe the
patient demographics, the number of individual subtypes and CT phases,
and scanner information of this dataset.

Model development
The proposed model has three main components: kidney and tumor
segmentation, multi-phase alignment, and tumor subtype classification. All
network components were implemented using the PyTorch framework30.
The models were trained on an NVIDIA Titan Xp graphics processing unit
(GPU). Data processing and analysis were performed using the Python
language with the NiBabel, numpy and sklearn packages. ITK-Snap31

software was used for manual segmentation in CT volumes.
Recently, many deep learning-based semantic segmentation methods

have been developed, such as FCN32, U-Net33, Deeplab V3+34, and
PSPNet35. According to the kidney tumor segmentation challenge (KiTS19)
reports36, the 3D U-Net architecture37 achieved the top performance over
other methods. Hence, we adopted the 3D U-Net for kidney and tumor
segmentation, where the network classifies each voxel in a CT volume into
three classes: background, kidney, and tumor. This network was trained on
848 CT scans including four different contrast phases. The CT volumes
were resampled to a 1.5 × 1.5 × 3mm3 voxel size. The network parameters
were then optimized using stochastic gradient descent on the sum of the
cross-entropy and Dice loss function38. The hyperparameters required for
training, such as the batch size and learning rate, were chosen by following
nnU-Net21. This component produces the segmentation masks of the
kidney and tumor for each phase of the CT volume.
We utilized 3D spatial transformer networks39 to register the multi-phase

CT volumes. The 3D affine transformation parameters were optimized for
each pair of volumes. We selected the portal phase as the reference phase,
and registered the volumes from the other phases to the reference phase.
If the portal phase was not available, the arterial phase was used instead
for reference. The transformation parameters were iteratively updated to
align the kidney and tumor masks of the two phases until convergence.
We minimized the Dice loss using an Adam optimizer40 with a learning rate
of 0.01. This registration component outputs the precisely aligned CT
volumes of the non-reference phases.

We used ResNet-101 (ref. 41) to classify the pathological subtypes of renal
tumor. For each case, the slice with the largest segmented tumor area was
extracted from each phase of the CT scans, and the rectangular region
containing the tumor region was then cropped from each extracted slice. The
cropped images were then resized to 224 × 224 pixels and concatenated to
form a 3-channel image, which was used as the input to the classification
network. Cases with less than three CT phases were not used for training. For
cases with four-phase CT scans, three 3-channel images were obtained by
excluding each one of the three contrast-enhanced phases (arterial, portal,
and delayed). These 3-channel images were used independently for the
training. In the testing stage, we averaged the results of the network from
three 3-channel images. We initialized ResNet-101 with the weights pre-
trained on ImageNet42, and added a 1 × 1 × 1 convolutional layer at the
beginning of the network and changed the last fully connected layer to
produce a distribution over five classes. We trained the network using the
cross-entropy loss with stochastic gradient descent. The final component
outputs the probability for each subtype class.

Stastical analysis
We computed confidence intervals for the AUC using 1000 bootstrap samples.
We used a permutation test to compare the performance (sensitivity and
specificity) of the model with that of the radiologists. The model predictions
were randomly swapped with the radiologist decisions for each case, and the
performance difference between the model and radiologist was calculated.
This procedure was repeated 10,000 times, and then an empirical two-sided P
value was obtained by comparing the observed performance difference with
the empirical distribution of the differences.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The TCIA dataset used for the external validation is publicly available at the TCIA data
portal (https://www.cancerimagingarchive.net). The dataset from Seoul St. Mary’s
Hospital was used under approval for the current study. Restrictions apply to the
availability of this dataset and so it is not publicly available. However, data are
available from the authors upon reasonable request and with permission of Seoul St.
Mary’s Hospital.

CODE AVAILABILITY
Our source code is available at https://github.com/khuhm/deep-kidney-cancer.
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