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Abstract

Specific leaf area (SLA, leaf area per unit dry mass) is a key canopy structural characteristic,

a measure of photosynthetic capacity, and an important input into many terrestrial process

models. Although many studies have examined SLA variation, relatively few data exist from

high latitude, climate-sensitive permafrost regions. We measured SLA and soil and topo-

graphic properties across a boreal forest permafrost transition, in which dominant tree spe-

cies changed as permafrost deepened from 54 to >150 cm over 75 m hillslope transects in

Caribou-Poker Creeks Research Watershed, Alaska. We characterized both linear and

threshold relationships between topographic and edaphic variables and SLA and developed

a conceptual model of these relationships. We found that the depth of the soil active layer

above permafrost was significantly and positively correlated with SLA for both coniferous

and deciduous boreal tree species. Intraspecific SLA variation was associated with a fivefold

increase in net primary production, suggesting that changes in active layer depth due to per-

mafrost thaw could strongly influence ecosystem productivity. While this is an exploratory

study to begin understanding SLA variation in a non-contiguous permafrost system, our

results indicate the need for more extensive evaluation across larger spatial domains.

These empirical relationships and associated uncertainty can be incorporated into ecosys-

tem models that use dynamic traits, improving our ability to predict ecosystem-level carbon

cycling responses to ongoing climate change.

Introduction

The boreal forest is changing rapidly with climate change [1]. Permafrost soil underlaying the

boreal is currently degrading and in many places predicted to disappear entirely, by the end of

the 21st century in Alaska [2] and other circumpolar regions [3]. Permafrost thaw affects eco-

system carbon, water, and nutrient cycling [4–6], which are expected to, in turn, produce shifts

in tree cover and canopy physiology [7]. Moreover, permafrost thaw has been shown to be a

threshold for these environmental shifts [8, 9].
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Phenotypic plasticity allows plants to adapt to environmental shifts, resulting in intraspe-

cific trait variation. A particularly variable trait is specific leaf area (SLA). SLA—leaf area per

unit dry mass—is a trait that corresponds with differences in leaf structure associated with

photosynthesis [10] and importantly ecosystem carbon gain [11]. SLA has been used in

numerous meta-analyses to predict leaf physiology and other functional traits [12].

Understanding the consequences of permafrost thaw on SLA variation and ecosystem pro-

ductivity is particularly important, as shifting environmental gradients may impact intraspecific

trait variation, with potentially large consequences on carbon accumulation across the land-

scape. In environments with optimal soil resources (e.g., water, nutrients), for example, plants

can produce more leaf biomass with high SLA, maximizing carbon gain per unit leaf mass [13,

14]. Conversely, in suboptimal resource environments, small and thick leaves (i.e., with low

SLA) allow plants to maximize leaf longevity. The relatively thick (low SLA) leaves of black

spruce, a typical boreal evergreen conifer, last an average of 50–60 months, compared to the

4–6 month life span of the relatively thinner (high SLA) leaves of boreal deciduous species [15].

In boreal systems underlain by permafrost, the thaw depth of the seasonally-thawed active

layer [9] is coupled to soil moisture and nutrient availability, and is hypothesized to govern

leaf area and plant productivity [16–18]. While SLA of boreal vegetation has been shown to

vary with environmental conditions, including tree species and soil resources [19–22], the

effect of permafrost on SLA variation is not well understood, due in large part to the lack of

empirical SLA data across a broad range of permafrost conditions.

Global analyses reveal that specific leaf area varies with climatic and edaphic gradients [23,

24]. In contrast, SLA variation within a species is less well understood. Intraspecific SLA varia-

tion has been shown to contribute significantly to total trait variability [20, 25–27], and used to

understand local and regional community assembly processes and explain the coexistence of

multiple species across environmental gradients [28–30].

Because SLA is linked to forest productivity through photosynthetic potential, understand-

ing the environmental controls on SLA variation is also important for predictive ecosystem

modeling [31], especially in climate-sensitive permafrost systems. Most ecosystem models

assign a specific leaf area value based on plant functional types [32], and efforts have been

made to improve mean canopy estimates of SLA [33]. While this captures variation in specific

leaf area as a function of climate or species, these fixed trait-based approaches miss the varia-

tion in a trait within a given plant functional type. Without data on intraspecific trait variation,

it is not clear whether these models can be successful.

In this study we examined intraspecific SLA variation and associated topographic and

edaphic factors across a permafrost and vegetation transition within an Alaskan boreal forest.

We hypothesized that (i) SLA would be significantly correlated with active layer depth, which

governs the availability of soil resources such as water and nutrients, and (ii) intraspecific SLA

variation across the permafrost transition would in turn positively correlate with aboveground

net primary production. This is an exploratory study to begin understanding SLA variation in

a permafrost forest ecosystem. Our results indicate significant influences of environmental fea-

tures across the permafrost transition zone, indicating the need for more extensive evaluation

of SLA and forest production across larger spatial domains in forested ecosystems.

Materials and methods

Site description

The field component of this research took place in the Caribou-Poker Creeks Research Water-

shed (CPCRW), a 104 km2 basin located in the Yukon-Tanana Uplands northeast of Fair-

banks, AK, and part of the Bonanza Creek LTER (http://www.lter.uaf.edu/research/study-
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sites-cpcrw). This fieldwork was conducted under verbal permission of Jamie Hollingsworth,

Site Manager of the Bonanza Creek LTER. Mean annual precipitation is 400 mm, about one-

third of which falls as snow; mean annual temperature is -2.5˚C [34]. The watershed’s lowlands

and north-facing slopes are dominated by black and white spruce (Picea mariana and Picea
glauca, respectively), feathermoss (Pleurozium schreberi and others), and Sphagnum spp.; the

drier south slopes tend to be deciduous with a mixture of quaking aspen (Populus tremuloides),
paper birch (Betula neoalaskana), and patches of alder (Alnus crispa).

In 2014 we established six replicate 75 m east-facing transects along a vegetation and per-

mafrost gradient. To efficiently characterize spatial variation across north-south and east-west

dimensions, we used a cyclic sampling design, a scheme that uses a repeated pattern of sam-

pling points across space to allow comparison between sampling pairs at multiple distances

(S1 Fig in S1 File) [35]. The transects were centered on 65.1616˚ N 147.4859˚ W at 248–266 m

asl, with the east end of each transect dominated by black spruce in continuous, valley-floor

permafrost, and the west end upslope dominated by paper birch with no permafrost within

150 cm. Both spruce and alder co-occur across the entire sampling transect. The forest in this

study site was at least 90 years old, based on tree rings taken at the stem base of several of the

largest white spruce (Picea glauca). Measured across the transects and inclusive of spruce,

birch, and alder, stand density varied greatly across the site (overall 4890 trees ha-1 ± 3290 stan-

dard deviation), with relatively low density at the top and bottom of the hillslope and a densely

vegetated transition zone in the middle area, where black and white spruce co-occur. Similarly,

basal area also varied greatly (17.6 m2 ha-1 ± 15.5 standard deviation), generally increasing

towards the upslope portion of the site. The soil is characterized as a silt loam in the Olnes

(well-drained, top of hillslope) or Karshner (poorly-drained, bottom of hillslope) series [36].

Specific leaf area analysis

In August 2015, mature leaf samples from the top one-third of the canopy were collected from

alder, black spruce, and white spruce. Spruce and alder were selected for this study because

they co-occurred across the entire sampling transect. Leaves were sampled at six locations (0,

15, 30, 45, 60, and 72 m, from E to W) along each transect, with up to 10 leaves per tree per

species and location (S1 Fig in S1 File). To maintain field moisture, leaves were stored with wet

tissues in a cooler or refrigerator until analysis. Projected leaf area was determined using a flat-

bed scanner (HP Digital Sender 9250c, 300 dpi) and ImageJ [37] version 1.48. Hue and satura-

tion were set at 255, and brightness at 170 for broadleaf species and 180 for needleleaf species.

The default thresholding method was used, with color set to red. Hemisurface leaf area for

nonflat spruce (Picea spp.) needles was calculated using equations from the literature [38]. Leaf

dry mass was determined after drying to a constant mass in a forced-air oven at 60 ˚C, and spe-

cific leaf area (SLA, cm2 g-1) calculated by dividing leaf surface area by dry mass [39]. Black

and white spruce species hybridize across vegetation transition zones such as the one in this

study, making it difficult to distinguish them in some cases. For this reason, we pooled spruce

species into a single vegetation type (“spruce”); this approach is consistent with a modeling-

relevant approach [40]. However, we recognize the importance of species-specific data, and

thus provide the full (raw) data with putative species tags (see Supporting information for data

availability).

Site characteristics and soil properties

Landscape slope, active layer depth (ALD), and soil cores were sampled in a cyclic sampling

design to allow for efficient spatial analyses (S1 Fig in S1 File) [35]. Landscape slope was mea-

sured using a clinometer over a 2 m length centered at each soil sampling location. ALD was
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measured from the soil surface every 2.5 m along each transect in September 2014 using a 150

cm probe; September thaw depths were used to capture maximum thaw. If permafrost was not

reached at three consecutive positions moving upslope, ALD was assumed to be> 150 cm.

Along the southernmost three transects, soil cores were taken in September 2014 at each

sampling location using a forest floor sampler [41]. After coring, thermistors were installed to

measure depth-resolved soil temperatures, and the depth of the moss layer was recorded. To

enable field-model comparisons, soil cores were subsampled for physicochemical and biologi-

cal measurements at depth increments (1.75 cm, 6 cm, and 12 cm) corresponding with those

used in the Community Land Model (CLM4.5) [40]. Soil moisture was determined by measur-

ing the difference between fresh and dry mass after drying samples in a forced-air oven to a

constant mass (g water per g dry soil), and pH was measured using 1:1 CaCl2 mixture. Total

soil carbon and nitrogen were determined using an Elementar Vario EL Cube Elementar (Ele-

mentar Analysensysteme GmbH, Hanau, Germany); C:N ratios were calculated from these

data [24]. All site and soil data were linearly interpolated to match SLA data locations.

Aboveground tree net primary production

Net primary production (NPP) was determined using tree cores taken from a representative

sample of trees (birch, alder, black spruce, and white spruce) every 10 m along each transect.

At each sample point, we cored 3–5 trees per species; sample discs were taken from trees too

small to core. Cores were embedded into larger boards for protection, sanded, and scanned at

800 dpi using a flatbed scanner (Epson Workforce 840, Epson America Inc., Long Beach, CA,

USA). Bark thickness and wood annual increments were measured to the nearest 0.001 mm

using CooRecorder 7.6 (http://www.cybis.se/forfun/dendro/). For each of the most recent five

years, ring width was used to calculate diameter in each year, and biomass estimated from spe-

cies- and region-specific allometric equations [42]. For each year, tree NPP was computed as

the difference between successive biomass estimates, and these values averaged to produce

5-year mean NPP for each species at each transect sample point. Annual mortality is typically

low in mature boreal forests [43] and we did not correct for it in the calculated five-year win-

dow. The mean NPP was scaled to the site level using a tree inventory performed on all trees

with a 5 m radius of each grid sample point within each transect. Here, we present both total

NPP (combination of above-named species) and black spruce-specific NPP. The latter was

performed on tree cores from the lower portion (E end) of the transects, where we were confi-

dent of the identity of black spruce trees (versus white spruce).

Statistical analyses

All statistical analyses were performed using R [44] version 3.2.4. We assessed SLA variation

across two scales: within and among individuals in a tree species. To partition the variation in

these two scales, we fitted a general linear model to the variance across leaf and tree scales [27],

with leaf nested in tree, and with separate analyses for each species (S1 Appendix in S1 File).

Because we have high-resolution spatial data, we used linear regressions (with SLA averaged

by tree individual for each species) to test the hypothesized relationships between SLA and

topographic and edaphic properties (Fig 1). Specifically, we performed Theil-Sen regressions

as robust estimators against outliers, using the R function mblm in the ‘mblm’ package, version

0.12.1. Spearman’s rank correlations were used to determine the significance and strength of

relationships between ALD and slope and between ALD and SLA, using R function cor.test in

the R ‘stats’ package, version 3.2.4. Where we saw relationships in the linear regressions, we

used T- and F-tests to examine shifts in means and variances, respectively. When bivariate

regressions showed nonlinear relationships, we used the function segmented in the R
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‘segmented’ package to test for breakpoints and tested for significance of these breakpoints

using the davies.test function.

Results

Inter- and intraspecific SLA variation

Specific leaf area (SLA) averaged by tree varied by over a factor of three between alder (n = 33

trees) and spruce (n = 36 trees), with high levels of intraspecific variation as well (Table 1).

SLA for alder ranged from 121 to 364 cm2 g-1 (214 ± 66.1 cm2 g-1). Spruce SLA ranged from

37.1 to 88.7 cm2 g-1, (57.1 ± 9.61 cm2 g-1). Partitioning the variance of SLA into the leaf and

Fig 1. Conceptual diagram linking topographic and edaphic features with specific leaf area (SLA) and net primary production (NPP) [18]. Arrows indicate

direct relationships; double-headed arrows indicate feedbacks. Arrow labels correspond to Figures.

https://doi.org/10.1371/journal.pone.0232506.g001

Table 1. Minimum, maximum, and mean specific leaf area values (cm2 g-1) and coefficients of variation by species.

Species n Minimum Maximum Mean (s.d.) Coefficient of Variation

Alder 33 120.5 363.5 213.8 (66.1) 0.309

Spruce 36 37.1 88.7 57.1 (9.6) 0.168

Values in parentheses indicate 1 standard deviation.

https://doi.org/10.1371/journal.pone.0232506.t001
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tree scales revealed that most of the variation in SLA is between rather than within individual

trees, for both alder and spruce (Table 2). Thus, all subsequent analyses were performed using

tree-averaged SLA values, following the relationships in Fig 1.

Impact of SLA on net primary production

Spruce-specific NPP was determined for the bottom four positions on the hillslope where we

had corresponding data, and ranged from 23.1 to 364 g C m-2 yr-1. Because we did not deter-

mine alder-specific NPP across the whole spatial domain, SLA and NPP were compared only

for spruce. Spruce-specific NPP was significantly higher as spruce SLA increased (p< 0.001,

R2 = 0.42, Fig 2a).

We hypothesized that SLA has a direct effect on NPP (Fig 1). However, it has been shown

that soil nutrient status (e.g., soil C:N) may have a direct influence on NPP [45]. We found that

spruce NPP and SLA were significantly correlated (p< 0.001, R2 = 0.42, Fig 2a) as well as total

NPP (from representative species, see Methods) and soil C:N (p< 0.05, R2 = 0.24, Fig 2b).

Relationship between soil resources and SLA

While our data show a negative linear relationship between both spruce and alder SLA and soil

moisture the residual plots for the SLA and soil moisture linear regressions highlight potential

nonlinearities in these relationships (S2 Fig in S1 File). Because of the small number of data

Table 2. Variance partitioning of the full nested linear models on SLA across leaf and tree scales.

Species Between-tree SLA variation (%) Within-tree SLA variation (%)

Alder 93.7 6.3

Spruce 74.0 26.0

SLA data were natural log transformed prior to analysis. n = 169 leaves and 33 trees for alder; n = 190 leaves and 36

trees for spruce.

https://doi.org/10.1371/journal.pone.0232506.t002

Fig 2. Relationships between (a) spruce-specific SLA (cm2 g-1) and net primary production (NPP, g C m-2 yr-1), and (b) total NPP and soil C:N. The blue lines

represents the linear regression, and the shaded areas shows the 95% confidence level interval for predictions.

https://doi.org/10.1371/journal.pone.0232506.g002
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points in this study limits further interpretation of a nonlinear fit for these data, we therefore

used linear regressions, which show higher SLA values correlated with lower soil moisture val-

ues (p< 0.05, R2 = 0.40 for alder, Fig 3a; p< 0.001, R2 = 0.52 for spruce, Fig 3b). For both

alder and spruce, higher soil C:N values correlated with lower SLA values (p< 0.05; R2 = 0.30

for alder, Fig 3c; R2 = 0.26 for spruce, Fig 3d).

Relationship between active layer depth and SLA

Across the entire field site, ALD ranged from 54 cm to above 150 cm (median 137.2 cm). Soil

moisture at 6 cm ranged from 0.18–0.93 g g-1 (mean = 0.68 g g-1); we used soil data from 6 cm

depth for comparisons with landscape and SLA data, as this depth is more relevant than sur-

face soil to rhizosphere processes. Soil was drier at deeper ALD (for 6 cm, p< 0.05, Fig 4). For

subsequent analyses, we used the ALD-moisture relationship to divide the data into two ALD

classes: shallow (< 140 cm) and deep (> 140 cm) ALD; we used segmented regression to deter-

mine this breakpoint. Moisture values were marginally different between shallow and deep

Fig 3. Relationships between specific leaf area (SLA) and (a,b) gravimetric soil moisture and (b,c) C:N, for alder and

spruce. The blue line represents the regressions, and the shaded area shows the 95% confidence level intervals for

predictions.

https://doi.org/10.1371/journal.pone.0232506.g003
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ALD classes (p = 0.0755). The variance in soil moisture differed significantly between the two

ALD classes (F9,7 = 0.0672, p< 0.001).

Mean alder SLA for deep ALD was 266 cm2 g-1, and for shallow ALD was 158 cm2 g-1.

Mean spruce SLA for deep ALD was 62.0 cm2 g-1, and for shallow ALD was 52.1 cm2 g-1. SLA

for both alder and spruce increased with thicker ALD (p< 0.001, R2 = 0.62, ρ = 0.75 for alder,

Fig 5a; p< 0.001, R2 = 0.36, ρ = 0.62 for spruce, Fig 5b). For both alder and spruce, mean SLA

corresponding with shallow and deep ALD were significantly different (T30 = 8.94 for alder;

T34 = 5.01 for spruce; p< 0.001). There was no difference in SLA variances between the two

ALD classes (F15,16 = 0.557; p = 0.265 for alder; F17,17 = 1.02; p = 0.971 for spruce).

Topography influences on active layer depth

Across the field site, slope ranged from 13–56% (mean = 23.7%). ALD was positively correlated

with landscape slope (p< 0.001, ρ = 0.63, Fig 6). Above 23% slope, ALD was consistently

deeper than the maximum probe depth (150 cm); below this value, there was no significant

correlation between ALD and slope (p = 0.157, rho = -0.31, Fig 6).

Interactions between active layer depth, moss depth, and soil properties

Moss thickness varied from 3.0 to 23.5 cm (mean = 14.4 cm), and the 6 cm soil temperature at

the time of coring ranged from 2.8 to 10.1˚C (mean = 5.4˚C). The moss layer was thickest in

areas of shallow ALD (p< 0.05; R2 = 0.27, Fig 7a). Soil temperature decreased with increased

moss thickness (p< 0.05, R2 = 0.41, Fig 7b), and increased with deeper ALD (p< 0.001, R2 =

Fig 4. Relationship between active layer depth (ALD) and gravimetric soil moisture. Only 6 cm soil depth was used.

Vertical dashed line indicates cut-off for shallow (< 140 cm) and deep (> 140 cm) ALD classes.

https://doi.org/10.1371/journal.pone.0232506.g004
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Fig 5. Relationships between specific leaf area (SLA) and active layer depth (ALD), for (a) alder and (b) spruce.

Vertical dashed lines indicate cut-off for shallow (< 140 cm) and deep (> 140 cm) ALD classes. The blue line represents

the linear regression, and the shaded area shows the 95% confidence level interval for predictions.

https://doi.org/10.1371/journal.pone.0232506.g005

Fig 6. Active layer depth (ALD) as a function of slope. The whole data set was tested using Spearman’s rank test

(p< 0.001, ρ = 0.628). Below 23% slope (indicated by solid gray line), there was no significant correlation between

ALD and slope (p = 0.32, ρ = -0.305).

https://doi.org/10.1371/journal.pone.0232506.g006
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0.63, Fig 7c). The means of both moss depth (T12 = -4.11, p < 0.05) and soil temperature

(T12 = 4.56, p< 0.001) in the shallow and deep ALD classes were significantly different.

Soil C:N at 6 cm depth ranged from 13.8 to 57.9 (mean = 34.4). Soil C:N values were signifi-

cantly higher in wetter soil conditions associated with shallower ALD (p< 0.001, R2 = 0.40,

Fig 8a). Soil C:N at 6 cm decreased with increased soil temperatures (p< 0.05, R2 = 0.16, Fig

8b), and increased with thicker moss layers (p< 0.05, R2 = 0.46, Fig 8c).

Discussion

Ecosystem productivity implications of intraspecific SLA variation

The empirical data presented here suggest that in permafrost-affected systems, the depth of the

active layer can function as a threshold for various soil parameters, influencing plant traits

such as SLA (Fig 5). SLA is directly associated with leaf-level photosynthesis, and has been

shown to have a direct positive correlation with photosynthesis and productivity [14]. Here,

we show that across a permafrost transition, a doubling in black spruce SLA corresponds to a

much larger (five-fold) increase in NPP (Fig 2a). Further, our data suggest a direct connection

between SLA and NPP (Fig 2a) and an indirect and weaker influence of soil C:N on NPP (Fig

Fig 7. Interactions of (a) the moss layer and active layer depth (ALD), (b) soil temperature and moss depth, and (c) soil

temperature and ALD. Vertical dashed lines in panels (a) and (c) indicate cut-off for shallow (< 140 cm) and deep (> 140 cm) ALD

classes. The blue line represents the linear regression, and the shaded area shows the 95% confidence level interval for predictions.

https://doi.org/10.1371/journal.pone.0232506.g007

Fig 8. Relationships between soil C:N and (a) soil moisture, (b) soil temperature, and (c) moss depth. All soil depths were used in

panels (a) and (b) (1.75 cm, 6 cm, 12 cm). Only 6 cm soil depth was used in panel (c). The blue line represents the linear regression, and

the shaded area shows the 95% confidence level interval for predictions.

https://doi.org/10.1371/journal.pone.0232506.g008
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2b). Because the control on maximum SLA is mediated by ALD (Fig 5a and 5b), when perma-

frost thaws, the nonlinear relationship between specific leaf area and NPP represents an avenue

for the ecosystem to gain carbon. This result is especially relevant to boreal systems, where cli-

mate change is expected to appreciably thaw the permafrost [2, 9]. This suggests that as the

active soil layer deepens, carbon cycling will undergo nonlinear acceleration, a phenomenon

called a tipping point.

In addition, the deepening of the active layer may accelerate belowground decomposition

and thereby release carbon to the atmosphere [3]. Under warming conditions, while the

released carbon might in principle be more readily fixed through the parallel increase in pho-

tosynthesis, analyses in warming boreal and arctic systems suggest that, in fact, respiration

typically increases faster than photosynthesis [46]; this is also consistent with a recent global

synthesis [47]. Ecosystem-scale carbon cycling responses will however depend on specific eco-

system parameters such as water balance, soil carbon composition, and carbon bioavailability

[48, 49]. The balance between respiration and productivity warrants further exploration in

permafrost-affected ecosystems sensitive to climate change.

Influence of active layer depth on SLA variation

We found that while soil moisture does have a negative linear relationship with SLA (Fig 3a

and 3b), this relationship has potential nonlinearities (S2 Fig in S1 File), although we note that

the small number of data points at low moisture conditions limits this interpretation. SLA and

moisture have been shown to be positively correlated in systems with low soil moisture values

(0.05–0.30 g g-1) [29]. In contrast, studies in boreal systems with more consistently saturated

conditions (0.60+ g g-1) have shown that SLA is constrained at high-moisture sites with shal-

low ALD [19, 22], likely due to saturated conditions in which the anaerobic environment leads

to reduced root conductance [50], limited nutrient availability, and generally poorer condi-

tions for plant growth. The relatively large range of soil moisture included our study site

(0.18–0.93 g g-1) may therefore explain the nonlinearities in the relationship between SLA and

soil. We reiterate that SLA data in boreal systems more evenly distributed across a wide range

of soil moisture values are needed to unambiguously distinguish between a negative linear

relationship (more soil moisture always means lower SLA, as the negative correlations in our

data show) versus a quadratic one (implying a moisture optimum).

Significant variation in SLA was also explained by soil C:N (Fig 3c and 3d). Global interspe-

cific plant trait studies have shown that higher soil C:N correlates with lower SLA [24]. In our

study looking at intraspecific SLA variation across an ALD gradient, we find that higher soil C:

N also correlates with lower SLA. This is an important plant-soil relationship in the context of

predictive trait modeling, especially in N-limited high latitude systems subject to permafrost

thaw and thus changes in water, carbon, and nutrient cycling [4–6]. If permafrost thaw

increases the pool of available soil N (i.e., lower soil C:N), then photosynthetic nitrogen

demands could be alleviated, potentially increasing SLA and site productivity; furthermore, if

this response to changes in soil C:N varies within a species, current fixed-trait models will not

capture these changes.

For both species, we found that ALD is highly correlated with SLA, with an approximate

two-fold increase in species-specific SLA values from shallow to deep ALD locations (Fig 5).

Further, ALD has a thresholding effect on intraspecific SLA, whereby a relatively small change

in ALD corresponds to a large change in SLA (Fig 5). While SLA at the landscape scale is con-

trolled by soil resources (moisture and nutrients) [51], in this boreal system this control is

mediated by ALD, which constrains SLA (Fig 5). Our data extend the findings of SLA dynam-

ics in permafrost systems [19, 22, 52] by providing a broad range of continuous ALD across a
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small-scale and critical soil transition zone, while also examining a network of soil and land-

scape influences to understand controls on SLA (Fig 9).

Given the structure of our hypothesized relationships between SLA and environmental

correlates (Fig 1), we considered path analysis (a type of structural equation modeling, SEM).

However, we have insufficient data given the number of variables that would be contained

within an SEM. For example, separating the soils dataset by tree species, we have 18 data

points, and the number of parameters is 7 (excluding NPP, Fig 1); our number of samples per

parameter is 2.6, which is on the low end of sample adequacy [53]. We instead performed

bivariate linear regressions as detailed above, using our hypothesized relationships (Fig 1) to

construct a conceptual diagram (Fig 9). Further studies should consider increasing sample size

to allow for SEM analysis. Because we evaluated relationships based on a priori hypothesized

relationships (Fig 1), we did not perform a global selection model to explain variation in SLA.

As a caveat, our data describe one spatial domain (75m x 75m), and further study is needed to

confirm if the relationships between SLA and active layer depth and soil properties apply at

other spatial scales.

We assume here that the high degree of SLA variation among individuals in a given species

(Table 1) is due to phenotypic plasticity in response to environmental gradients, rather than

genetic variation. Given the relatively small spatial domain of our study site (ca. 75 m x 75 m)

and the steep topographic, vegetation, and permafrost gradients encountered, we believe this

is a reasonable assumption. While we do not attempt to resolve all ecological scales that influ-

ence total trait variation (i.e. leaf, canopy-level, tree, species, plot, and site) [27], our results

suggest that it is at the stand or plot level that environmental filters (e.g., ALD, soil C:N) act on

SLA. This is similar to studies in tropical [27] and Mediterranean [29] systems, and provides

guidance in the level at which intraspecific trait variation is ecologically relevant.

Fig 9. Revised conceptual diagram (not formal SEM) based on this study’s results linking topographic and edaphic features, including active layer

depth (ALD), with specific leaf area (SLA) and net primary production (NPP) [18]. Relationships are based on bivariate regressions. Solid lines

indicate statistically significant linear relationships and dashed lines indicate a nonlinear threshold relationship. Arrow color indicates direction of

correlation: red is positive; blue is negative; gray represents a marginally significant linear relationship.

https://doi.org/10.1371/journal.pone.0232506.g009
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Relationships between active layer depth and edaphic and topographic

features

The relationships between permafrost and topographic and edaphic features are well docu-

mented [54, 55]. Landscape slope and aspect affect the amount of incoming solar radiation,

which in turn influences soil thermal conditions and depth to permafrost [18, 48, 56]. We con-

trolled for aspect in this study (all transects are east-facing), allowing us to isolate the effect of

slope on ALD. We found a threshold in the slope-ALD relationship, with permafrost not

encountered at 150 cm depth at slopes greater than 23% (Fig 6). This is not unexpected, as

deeper ALD is predicted on steeper slopes due both to increased drainage and to high solar

radiation inputs in high latitude systems [18].

Because permafrost is a physical barrier to water drainage, the shallower active layers gener-

ally maintain high soil moisture conditions [18]. We found that shallow active layers (< 140

cm) constrain soil moisture values to near saturation and lowered their variance (Fig 4).

Together, high moisture and low temperatures of permafrost-associated soils limit decomposi-

tion, thus maintaining high C:N ratios in the thick moss layer and limiting nutrient availability

[5] (Fig 8). Past the observed ALD threshold of 140 cm, soil moisture and thermal conditions

shift rapidly (Figs 4 and 7), likely because deeper ALD (often found at steeper slopes) promotes

both water drainage and heat advection by pore water flow [57, 58]. Together, these conditions

likely favor aerobic decomposition of soil organic matter and increase available nutrients for

plant uptake.

In boreal systems, both the surface moss and organic soil layer play important roles in soil

thermal dynamics, nutrient cycling, and ecosystem carbon accumulation [59]. Specifically, the

moss and organic layers act as insulation to maintain low soil temperatures and shallow ALD

[9, 18, 54, 60], an effect modulated by soil moisture [61]. In support of this thermal regulation

mechanism, our data show expected relationships between moss depth, temperature, and ALD

(Fig 7). In turn, low soil temperatures maintained by the moss layer can limit decomposition

and maintain high soil C:N (Fig 8), and thus limit the availability of soil nutrients [18].

Implications for earth system models

Most ecosystem process models represent vegetation by plant functional types (PFTs), each

of which has fixed photosynthetic parameters such as SLA that collectively control PFT

photosynthesis, allocation, mortality, and decomposability. In the Community Land Model

(CLM4.5), for example, the assigned SLA value for each PFT is mechanistically linked to pho-

tosynthesis through leaf N concentration [40, 62]. Modifications to CLM have been proposed

that improve representations of leaf traits, nitrogen availability, and plant productivity, with

large implications for gross primary production [63]. However, averaging plant trait parame-

ters is problematic, because for several important traits there is more variation within PFTs

than between PFTs [12, 64, 65].

Extensive plant trait databases allow for the study of intraspecific variation across species

and PFTs [65], which has led to calls for inclusion of such variation in ecological studies [66].

In turn, ecosystem models have been developed which incorporate trait plasticity into the

existing PFT representation based on soil and climate relationships [67–69], and also

approaches that utilize dynamic functional trade-offs rather than PFTs [70]. Model simula-

tions with dynamic traits based on empirical trait-environment relationships show that high

latitude systems become a stronger carbon sink through the next century, due in part to

increased productivity [67]. Knowledge of empirical patterns like those shown in this study—

whereby high intraspecific SLA variation leads to nonlinear increases in productivity (Fig 2a)

—is necessary to increase the predictive power of these models and provide benchmark data
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with which to test their performance. Such knowledge is especially crucial in climate-sensitive

high-latitude systems, where permafrost thaw impacts drivers of plant trait variation [71].

Conclusions

The empirically-derived relationships presented in this exploratory study (Fig 9) can guide the

structural form and associated uncertainty of environmental controls on and consequences of

SLA variation in process models. Our results indicate the need for more extensive evaluation

of SLA variation and its impacts on forest ecosystem production, particularly across larger spa-

tial domains that are replicated across multiple hillslopes distributed through non-contiguous

permafrost ecosystems. Together, our study connects fundamental understanding of the link-

ages between SLA and system features with a meaningful way to incorporate them into the lat-

est Earth System Models and a predictive framework for forest management under climate

change.
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