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Background
New approaches to address the multidimensional character of pain include the utilization 
of mathematical and computational models, whose main advantages lie on the noninvasive 
nature of the method (which is particularly important, from an ethical point of view, in 
performing studies with chronic pain patients) and on their capabilities to predict previ-
ously unnoticed behaviors [1, 2]. Specifically regarding peripheral pain (i.e. the kind of pain 
than can be elicited by activating primary afferent neurons), some models are able to cap-
ture the cellular and molecular basis of noxious stimuli processing [3–6], while others use 
artificial neural networks (ANN) under the assumption that only these parallel-distributed 
processors can mimic the computational capabilities owned by the nervous system [7–10]. 
However, a very few such studies have been published over the last 5 years [10–12], even 
though the computational power available to us has increased. Whether this is due to the 
difficulties of modeling a subjective experience, or the limited use of computational mod-
els in pain research, it is hard to say. Still, possible explanations for the latter can be pro-
vided below.

This commentary discusses the main strategies that have been used for the compu-
tational modeling of peripheral pain, which includes all those studies able to provide a 
quantitative description of the neurobiological processes that precede or accompany the 
pain experience, including the transduction, transmission and modulation of cutaneous 
noxious stimuli. Interestingly, such studies represent a very low percentage of the total 
of cites yielded by using “computational”, “model” and “pain” as keywords (a search on 
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This commentary is intended to find possible explanations for the low impact of com-
putational modeling on pain research. We discuss the main strategies that have been 
used in building computational models for the study of pain. The analysis suggests 
that traditional models lack biological plausibility at some levels, they do not provide 
clinically relevant results, and they cannot capture the stochastic character of neural 
dynamics. On this basis, we provide some suggestions that may be useful in building 
computational models of pain with a wider range of applications.
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ScienceDirect yields 13.000 cites, but no more than few tens meet the aforementioned 
requirements).

Quantitative modeling of peripheral pain
Pain is a subjective experience and, as such, it cannot be the object of empirical study, let 
alone described in quantitative terms. Nevertheless, it involves the activation of specific 
supraspinal structures, such as primary and secondary somatosensory, insular, anterior 
cingulate, and prefrontal cortices (S1, S2, IC, ACC, PFC) and the thalamus (Th), as revealed 
by a meta-analysis of human data from different imaging studies [13]. These structures are 
activated in turn by nerve impulses transmitted from the dorsal horn (DH) by projection 
neurons, once the peripheral noxious stimuli are processed at spinal level. Unlike percep-
tual experiences, this kind of events can be experimentally measured as well as translated 
into quantitative terms to build a mathematical model. Thus, most (if not all) computa-
tional models of pain are not able to predict the perceptual dynamics of such experience, 
but rather a series of conditions, both external (e.g. the incoming stimuli) and internal (e.g. 
the interactions between the parts of the model), that could lead to its manifestation.

With regard to the architecture defined by the linkages between their fundamental 
processing units, computational models of peripheral pain may fall into one of two cat-
egories: one including the models based on ANN and one including all others.

ANN‑based models of peripheral pain

Inspired by biological neural networks, the ANN are parallel-distributed processors com-
posed of a very large number of elementary units and they have been developed to mimic 
the processing capabilities owned by the human brain, which can outperform those exhib-
ited by conventional computers when a complex perceptual problem needs to be solved 
(such as recognizing a familiar face in a crowd) [14]. Hence it is reasonable to think that 
some features of pain (a perceptual phenomenon) can be captured and quantitatively 
described by ANN. A pioneering study of this type was carried out by Minamitami and 
Hagita [7], who proposed a computational model able to provide temporal firing pat-
terns of supraspinal neural units, including the S1 and S2 cortical cells, as a function of 
single pulse and repetitive stimulation. Haeri et al. [8] modeled steady-state and dynamic 
behavior of noxious stimuli processing by using a multilayer perceptron (MLP) (one hid-
den layer) and a recurrent neural network (RNN), respectively. Both models were trained 
after extracting the proper features from input/output patterns associated with acute and 
chronic pain. A more recent study performed by de Sousa and de Jesus Torres [10] intro-
duced an ANN-based model of peripheral pain capable of being implemented on a field 
programmable gate array (FPGA). For this purpose, a novel method for adjusting both the 
inflexion points and the slope of the activation function of neural units was also described. 
In general, the results yielded by this kind of models are in good agreement with experi-
mental and clinical observations, and recent efforts to allow hardware implementations 
may contribute to develop future portable applications in the medical field.

Models not based on ANN

The majority of computational models of peripheral pain belonging this category use 
the neural circuit proposed in the gate control theory (GCT) [15], either to define the 
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architecture of the model [3, 11], or as the equation system [4, 6, 16] brilliantly distilled 
by Britton and Skevington [17], only a few decades after the theory was published. On the 
other hand, a much reduced number of studies provide alternative representations. Fara-
jidavar et al. [5], for example, explained some of the underlying mechanisms of a relatively 
uncommon type of wind-up that can be elicited by stimulation of Aβ fibers in hyperalgesic 
states, by using transfer functions in a block diagram. In a subsequent study [18], a sin-
gle 3-to-1 network was used to propose that long-term changes in synaptic efficacy that 
depend on synchronous firing between pre- and post-synaptic cells may be responsible for 
the synaptic potentiation leading to wind-up, whereas short-term synaptic changes could 
explain why wind-up only occurs within a narrow range of frequencies.

Several attempts have been made to exploit (and, perhaps, to balance) the extremely 
simple depiction of the gate mechanism introduced by Melzack and Wall. The groups 
of Agi and Xu, for example, addressed from a multi-level perspective the transduction, 
transmission and modulation of the nerve impulses evoked by noxious stimuli, either by 
including morphological and functional characteristics exhibited by different subpopu-
lations of afferent and DH neurons [3], or by taking into account the thermo-mechanical 
response of the skin tissue [6]. Prince et al. [16] implemented 2, 10, 50 and 200 copies of 
the GCT circuit in order to observe how the descending inhibitory control varied as a 
function of the number of elements involved in the modulation of sensory information 
after calculating the sum of all outputs, taken at the T cell of each copy. As the computa-
tional power available has increased, it is now possible to enlarge elementary networks 
by incorporating more components and details, which in turn, adds biological plausibil-
ity to computational models of pain. But, if this is so, why computational modeling tends 
not to have much impact in the field of pain?

Biological plausibility is observed at several, but not all, levels of the model
In general, ANN-based models of peripheral pain have provided results in good agreement 
with experimental and clinical observations, and recently, some efforts have been made to 
allow hardware implementations [10]. In addition, the architecture of these models can be 
as complex as that exhibited by biological neural networks involved in processing of nox-
ious information. However, the main building block is too simple to capture the intrinsic 
properties of different neuronal subpopulations, an aspect that has become more relevant 
in the light of new pain theories that imply some degree of peripheral specificity [19, 20]. 
Synaptic weights are typically obtained by using training algorithms, such as the backprop-
agation algorithm [14], which reverts the flow of nerve impulses (from the axon terminal 
to the soma and then to the dendrites) and, therefore, lacks biological plausibility. Numeric 
values are commonly normalized to fit the implementations, so they may lose their physi-
ological meaning, and by definition, ANN-based models are only capable of mapping a 
finite number of inputs (stimulation patterns) to their corresponding (desired) outputs, so 
results tend not to be good as new data are provided.

To aid in understanding the neural basis of noxious stimuli processing, a significant 
amount of studies have focused on describing in detail the dynamics of the action poten-
tial and analyzing the contribution of multiple aspects (e.g. morphology, intra- and 
extracellular ion concentrations) in its generation and transmission. Still, these aspects 
have only been modeled within a network composed by a very low number of elements 
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[3, 6], or in isolation [21–23], probably due to the common view that biophysically accu-
rate neuron models, such as the model of Hodgkin and Huxley (HH) [24], are compu-
tationally prohibitive for solving problems that involve a large number of units. This 
tendency may seriously limit the use of computational models for the study of pain, 
since the neuron connectivity, especially at central level, has been overlooked.

Do simulations yield clinically relevant results?
Although pain often acts as a warning signal which alerts us about injury and disease, it 
may also occur as an amplified response to stimulation, either harmful or innocuous, or 
even spontaneously (i.e. in the absence of noxious stimuli). Under these circumstances, the 
pain experience loses its protective function and becomes a debilitating condition, often 
developed by a series of maladaptive plastic changes of the somatosensory nervous system 
[25]. In clinical practice, chronic pain and neuropathies are far more important than nocic-
eptive pain, so the majority of computational models, which are capable of describing only 
some mechanisms related to the latter, are unable to predict clinically relevant aspects.

In addition to their predictive capabilities, computational models allow us to generate 
theoretical findings with some implications for pain management. The results yielded by 
a computational model of thermal pain [6], suggest that existing heat therapies for burn 
treatment can be optimized by predicting the damage that have been accumulated in the 
skin tissue during heating. By implementing a computational model of wind-up, Fara-
jidavar et al. [18] proposed that transcutaneous electrical stimulation of afferent fibers 
(TENS) with the appropriate spike timings may decrease the synaptic efficacy in nocice-
ptive transmission and, therefore, contribute to pain relief. However, if all those hypoth-
eses remain untested, then the results generated from the implementations become 
practically useless for medical purposes.

Stochastic character of neural dynamics have been neglected
The opening and closing of ionic channels are probabilistic events, and there is spontane-
ous release of neurotransmitter that elicits small depolarizations and hyperpolarizations at 
random. By contrast, most, if not all, computational models of peripheral pain are essen-
tially deterministic and, therefore, unable to account for the role of several (or chaotic) ran-
dom phenomena, such as the spontaneous neural activity that tends to be weaker than the 
activity induced by actual stimulation under normal circumstances, but increases abnor-
mally after deafferentation [25].

Future directions in computational modeling of pain
Now that possible explanations for the limited use of computational modeling in pain 
research have been provided, the following section outlines what we consider to be useful 
in addressing those issues.

Achieving true interdisciplinarity It implies not only to incorporate different fields of 
expertise in building computational models of pain, but also to collaborate in testing the-
oretical findings yielded by their implementation. If the hypotheses are true, then those 
models may prove to be useful for assessing and/or improving the efficacy of well-estab-
lished strategies for pain relief, as well as for developing innovative approaches. Oth-
erwise, opportunities for future research may emerge either by reformulating current 
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models or by generating new alternatives based on recent evidence. Of course, more 
experimentalists must be willing to share their data with modelers, who in turn must 
be willing to make their codes available. Likewise, governmental entities and university 
faculties also need to play a more active role, not only by funding the best graduates 
with competitive interdisciplinary fellowships, but also by changing the administrative 
and cultural framework that make these approaches so hard to accomplish, especially for 
those who choose this path early in their careers.

Incorporating recent neuroanatomical evidence Current computational models of 
peripheral pain cannot provide an accurate (or, at least, more realistic) representation 
of the circuitry responsible for noxious stimuli processing, especially at spinal level. This 
is probably due to the neural substrate involved in pain experience is still poorly under-
stood. On the other hand, a significant amount of neuroanatomical evidence has become 
available over the last two decades (e.g. [26–31]). Although each of those studies only 
provides a piece of information on neuron connectivity at the superficial DH, they have 
some elements in common, such as the lamina II excitatory central cells, which receive 
inhibitory input from islet cells [26, 29], as well as excitatory input from high-thresh-
old unmyelinated fibers and neurons expressing the protein kinase C isoform [27, 28]. 
Thus, it would be possible to put the pieces together and build a network (as depicted 
in Figure 1) that may reflect some of the interactions that actually contribute to the nox-
ious information processing. Computational models of pain reflecting neuroanatomical 
findings are likely to provide more insights regarding how pain circuits perform their 
computations and how structural changes may lead to abnormal pain sensations result-
ing from an improper processing, so such models should be able to include the newest 
experimental evidence.

Getting the most of available simulation tools Among the countless neuron models 
capable of producing a wide range of firing patterns, only a few [24, 32] have been used 
in modeling of peripheral pain and their utilization has been, in turn, very limited. It 
has been recently demonstrated [33] that, contrary to common view, the HH model is 
not computationally prohibitive, especially nowadays that the computational capabilities 
have significantly increased. It is now feasible to model large-scale networks composed 
of spiking neurons, given the increasing number of freely available, open source and 
documented simulation environments (for detailed review, see [34]), so the utilization of 
this type of neuron models should be continuously encouraged.

Implementing stochastic (chaotic) neural models and networks Wind-up is a kind of 
plasticity that has been successfully modeled at the cellular and molecular levels [4, 5], 
as well as at the level of ANN [8]. Nevertheless, most of the plastic changes involved in 
the development of pathological pain states (e.g. chronic pain) cannot be described by 
these computational models, probably because they cannot capture the stochastic char-
acter of neuron dynamics. In a preliminary survey, Picton et al. [2] proposed that com-
putational models of chronic pain must be able to acknowledge the role of spontaneous 
neural activity and be self-organizing, and that chaotic neural networks may fulfill these 
requirements. A recent model developed by Böstrom et al. [12] was capable of reconcil-
ing apparently contradictory evidence related to the experience of phantom limb pain 
by including the spontaneous neural activity in the form of randomly occurring events. 
The model cannot account for the abnormal enhancement of spontaneous activity after 
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deafferentation, but it can predict the maladaptive reorganization of the S1 cortex that 
occurs after amputation. Still, further work is needed to assess the suitability of chaotic 
models for computational modeling of pathological pain states.

The scarce number of studies on the computational modeling of peripheral pain may 
reflect not only an incomplete comprehension of the mechanisms involved in such expe-
rience, but also a mismanagement of the available resources. An example for the latter 
is provided as follows: the neuron model developed by Izhikevich is able to reproduce 
a wide range of firing patterns, many of which have been observed in DH neurons and 
whose implications for sensory processing need further investigation. However, this 
neuron model has been rarely used in computational modeling of pain (the model only 
was used in [18]) and its capabilities have been not fully exploited (it was used to repre-
sent one single tonic-firing neuron).

Figure 1  Experimental results yielded by different studies can be combined to build an alternative represen-
tation of the pain circuitry. Unidirectional synaptic connections among superficial dorsal horn neurons have 
been reported by Lu and coworkers (red bordered panels) [26–29]. Each study per se only provides a piece 
of information on neuron connectivity at that region, but these pieces can be put together, by identifying 
the elements they have in common, to build a network reflecting some of the interactions that actually 
contribute to noxious information processing (bottom panel). EC excitatory central cell, Gly glycinergic neuron, 
HTC high-threshold C-fiber, I islet cell, IC inhibitory central cell, LTC low-threshold C-fiber, P projection neuron, 
PKCγ neuron expressing the γ-isoform of protein kinase C, V vertical cell.
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Ultimately, the views expressed above are not intended as a procedure to elaborate a 
computational model of peripheral pain able to account for all the experimental obser-
vations since, by definition, no model can do that. Instead, this comment only provides 
some suggestions that may be useful in building computational models of pain with a 
wider range of applications, including the predictive modeling of clinically relevant 
aspects.
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