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Abstract: The optical gain spectrum has been investigated theoretically for various designs of active
region based on InAs/GaInSb quantum wells—i.e., a type II material system employable in interband
cascade lasers (ICLs) or optical amplifiers operating in the mid-infrared spectral range. The electronic
properties and optical responses have been calculated using the eight-band k·p theory, including
strain and external electric fields, to simulate the realistic conditions occurring in operational devices.
The results show that intentionally introducing a slight nonuniformity between two subsequent
stages of a cascaded device via the properly engineered modification of the type II quantum wells of
the active area offers the possibility to significantly broaden the gain function. A −3 dB gain width
of 1 µm can be reached in the 3–5 µm range, which is almost an order of magnitude larger than
that of any previously reported ICLs. This is a property strongly demanded in many gas-sensing
or free-space communication applications, and it opens a way for a new generation of devices in
the mid-infrared range, such as broadly tunable single-mode lasers, mode-locked lasers for laser-
based spectrometers, and optical amplifiers or superluminescent diodes which do not exist beyond
3 µm yet.

Keywords: interband cascade laser; optical gain; quantum well; mid-infrared range

1. Introduction

An important class of semiconductor lasers operating efficiently in the spectral range
of the first atmospheric window (2.9–5.3 µm), coinciding with the strongest absorption
lines of many environmentally relevant gasses, utilizes a cascaded scheme of interband
transitions in type II quantum well (QW) structures [1–4]. Hence, such devices are called
interband cascade lasers (ICLs) and they are usually based on a broken gap material
system of InAs/GaInSb [2,3,5,6]. The usage of such materials, besides the natural band
edge alignment which is necessary in ICLs, allows the emission in a broad range of
the mid-infrared (MIR) [7] and the growth on GaSb or InAs substrates to remain in a
relatively low strain limit range. This assures the high structural and optical quality
of epitaxially grown III-V materials and hence a good device performance. All these
properties cannot be obtained in other material systems suitable for the MIR. When, for
instance, diode lasers (based on type I optical transition in GaSb-based quantum wells)
are considered, it becomes more and more difficult to reach the threshold with increasing
emission wavelength due to the lower gain. Therefore, multiple quantum wells are used to
ensure sufficient amplification while maintaining reasonable threshold current densities.
This in turn leads to significant proportion of the parasitic voltage drops in the passive
areas of the device in the total voltage. Thus, the threshold power density increases. In
addition, with the increased emission wavelength (decreased optical transition energy)
the carrier losses and probability of nonradiative processes as the Auger recombination
increase [6,8]. All these problems can be overcome or minimized by employing a cascaded
scheme, which was proposed to be used in interband cascade lasers [5,9]. These lasers can

Materials 2021, 14, 1112. https://doi.org/10.3390/ma14051112 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8955-774X
https://orcid.org/0000-0001-7645-8243
https://doi.org/10.3390/ma14051112
https://doi.org/10.3390/ma14051112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14051112
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/5/1112?type=check_update&version=3


Materials 2021, 14, 1112 2 of 10

operate from 2.9 to 7 µm at least (where the longer wavelength results concern structures
on InAs substrates) [10–13], with threshold drive powers 1–2 orders of magnitude lower
than for quantum cascade lasers (QCLs) [11], while still generating 500 mW of continuous
wave (cw) output power [12]. Therefore, GaSb-based ICLs are ideal for MIR spectroscopy
and gas sensing applications that rarely require Watt-level optical power [13].

The success of ICLs partly comes from a freedom in their band structure and optical
properties engineering. This is achievable due to the spatially indirect character of the
active optical transition and the possibility of adjusting the type-II QW layers’ thicknesses
or compositions in a broad range [14–17]. This, in turn, allows tailoring the strain, band gap
discontinuities, optical transition energy (wavelength), or valence band states intermixing
and hence the polarization of the emitted or absorbed light [18,19].

Recent developments have made possible the fabrication of ICLs with record low
power consumption (<0.1 W at threshold at 300 K) and ultralow threshold current densities
as for MIR lasers [12,20], as well as high cw output powers [3], continuous wave and single-
mode operation at room temperature or even above, in the spectral range from below 3
to above 6 µm [20–24]. As a result, the performance of ICLs has met the requirements
of a variety of applications already, such as optical gas sensing [25], industrial process
control [26,27], environmental pollution monitoring [28], medical diagnostics [29], infrared
countermeasures [30], gas leakage detection [31] and free space optical communication [32].
In some of these applications, the broad gain function of the active material is especially
advantageous. For instance, it is important when aiming at wide spectral tunability of
the laser emission but also essential in the context of mode-locked lasers and tailoring
their pulse duration. Eventually, spectrally broad gain becomes critically necessary for
semiconductor optical amplifiers or superluminescent diodes in the MIR. Such broad gain
solutions are basically still missing in the spectral range beyond 3 µm, therefore this work
attempts to fill this gap and paves the way towards new generation of devices, utilizing
however the knowledge and experience from previous developments in ICLs.

In this paper, we discuss the design strategies allowing for extraordinary spectrally
broad gain active material in the range of about 3–5 µm. It is shown that the optical gain
function in the InAs/GaInSb structures can be controlled by an appropriate number of
wells and their thicknesses, as well as the effective overlap of the subsequent absorption
response leading to the significant extension of the resulting gain.

2. Materials and Methods

To calculate the electronic structure of type II W-design active region—i.e., utilizing
coupled InAs/GaInSb QWs—we employ the k·p theory and use 8× 8 Hamiltonian defined
for the [001] growth direction. Our eight-band model includes also the strain effects after
Ref.14 for two different types of substrate materials—InAs or GaSb. External electric field
has also been taken into account to simulate the conditions occuring during ICLs operation.
The carrier wave functions and the subband energies are determined by numerically
solving the Schrödinger equation employing the finite difference method (FDM). The
FDM is suitable for this kind of calculations because it is fast and facilitates using an
arbitrary mesh [33]. To calculate the electronic subband structure and wave function
we use the standard mathematical subroutines available in the LINPACK libraries [34].
More details on the calculations’ methodology can be found in Reference [14]. All the
material parameters were taken from Reference [35] for 300 K. The parameters for the
ternary compounds are obtained using a linear interpolation of the binary materials’
parameters. In the case of the GaxIn1−xSb band gap, the bowing parameter is included (i.e.,
Eg(Ga0.76In0.24Sb) = 0.518 eV). The most important ones are gathered in Table 1 below.
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Table 1. Material parameters for the calculation.

Parameter/Material Symbol (Unit) InAs AlSb GaSb

Band gap Eg (eV) (300 K) 0.356 2.300 0.726
Spin-orbit energy ∆ (eV) 0.390 0.676 0.760

Interband matrix energy parameter EP (eV) 21.5 18.7 27.0
Electron effective mass me (mo) 0.023 0.140 0.039
Luttinger parameters γ1 20.0 5.18 13.40

γ2 8.5 1.19 4.70
γ3 9.2 1.97 6.00

Lattice constant a (nm) 0.60583 0.61355 0.60959

Elastic stiffness constant
C11 (1011 dyn·cm−2) 8.329 8.769 8.842
C12 (1011 dyn·cm−2) 4.526 4.341 4.026

Hydrostatic deformation potential
for conduction band ac (eV) −5.08 −4.50 −7.50

for valence band av (eV) −1.00 −1.40 −0.80
Shear deformation potential for valence band b (eV) −1.80 −1.35 −2.00

After obtaining the band structure and the wave functions, the next step is to calculate
the optical gain, as one of the key parameters to evaluate the performance of a device.
Using Fermi’s golden rule, the optical gain of a quantum well for the transition between the
initial (mth conduction subband) and final (nth valence subband) states can be expressed
as [36]:

gmn(E) = πe2}
nrcεom2

o LE

∫ ∣∣∣ê·Mmn

(
k||
)∣∣∣2 × ( f e

m(E)− f v
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)
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(
k||
)
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where f e
m(E) and f v

n (E) are the Fermi distribution functions for electrons and holes, re-
spectively; e is the elementary electric charge; } is the Planck constant; nr is the refractive
index; c is the speed of light; εo is the dielectric constant of vacuum; mo is the free electron
mass; L—width of the quantum wells; E is the photon energy; ê is a unit vector along
the polarization direction of the optical field. Mmn

(
k||
)

is the momentum matrix element
between the mth conduction subband and the nth valence subband. The momentum matrix
elements are evaluated by using the Bloch states for electrons and holes.

The optical transition matrix elements between the valence (hole) subbands and the
conduction (electron) subbands are given by:

Mc, v
i = 〈Ψc|ê· p̂i |Ψ v〉, i = x, y, z (2)

where ê is the unit vector of the electric field direction; p̂i is the momentum operator; and
Ψc and Ψv are the electron and hole wave functions, respectively. The electron (hole) wave
function in a QW is given by:

Ψc(v)

(→
r
)
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→
k || ·
→
r ||

8

∑
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where
∣∣∣uj

(→
r
)
> are the Bloch wave functions at the center of the Brillouin zone. We

have used the 8 × 8 k·p Hamiltonian matrix for zinc-blende semiconductor with the
following basis:
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|u1〉 = i|S ↑〉, Γ6
|u2〉 = i|S ↓〉, Γ6

|u3〉= i√
2
(
∣∣∣X ↑〉+i|Y ↑〉), Γ8

|u4〉= i√
6
( |X ↓〉+i|Y ↓〉)− i

√
2
3 |Z ↑

〉
, Γ8

|u5〉= i√
6
( |X ↑〉−i|Y ↑〉) +

√
2
3 |Z ↓

〉
, Γ8

|u6〉= i√
2
(
∣∣∣X ↓〉−i|Y ↓〉), Γ8

|u7〉= i√
3
( |X ↓〉+i|Y ↓〉) + |Z ↑

〉
, Γ7

|u8〉= − i√
3
( |X ↑〉−i|Y ↑〉)− |Z ↓

〉
, Γ7

(4)

where |S〉 denotes the s-like conduction band Bloch state and |X〉, |Y〉, and |Z〉 denote the
p-like valence band Bloch states. Substituting Equations (3) and (4) into (1) we obtain the
squared optical matrix elements (for a QW grown along z direction), Mx or My correspond
to the transverse electric (TE) modes of optical transition of interest, as these are the
ones constituting output of the ICL (calculation methodology after ref [37]). Using a
specific electron density n, and charge neutrality condition n = p, where p is the holes’
density, we found the quasi-Fermi levels by integrating the density of states multiplied
by the occupation probability over the entire band. For electrons (n) and for holes (p), the
respective densities are given by [37]:

n = ∑m

∫
ρe

m(E) f e
(

Ee
m

(
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))

dE (5)

and
p = ∑n
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Here, ρ
e(h)
n (E) is the 2D density of states for electrons (holes). The total gain is then

obtained by using the subband-to-subband optical gain and is given by [36,38]:

g(E) =
∫

gmn
(
E− E′

)
L
(
E′
)
dE′ (7)

where L(E′) is a Lorentzian line-broadening function [36,38]:

L
(
E′
)
=

1
π

Γ

(E− E′)2 + Γ2
(8)

where Γ is the half linewidth of the Lorentzian function. We estimate Γ to be equal to 5
meV, based on the transport data for n- and p-type InAs/Ga1−xInxSb superlattices of type
II [39]. Below, we present the results for TE polarization only.

3. Results and Discussion

We first consider the influence of various modifications in an ICL-like active region on
the fundamental optical transition energy. An important point which cannot be neglected
and occurs in most operational devices is the biasing of the structure with an external
voltage and hence the existence of an electric field in the active region.

Figure 1a–c present the calculated fundamental transition energy dependence on
the InAs layer thickness. We consider a single-stage active region formed of AlSb/InAs/
GaxIn1−xSb/AlSb (one InAs layer), AlSb/InAs/GaxIn1−xSb/InAs/AlSb (two InAs layers—
the so called W-design), AlSb/InAs/GaxIn1−xSb/InAs/GaxIn1−xSb/InAs/AlSb (triple
InAs QW). In this first step, the input data have been taken as those typically used in
ICLs—i.e., Ga contents of 66% or 76%, GaxIn1−xSb layer of 3.5 nm width, and an electric
field of 75 kV/cm [40]. What is mainly seen in Figure 1 is the possibility to cover the target
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range in the MIR of at least 3–5 µm through just changing the InAs layer thickness, which
is an approach very often used in ICLs [14,41]. We intentionally limited ourselves to the
values around 0.66–0.76 of gallium. The reason for this is very practical—from the growth
point of view, it is necessary to remain below certain strain limit to assure coherent layer
growth and to avoid risk of reaching the critical thickness, therefore lower Ga contents
(more indium) are excluded. On the other hand, we did not consider larger Ga contents
because, in this case, the appropriate adjustment of energy levels becomes difficult and
hence large Ga content values are not used in the actual devices (see, e.g., [6]). We use a
AlSb/InAs/GaxIn1−xSb/InAs/AlSb structure, because such a solution is technologically
straightforward as AlSb belongs to the same materials’ family, it is commonly used in
fabrication of ICL devices and works as a confinement barrier for both types of carriers,
electrons and holes.
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Figure 1. Fundamental transition energy in the active region of AlSb/InAs/GaxIn1−xSb/AlSb (a),
AlSb/InAs/GaxIn1−xSb/InAs/AlSb (b) and AlSb/InAs/GaxIn1−xSb/InAs/GaxIn1−xSb/InAs/AlSb
(c), as a function of the InAs well width. Two different values of the Ga content in GaxIn1−xSb are
used: 66% (dashed line) and 76% (solid line). Blue and green lines refer to structures deposited
on GaSb and on InAs, respectively. The GaxIn1−xSb layer thickness is 3.5 nm. The insets show
the confinement potential profiles, energy levels and carrier probability densities in the external
electric field.

The insets in Figure 1a–c present sketches of possible realizations of the active region
plus the probability densities of the ground electron and hole states. In such type II
structures constituting a broken gap system, the fundamental interband optical transition
occurs between electron state localized mostly in the InAs layers and hole state concentrated
in the GaxIn1−xSb layers. Therefore, in all the cases we are dealing with spatially indirect
transitions. External electric field pushes the electron and hole probability distributions
further in the opposite directions, which is especially visible in the inset of Figure 1c—i.e.,
effectively wider confinement potential.

In Figure 2a, we present the optical gain for all three designs considered in Figure 1,
for a single stage case. We see that maximum values of the optical gain equal about 60 cm−1

for structures with one InAs layer and GaInSb layer as well as two InAs layers and three
GaInSb layers, but 220 cm−1 for two InAs layers and one GaInSb layer. This is caused by
the external electric field, which strongly modifies the electron-hole overlap integral.

In Figure 2b, the calculated optical gain spectrum is plotted for an exemplary injected
carrier density of 3× 1018 cm−3 and electric field of 75 kV/cm (both values are characteristic
for ICLs [37,40,42]). The dashed lines correspond to the results for a single QW (1 stage) case
for two slightly different wells, with InAs thicknesses equal to 2.0 and 2.1 nm, respectively.
The maximum gains are slightly different (62 and 48 cm−1, respectively), whereas the−3 dB
gain widths are about 220 nm in each of the two cases. To increase the gain bandwidth,
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we combine two pairs of such slightly different wells inside a two stage active region,
where the two QWs are separated by a hypothetical injector region. A scheme of such
a structure in external electric field is presented in the inset of Figure 2b. When such an
inhomogeneity is intentionally introduced between the stages of a cascaded device, the
gain width increases to about 380 nm (i.e., 31 meV in energy scale).
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Figure 2. Optical gain spectra: (a) for one stage: AlSb/InAs/GaxIn1−xSb/AlSb—pink solid
line, AlSb/InAs/GaxIn1−xSb/InAs/AlSb—violet solid line and AlSb/InAs/GaxIn1−xSb/InAs/
GaxIn1−xSb/InAs/AlSb—gray solid line (x = 0.76; width of InAs layer equal to 2.0 nm); (b) for
two stages, wherein each individual active region (1 stage) AlSb/InAs (2.0 nm-dashed pink line/
2.1 nm-dashed orange line)/Ga0.76In0.24Sb (3.5 nm)/AlSb; broad combined gain (2 stage design)—
solid green line.

Figure 3 shows the similarly calculated optical gain spectra for two other two-stage de-
signs, in which the QW thicknesses are also 2 and 2.1 nm, but this time the W-like QW struc-
ture made of AlSb/InAs/GaInSb/InAs/AlSb and triple AlSb/InAs/GaInSb/InAs/GaInSb/
InAs/AlSb QW (see insets in Figure 3), on two different substrates (different strain condi-
tions) of GaSb and InAs, are considered. The obtained gain widths are approx. 50 meV
(850 nm) and 55 meV (1140 nm), respectively—i.e., it is significantly increased when com-
pared to the case presented in Figure 2. This is mostly caused by the effectively wider
confinement potential of the type II QWs, which in turn causes larger inhomogeneity in a
sense of the electronic levels difference in electric field between the two stages of a device.
It is also worth noting that the difference between the cases of two substrates is rather
small—the effects are dominated by wide QW potentials. The difference in gain widths
between the double and triple inhomogeneous QW designs is only 290 nm in favor of the
latter, but sacrificing the gain maximum by 50%. So, in any final operational device there
will always be a compromise between broader or higher gain.
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Although the triple design structure provides larger bandwidth with however lower
gain, it is also more challenging to fabricate—high precision in larger number of very thin
QW layers is required. The optical gain spectra and energy peak position are reduced for
the triple structure (as compared with W-structure), because triple structure has in fact an
effectively wider confinement potential for both electrons and holes. It causes that in the
external electric field the wave functions of electrons and holes are separated stronger than
in the W-structure and more down-shifted inside the tilted QW potential (basically due to
quantum confined Stark effect). This tendency is seen in schemes in Figure 1b,c. Thus, one
can suspect that in the real device of such a triple QW design it might be difficult to reach
the ultimate performance regarding the gain bandwidth. Therefore, in the next part we
limit ourselves only to the W-like active region as more realistic one to achieve the record
large gain width. It will also have other advantages, when for instance used in ICL, as
higher gain will be beneficial and translate into lower threshold currents in such a case.

Figure 4 shows the broad optical gain as a function of the energy (wavelength) cal-
culated for a 2-stage W-like AlSb/InAs/GaInSb/InAs/AlSb QW and for various, but
still realistic, values of the carrier densities in the active region, between 1.5 × 1018 cm−3

and 1.0 × 1019 cm−3 [6,11,37]. When following the carrier density dependence, the gain
function changes quite dramatically indicating on the importance of this parameter in the
final device. It is rather intuitive that increasing the carrier concentration implies higher
and broader gain (stronger overall absorption in a broader spectral range of integration).
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The differences in the obtained results for the cases of the two considered substrates (which
is mainly the effect of differences in strain which only slightly affects the confined states)
are not significant, however slightly better values of both the gain maximum and the gain
width were obtained for InAs substrate. The natural lattice constant of InAs is larger than
that of GaSb, therefore, when the layer of InAs is grown on GaSb, the in-plane strain equals
0.62% and the InAs layer is subjected to slight biaxial tensile strain (this strain is absent
in the case of the InAs substrate). Whereas, in the case of the GaInSb layers there is some
in-plane compressive strain for both substrates, but of slightly different value. For instance,
for Ga0.76In0.24Sb the strain equals −1.51% and −2.14% when grown on GaSb and InAs
substrate, respectively, (similarly, for Ga0.66In0.34Sb the strain equals −2.1% and −2.77%
for GaSb and InAs substrate). Therefore, for the case of the GaSb substrate, the electron
levels (electrons are mostly localized in the tensile-strained InAs layers) will slightly shift
down in the energy scale, and hence the “leakage” of the electron wave function into the
GaInSb layer gets smaller. This in turn causes a decrease in the overlap integral between
the electron and hole wave functions and hence the lower intensity of the optical transition
(absorption). It is the other way around for holes, which partly compensates the effects for
electrons but is less significant due to much larger effective masses for holes—both the en-
ergy level shift and the change in the spatial distribution of the wave function (probability
density) are smaller. This is why the optical gain spectra are very similar for both substrates
(differing strain conditions), however with a bit smaller gain for the GaSb case, for which
the effect of tensile strain on electron states dominates. For the highest carrier density, the
gain maximum exceeds 500 cm−1 (almost identical for both substrates), whereas the gain
width is a bit larger for the InAs substrate and reaches almost 900 nm.
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Figure 4. Optical gain functions for two different free carrier concentrations and the following
design: 2 stage AlSb/InAs (2.0 nm)/Ga0.76In0.24Sb (3.5 nm)/InAs (2.0 nm)/AlSb and AlSb/InAs
(2.1 nm)/Ga0.76In0.24Sb (3.5 nm)/InAs (2.1 nm) AlSb. The solid orange and violet lines refer to
structures deposited on InAs and on GaSb, respectively. The inset shows comparison of the optical
gain for two possible Ga content in GaxIn1−xSb (66%—blue and 76%—red solid line, respectively).
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4. Conclusions

We have theoretically studied various designs of ICL active region made of combina-
tions of type II InAs/GaInSb materials in the context of maximizing the width of optical
gain spectrum, as demanded by many optoelectronic applications in the mid infrared range.
We have also taken into consideration the practical aspects relevant for real devices and
included the effects of the substrate, external electric field, and free carrier densities. We
have shown that intentionally introduced inhomogeneity between two stages of a cascaded
device structure can lead to a significant increase in the gain spectral bandwidth to about
1 µm in the relevant range of at least 3–5 µm, which is almost an order of magnitude larger
than that reported for any currently existing ICL. This, in turn, opens a way towards a
completely new generation of devices long sought and highly demanded in many applica-
tions, requiring broad optical response or wide spectral tunability, especially those related
to gas sensing. Therefore, we hope that these results, which are also almost insensitive to
the substrate material (GaSb vs. InAs), stimulate the technological groups and bring us
closer to the realization of such broad gain devices in the MIR.
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19. Ryczko, K.; Sȩk, G. Polarization-independent gain in mid-infrared interband cascade lasers. AIP Adv. 2016, 6, 115020. [CrossRef]
20. Dallner, M.; Hau, F.; Höfling, S.; Kamp, M. InAs-based interband-cascade-lasers emitting around 7µm with threshold current

densities below 1 kA/cm2 at room temperature. Appl. Phys. Lett. 2015, 106, 041108. [CrossRef]
21. Kim, C.; Bewley, W.; Merritt, C.; Canedy, C.; Warren, M.; Vurgaftman, I.; Meyer, J.; Kim, M. Improved mid-infrared interband

cascade light emitting devices. Optical Eng. 2017, 57, 011002. [CrossRef]
22. Scheuermann, J.; Weih, R.; Edlinger, M.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S. Single-mode interband cascade

lasers emitting below 2.8µm. Appl. Phys. Lett. 2015, 106, 161103. [CrossRef]
23. Weih, R.; Kamp, M.; Höfling, S. Interband cascade lasers with room temperature threshold current densities below 100 A/cm2.

Appl. Phys. Lett. 2013, 102, 231123. [CrossRef]
24. Bewley, W.; Canedy, C.; Kim, C.; Kim, M.; Merritt, C.; Abell, J.; Vurgaftman, I.; Meyer, J. Continuous-wave interband cascade

lasers operating above room temperature at λ = 4.7–5.6 µm. Opt. Express 2012, 20, 3235. [CrossRef] [PubMed]
25. Dong, L.; Tittel, F.K.; Li, C.; Sanchez, N.P.; Wu, H.; Zheng, C.; Yu, Y.; Sampaolo, A.; Griffin, R.J. Compact TDLAS based sensor

design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express 2016, 24, A528. [CrossRef]
26. Fang, B.; Yang, N.; Zhao, W.; Wang, C.; Zhang, W.; Song, W.; Venables, D.S.; Chen, W. Improved spherical mirror multipass-cell-

based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels. Appl. Opt.
2019, 58, 8743. [CrossRef]

27. Rena, W.; Luo, L.; Tittel, F.K. Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm. Sens. Actuators
2015, B 221, 1062. [CrossRef]

28. Wysocki, G.; Bakhirkin, Y.; So, S.; Tittel, F.K.; Hill, C.; Yang, R.Q.; Fraser, M.P. Dual interband cascade laser based trace-gas sensor
for environmental monitoring. Appl. Opt. 2007, 46, 8202. [CrossRef]

29. Ghorbani, R.; Schmidt, F.M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes. Opt. Express
2017, 25, 12743–12752. [CrossRef]

30. Höfling, S.; Weih, R.; Bauer, A.; Kamp, M.; Forchel, A. Room temperature continuous wave interband cascade lasers for gas
sensing. In Proceedings of the SPIE Photonics Europe, Brussels, Belgium, 15 May 2012. [CrossRef]

31. Kluczynski, P.; Lundqvist, S.; Belahsene, S.; Rouillard, Y.; Nähle, L.; Fischer, M.; Koeth, J. Detection of propane using tunable
diode laser spectroscopy at 3.37 µm. Appl. Phys. B 2012, 108, 183. [CrossRef]

32. Soibel, A.; Wright, M.W.; Farr, W.H.; Keo, S.A.; Hill, C.J.; Yang, R.Q.; Liu, H.C. Midinfrared Interband Cascade Laser for Free
Space Optical Communication. IEEE Photonics Technol. Lett. 2010, 22, 121–123. [CrossRef]

33. Tan, I.H.; Snider, G.L.; Chang, L.D.; Hu, E.L. A self consistent solution of Schrödinger–Poisson equations using a nonuniform
mesh. J. Appl. Phys. 1990, 68, 4071. [CrossRef]

34. Xu, W.; Li, L.L.; Dong, H.M.; Gumbs, G.; Folkes, P.A. Band hybridization and spin-splitting in InAs/AlSb/GaSb type II and
broken-gap quantum wells. J. Appl. Phys. 2010, 108, 053709. [CrossRef]

35. Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl.
Phys. 2001, 89, 5815. [CrossRef]

36. Chuang, S.L. Physics of Optoelectronic Devices; Wiley Series in Pure and Applied Optics; John Wiley & Sons: New York, NY, USA,
1995; Chapter 9.

37. Liu, G.; Chuang, S.-L. Modeling of Sb-based type-II quantum cascade lasers. Phys. Rev. 2002, B65, 165220. [CrossRef]
38. Chow, W.W.; Koch, S.W. Semiconductor-Laser Fundamentals, Physics of the Gain Materials; Springer: Berlin/Heidelberg, Germany,

1999; Chapter 2.
39. Hoffman, C.A.; Meyer, J.R.; Youngdale, E.R.; Bartoli, F.J.; Miles, R.H. Interface roughness scattering in semiconducting and

semimetallic InAs-Ga1−xInxSb superlattices. Appl. Phys. Lett. 1993, 63, 2210. [CrossRef]
40. Bauer, A.; Dallner, M.; Kamp, M.; Höfling, S.; Worschech, L.; Forchel, A. Shortened injector interband cascade lasers for 3.3- to

3.6-µm emission. Opt. Eng. 2010, 49, 111117. [CrossRef]
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